

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., Act. No. 30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

Course Structure & Syllabi for B.Tech. (Regular) R13 Regulations

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. I Year

S.No	Course code	Subject	Theory	Tu/	Lab.	Credits
1.	13A52101	Communicative English	2	-	- 7	3
2.	13A56101	Engineering Physics	2	-	-	3
3.	13A51101	Engineering Chemistry	2		-	3
4.	13A54101	Mathematics - I	3	1	-	5
5.	13A12101	Programming in C & Data	3	1	-	5
		Structures				
6.	13A54102	Mathematics - II	3	1	-	5
7.	13A04101	Network Analysis	3	1	-	5
8.	13A12102	Programming in C & Data	-	-	3	4
		Structures Lab				
9.	13A99102	Engineering Physics &	-	-	3	4
		Engineering Chemistry Lab *				
10.	13A99103	Engineering & IT Workshop #	-	-	3	4
11.	13A52102	English Language Comm. Skills	-	-	3	4
		Lab				
		Total Credits				45

Th = Theory; Tu = Tutorial & Lab = Laboratory:

^{*} The students shall attend the Physics lab and Chemistry lab in alternate weeks. The end exam shall be conducted separately and average of the two exams shall be recorded by the University exam section.

[#] The students shall attend Engineering and IT work shop as a single lab every week and the end exam is conducted as a single lab. Sharing the Maximum marks and time for one task each from Engineering workshop and IT workshop. The sum of the marks awarded shall be recorded.

B.Tech. II - I Semester

S.No	Course code	Subject	Theory	Tu / Lab	Credits	
1.	13A54302	Mathematics - III	3	1 -	3	
2.	13A04301	Electronic Devices & Circuits	3	1 -	3	
3.	13A04302	Signals & Systems	3	1 -	3	
4.	13A04303	Switching Theory & Logic Design	3	1 -	3	
5.	13A04304	Probability Theory & Stochastic Processes	3	1 -	3	
6.	13A02303	Electrical Technology	3	1 -	3	
7.	13A02304	Electrical Engineering Lab	-	- 3	2	
8.	13A04305	Electronic Devices & Circuits Lab	-	- 3	2	
9.	13A52301	Human Values and Professional Ethics(Audit Course)	2	-	-	
	Total Credits					

B.Tech. II - II Semester

S.No	Course code	Subject	Theory	Tu / l	Drg / I	Lab	Credits
1.	13A01403	Environmental Science	3	1	-	-	3
2.	13A04401	Pulse & Digital Circuits	3	1	-	-	3
3.	13A04402	Electronic Circuits Analysis & Design	3	1	-	-	3
4.	13A04403	Electromagnetic Theory & Transmission Lines	3	1	-	-	3
5.	13A03304	Engineering Graphics	1	-	3	-	3
6.	13A04404	Analog Communication Systems	3	1	-	-	3
7.	13A04405	Electronic Circuits Analysis & Design Lab	-	-	-	3	2
8.	13A04406	Pulse & Digital Circuits Lab	-	-	-	3	2
		Total Credits					22

B.Tech. III - I Semester

S.No	Course code	Subject	Theory	Tu	/ Lab	Credits	
1.	13A02402	Control Systems Engineering	3	1	-	3	
2.	13A05401	Computer Organization & Architecture	3	1	-	3	
3.	13A04501	Antennas & Wave Propagation	3	1	-	3	
4.	13A04502	Digital Communication Systems	3	1	-	3	
5.	13A04503	Linear IC Applications	3	1	-	3	
6.	13A04504	Digital IC Applications	3	1	-	3	
7.	13A04505	IC Applications Lab		/	3	2	
8.	13A04506	Analog Communication Systems Lab	-		3	2	
	Total Credits 22						

B.Tech. III - II Semester

S.No	Course code	Subject	Theory	Tu	/ Lab	Credits	
1.	13A52501	Managerial Economics & Financial Analysis	3	1	-	3	
2.	13A04601	Microprocessors & Microcontrollers	3	1	-	3	
3.	13A04602	Digital Signal Processing	3	1	-	3	
4.	13A04603	Microwave Engineering	4	1	-	4	
5.	13A04604	Electronic Measurements & Instrumentation	3	1	-	3	
6.	13A04605	Microprocessors & Microcontrollers Lab	3	1	-	2	
7.	13A04606	Digital Signal Processing Lab	-	-	3	2	
8.	13A04607	Digital Communication Systems Lab	-	-	3	2	
9.	13A52502	Advanced English Language Comm. skills Lab(Audit course)	-	-	3	-	
	Total Credits						

B.Tech. IV - I Semester

S.No	Course code	Subject	Theory	Tu	/ Lab	Credits
1.	13A52601	Management Science	3	1	-	3
2.	13A04701	VLSI Design	3	1	-	3
3.	13A04702	Optical Fibre Communication	3	1	-	3
4.	13A04703	Embedded Systems	3	1	-	3
5.		Elective – I (Open Elective)	3	1	-	3
		Elective-II				
6.	13A04704 13A04705 13A04706	Digital Image Processing RADAR & Navigational Aids T.V Engineering	3	1	-	3
7.	13A04707	VLSI & Embedded Systems Lab			3	2
8.	13A04708	Microwave & Optical Communications Lab	-	$\left(\cdot \right)$	3	2
	Total Credits					

B.Tech. IV - II Semester

S.No	Course code	Subject	Theory	Tu	/ Lab	Credits
1.	13A04801	Mobile Communication	3	1	-	3
2.	13A04802	Computer Networks	3	1	-	3
3.	13A04803 13A04804 13A04805	Elective-III Satellite Communication Spread Spectrum Communication Multimedia Communication	3	1	-	3
4.	13A04806 13A04807 13A04808	Elective-IV Bio-Medical Instrumentation Speech Processing DSP Processors & Architectures	3	1	-	3
5.	13A04809	Seminar & Comprehensive Viva-voce	-	-	-	3
6.	13A04810	Project work	_	-	-	10
Total Credits						25

B.Tech. I Year Th Tu C 2 0 3

Common to All Branches

(13A52101) COMMUNICATIVE ENGLISH

Preamble:

English is an international language as well as a living and vibrant one. People have found that knowledge of English is a passport for better career and for communication with the entire world. As it is a language of opportunities in this global age, English is bound to expand its domain of use everywhere. The syllabus has been designed to enhance communication skills of the students of Engineering and Technology. The prescribed books serve the purpose of preparing them for everyday communication and to face global competitions in future.

The first text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and student-centered. They should be encouraged to participate in the classroom activities keenly.

The text for non-detailed study is meant for extensive reading/reading for pleasure by the students. They may be encouraged to read some selected topics on their own, which could lead into a classroom discussion. In addition to the exercises from the texts done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

Course Objective:

- To enable the students to communicate in English for academic and social purpose.
- To enable the students to acquire structure and written expressions required for their profession.
- To develop the listening skills of the students.
- To inculcate the habit of reading for pleasure.
- To enhance the study skills of the students with emphasis on LSRW skills.

Learning Outcome:

• The students will get the required training in LSRW skills through the prescribed texts and develop communicative competence.

UNIT I

Chapter entitled "Humour" from "Using English"

Chapter entitled "Biography - (Homi Jehangir Bhabha)" from "New Horizons"

Listening - Techniques - Importance of phonetics

L- Meet & Greet and Leave taking, Introducing Oneself and Others (Formal and Informal situations)

R- Reading Strategies -Skimming and Scanning

W- Writing strategies- sentence structures

G-Parts of Speech -Noun-number, pronoun-personal pronoun, verb-

analysis V-Affixes-prefix and suffix, root words, derivatives

UNIT II

Chapter entitled "Inspiration" from "Using English"

Chapter entitled "Biography - (Jagadish Chandra Bose)" from "New Horizons"

L- Listening to details

S- Apologizing, Interrupting, Requesting and Making polite conversations R- Note making strategies

W- Paragraph-types- topic sentences, unity, coherence, length, linking devices

G-Auxiliary verbs and question tags

V- synonyms-antonyms, homonyms, homophones, homographs, words often confused

UNIT III

Chapter entitled "Sustainable Development" from "Using English" Chapter entitled "Short Story - (The Happy Prince)" from "New Horizons"

- L- Listening to themes and note taking
- S- Giving instructions and Directions, making suggestions, Accepting ideas, fixing a time and Advising
- R- Reading for details -1 W-

Resume and cover letter

G- Tenses – Present tense, Past tense and Future tense V-Word formation and One-Word Substitutes

UNIT IV

Chapter entitled "Relationships" from "Using English"

Chapter entitled "Poem - (IF by Rudyard Kipling)" from "New Horizons"

- L- Listening to news
- S- Narrating stories, Expressing ideas and opinions and telephone

skills R- Reading for specific details and Information

- W- Technical Report writing-strategies, formats-types-technical report writing
- G- Voice and Subject-Verb Agreement
- V- Idioms and prepositional Phrases

UNIT V

Chapter entitled "Science and Humanism" from "Using English"

Chapter entitled "Autobiography - (My Struggle for an Education by Booker T.Washington)" from "New Horizons"

- L- Listening to speeches
- S- Making Presentations and Group Discussions
- R- Reading for Information
- W- E-mail drafting
- G- Conditional clauses and conjunctions
- V- Collocations and Technical Vocabulary and using words appropriately

Text Books:

- 1. Using English published by Orient Black Swan.
- 2. New Horizons published by Pearson.

- 1. Raymond Murphy's English Grammar with CD, Murphy, Cambridge University Press, 2012.
- 2. English Conversation Practice Grant Taylor, Tata McGraw Hill, 2009.
- 3. Communication Skills, Sanjay Kumar & Pushpalatha Oxford University Press, 2012.
- 4. A Course in Communication Skills Kiranmai Dutt & co. Foundation Books, 2012.
- 5. Living English Structures William Standard Allen-Pearson, 2011.
- 6. Current English Grammar and Usage, S M Guptha, PHI, 2013.
- 7. Modern English Grammar-Krishna SWAMI, McMillan, 2009.
- 8. Powerful Vocabulary Builder- Anjana Agarwal, New Age International Publishers, 2011.

B.Tech. I Year Th Tu C 2 0 3

Common to All Branches

(13A56101) ENGINEERING PHYSICS

Preamble:

There has been an exponential growth of knowledge in the recent past opening up new areas and challenges in the understanding of basic laws of nature. This helped to the discovery of new phenomena in macro, micro and nano scale device technologies. The laws of physics play a key role in the development of science, engineering and technology. Sound knowledge of physical principles is of paramount importance in understanding new discoveries, recent trends and latest developments in the field of engineering.

To keep in pace with the recent scientific advancements in the areas of emerging technologies, the syllabi of engineering physics has been thoroughly revised keeping in view of the basic needs of all engineering branches by including the topics like optics, crystallography, ultrasonics, quantum mechanics, free electron theory. Also new phenomenon, properties and device applications of semiconducting, magnetic, superconducting and nano materials along with their modern device applications have been introduced,

Course Objective:

- To evoke interest on applications of superposition effects like interference and diffraction, the mechanisms of emission of light, achieving amplification of electromagnetic radiation through stimulated emission, study of propagation of light through transparent dielectric waveguides along with engineering applications.
- To enlighten the periodic arrangement of atoms in crystals, direction of Bragg planes, crystal structure determination by X-rays and also to understand different types of defects in crystals adnoundestructive evaluation using ultrasonic techniques.
- To get an insight into the microscopic meaning of conductivity, classical and quantum free electron model, the effect of periodic potential on electron motion, evolution of band theory to distinguish materials and to understand electron transport mechanism in solids.
- To open new avenues of knowledge and understanding on semiconductor based electronic devices, basic concepts and applications of semiconductor and magnetic materials have been introduced which find potential in the emerging micro device applications.
- To give an impetus on the subtle mechanism of superconductors in terms of conduction of electron pairs using BCS theory, different properties exhibited by them and their fascinating applications. Considering the significance of microminiaturization of electronic devices and significance of low dimensional materials, the basic concepts of nanomaterials, their synthesis, properties and applications in modern emerging technologies are elicited.

Learning Outcome:

- The different realms of physics and their applications in both scientific and technological systems are achieved through the study of physical optics, lasers and fibre optics.
- The important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction are focused along with defects in crystals and ultrasonic non-destructive techniques.
- The discrepancies between the classical estimates and laboratory observations of physical properties exhibited by materials would be lifted through the understanding of quantum picture of subatomic world.
- The electronic and magnetic properties of materials were successfully explained by free electron theory and focused on the basis for the band theory.
- The properties and device applications of semiconducting and magnetic materials are illustrated.

• The importance of superconducting materials and nanomaterials along with their engineering applications are well elucidated.

UNIT 1

PHYSICAL OPTICS. LASERS AND FIBRE OPTICS:

Physical Optics: Introduction - Interference in thin films by reflection – Newton's Rings – Fraunhofer diffraction due to single slit, double slit and diffraction grating.

Lasers: Introduction - Characteristics of laser - Spontaneous and stimulated emission of radiation - Einstein's coefficients - Population inversion - Excitation mechanisms and optical resonator - Ruby laser - He-Ne laser - Applications of lasers.

Fibre optics: Introduction— Construction and working principle of optical fiber—Numerical aperture and acceptance angle—Types of optical fibers—Attenuation and losses in fibers—Optical fiber communication system—Applications of optical fibers in communications, sensors and medicine.

UNIT II

CRYSTALLOGRAPHY AND ULTRASONICS:

Crystallography: Introduction – Space lattice –Unit celf – Lattice parameters –Bravias lattice – Crystal systems – Packing fractions of SC, BCC and FCC - Structures of NaCl and Diamond – Directions and planes in crystals – Miller indices – Interplanar spacing in cubic crystals – X-ray diffraction - Bragg's law –Laue and Powder methods – Defects in solids: point defects, line defects (qualitative) - screw and edge dislocation, burgers vector.

Ultrasonics: Introduction – Production of ultrasonics by piezoelectric method – Properties and detection – Applications in non-destructive testing.

UNIT III

QUANTUM MECHANICS AND FREE ELECTRON THEORY:

Quantum Mechanics: Introduction to matter waves — de'Broglie hypothesis - Heisenberg's uncertainty principle and its applications - Schrodinger's time independent and time dependent wave equation — Significance of wave function - Particle in a one dimensional infinite potential well - Eigen values and Eigen functions.

Free electron theory: Classical free electron theory — Sources of electrical resistance - Equation for electrical conductivity - Quantum free electron theory — Fermi-Dirac distribution —Kronig-Penny model(qualitative) — Origin of bands in solids — Classification of solids into conductors, semiconductors and insulators.

UNIT IV

SEMICONDUCTORS AND MAGNETIC MATERIALS:

Semiconductor Physics: Introduction – Intrinsic and extrinsic semiconductors – Drift & diffusion currents and Einstein's equation – Hall effect - Direct and indirect band gap semiconductors – Working principle of p-n junction diode, LED, laser diode and photodiode.

Magnetic materials: Introduction and basic definitions — Origin of magnetic moments — Bohr magneton — Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials — Hysteresis - Soft and hard magnetic materials and applications.

UNIT V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS:

Superconductivity: Introduction – Meissner effect - Properties of superconductors – Type I and type II superconductors – Flux quantization – London penetration depth – ac and dc Josephson effects – BCS theory(qualitative) – High T_c superconductors - Applications of superconductors.

Physics of Nanomaterials: Introduction - Significance of nanoscale - Surface area and quantum confinement - Physical properties: optical, thermal, mechanical and magnetic properties - Synthesis of nanomaterials: ball mill, chemical vapour deposition, sol-gel, plasma arcing and thermal evaporation - Properties of Carbon nanotubes - High strength applications - Properties of graphene - Graphene based Field Effect Transistor - Applications of nanomaterials.

Text Books:

- 1. Engineering physics S. ManiNaidu, Pearson Education, I Edition, 2012.
- 2. Engineering Physics V. Rajendran, MacGraw Hill Publishers, I Edition, 2008.

- 1. Engineering Physics V. Rajendran, K.Thyagarajan Tata MacGraw Hill Publishers, III Edition, 2012.
- 2. Engineering Physics RV.S.S.N. Ravi Kumar and N.V. Siva Krishna, Maruthi Publications , 2013
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish University Press, I Edition, 2009.
- 4. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning, I Edition, 2012
- 5. Engineering Physics Hitendra K Mallik and AK Singh, McGraw Hill Education Pvt. Ltd, New Delhi , I Edition, 2010
- 6. Engineering Physics M. Arumugam, Anuradha Publications II Edition, 1997.
- 7. Engineering physics M.N. Avadhanulu and P.G. KshirSagar, Chand and Co, Revised Edition, 2013.
- 8. Solid State Physics A.J. Dekkar, McMillan Publishers, Latest edition, 2012.
- 9. Engineering Physics Gaur and Gupta Dhanapati, Rai Publishers, 7th Edition, 1992.
- 9. Text book of Nanoscience and Nanotechnology: B S Murthy, P.Shankar, Baldev Raj B B Rath, James Murday, University Press, I Edition, 2012.
- 10. Carbon Nanotubes and Graphene Device Physics H.S. Philip Wong, Deju Akinwande, Cambridge University Press, 2011.

B.Tech. I Year Th Tu C 2 0 3

Common to All Branches

(13A51101) ENGINEERING CHEMISTRY

Preamble:

Knowledge in chemistry serves as basic nutrient for the understanding and thereby design of materials of importance in life. Thus the advancement in Engineering is depend on the outcome of basic sciences. Many advances in engineering either produce a new chemical demand as in the case of polymers or wait upon chemical developments for their applications as in the case of implants and alloys. Currently the electronics and computer engineers are looking forward for suitable biopolymers and nano materials for use in miniature super computers, the electrical materials engineers are in search of proper conducting polymers, the mechanical engineers are on lookout for micro fluids and the civil engineers are looking for materials that are environmental friendly, economical but long lasting.

Course Objective:

- The Engineering Chemistry course for undergraduate students is framed to strengthen the fundamentals of chemistry and then build an interface of theoretical concepts with their industrial/engineering applications.
- The course main aim is to impart in-depth knowledge of the subject and highlight the role of chemistry in the field of engineering.
- The lucid explanation of the topics will help students understand the fundamental concepts and apply them to design engineering materials and solve problems related to them. An attempt has been made to logically correlate the topic with its application.
- The extension of fundamentals of electrochemistry to energy storage devices such as commercial batteries and fuel cells is one such example.
- After the completion of the course, the student would understand about the concepts of chemistry in respect of Electrochemical cells, fuel cells, mechanism of corrosion and factors to influence, polymers with their applications, analytical methods, engineering materials and water chemistry.

Learning Outcome:

The student is expected to:

- Understand the electrochemical sources of energy
- Understand industrially based polymers, various engineering materials.
- Differentiate between hard and soft water. Understand the disadvantages of using hard water domestically and industrially. Select and apply suitable treatments domestically and industrially.

UNIT 1

ELECTROCHEMISTRY:

Review of electrochemical cells, Numerical calculations, Batteries: Rechargeable batteries (Lead acid, Ni-Cd, Lithium Ion Batteries). Fuels cells: (Hydrogen-Oxygen and Methanol-Oxygen).

Electrochemical sensors: Potentiometric Sensors and voltammetric sensors. Examples: analysis of Glucose and urea.

Corrosion: Electrochemical Theory of corrosion, Factors affecting the corrosion. Prevention: Anodic and cathodic protection and electro and electroless plating.

UNIT II POLYMERS:

Introduction to polymers, Polymerisation process, mechanism: cationic, anionic, free radical and coordination covalent, Elastomers (rubbers), Natural Rubber, Compounding of Rubber,

Synthetic Rubber: Preparation, properties and engineering applications of Buna-S, buna-N, Polyurethene, Polysulfide (Thiokol) rubbers. Plastomers: Thermosetting and Thermoplatics, Preparation, properties and Engineering applications, PVC, Bakelite, nylons.

Conducting polymers: Mechanism, synthesis and applications of polyacetyline, polyaniline. Liquid Crystals: Introduction, classification and applications.

Inorganic Polymers: Basic Introduction, Silicones, Polyphospazins (-(R)2-P=N-) applications.

UNIT III

FUEL TECHNOLOGY:

Classifications of Fuels – Characteristics of Fuels- Calorific Value – Units, Numerical Problems, Solid Fuels–Coal, Coke : Manufacture of Metallurgical Coke by Otto Hoffmann's by product oven processes.

Liquid Fuels: Petroleum: Refining of Petroleum, Gasoline: Octane Number, Synthetic Petrol: Bergius Processes, Fischer Troph's synthesis.

Power Alcohol: Manufacture, Advantages and Disadvantages of Power Alcohol

Gaseous Fuels: Origin, Production and uses of Natural gas, Producer gas, Water gas, Coal gas and Biogas. Flue Gas analysis by Orsat's apparatus, Solving of problems on Combustion.

UNIT IV

CHEMISTRY OF ENGINEERING MATERIALS:

Semiconducting and Super Conducting materials-Principles and some examples, Magnetic materials – Principles and some examples, Cement: Composition, Setting and Hardening (Hydration and Hydrolysis), Refractories: Classification, properties and applications, Lubricants: Theory of lubrication , properties of lubricants and applications, Rocket Propellants: Classification, Characteristics of good propellant

UNIT V

WATER TREATMENT:

Impurities in water, Hardness of water and its Units, Disadvantages of hard water, Estimation of hardness by EDTA method, Numerical problems on hardness, Estimation of dissolved oxygen, Alkalinity, acidity and chlorides in water, Water treatment for domestic purpose (Chlorination, Bleaching powder, ozonisation)

Industrial Use of water: For steam generation, troubles of Boilers: Scale & Sludge, Priming and Foaming, Caustic Embrittlement and Boiler Corrosion.

Treatment of Boiler Feed water: Internal Treatment: Colloidal, Phosphate, Carbonate, Calgon and sodium aluminate treatment. External Treatment: Ion-Exchange and Permutit processes. Demineralisation of brackish water: Reverse Osmosis and Electrodialysis

Text Books:

- 1. Engineering Chemistry by KNJayaveera, GVSubba Reddy and C. Ramachandraiah, McGraw Hill Higher Education, New Delhi, Fourth Edition, 2012.
- 2. A Text book of Engineering Chemistry by S.S Dhara, S.S.Umare, S. Chand Publications, New Delhi, 12th Edition, 2010.

- 1. A Text Book of Enigneering Chemistry, Jain and Jain, Dhanapath Rai Publishing Company, New Delhi, 15th Edition, 2010.
- 2. Engineering Chemistry by K.B.Chandra Sekhar, UN.Das and Sujatha Mishra, SCITECH, Publications India Pvt Limited, Chennai, 2nd Edition, 2012.
- 3. Concepts of Engineering Chemistry- Ashima Srivastava and N.N. Janhavi, Acme Learning Pvt Ltd, First Edition, 2013.

- **4.** Text Book of Engineering Chemistry C. Parameswara Murthy, C.V.Agarwal and Andra Naidu, BS Publications, Hyderabad, 3rd Edition, 2008.
- 5. Text Book of Engineering Chemistry, Shashichawla, Dhanapath Rai Publications, New Delhi, 4th Edition, 2011.
- **6.** Engineering Chemistry, K. Sesha Maheswaramma and Mrudula Chugh, Pearson Education, First Edition, 2013.

B.Tech. I Year Th Tu C 3 1 5

Common to All Branches

(13A54101) MATHEMATICS – I

Course Objective:

- To train the students thoroughly in Mathematical concepts of ordinary differential equations and their applications in electrical circuits, deflection of beams, whirling of shafts.
- To prepare students for lifelong learning and successful careers using mathematical concepts of differential, Integral and vector calculus, ordinary differential equations and Laplace transforms.
- To develop the skill pertinent to the practice of the mathematical concepts including the student abilities to formulate the problems, to think creatively and to synthesize information.

Learning Outcome:

- The students become familiar with the application of differential, integral and vector calculus, ordinary differential equations and Laplace transforms to engineering problems.
- The students attain the abilities to use mathematical knowledge to analyze and solve problems in engineering applications.

UNIT I

Exact, linear and Bernoulli equations, Applications to Newton's law of cooling, law of natural growth and decay, orthogonal trajectories.

Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type e^{ax} , Sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x), method of variation of parameters. Applications to oscillatory electrical circuits, Deflection of Beams, whirling of shafts.

UNIT II

Taylor's and Maclaurin's Series - Functions of several variables – Jacobian – Maxima and Minima of functions of two variables, Lagrange's method of undetermined Multipliers with three variables only. Radius of curvature, center of curvature, Involutes evolutes, envelopes.

UNIT III

Curve tracing – Cartesian, polar and parametric curves. Length of curves.

Multiple integral – Double and triple integrals – Change of Variables – Change of order of integration. Applications to areas and volumes, surface area of solid of revolution in Cartesian and polar coordinates using double integral.

UNIT IV

Laplace transform of standard functions – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function.

Differentiation and integration of transform – Application of Laplace transforms to ordinary differential equations of first and second order.

UNIT V

Vector Calculus: Gradient – Divergence – Curl and their properties; Vector integration – Line integral - Potential function – Area – Surface and volume integrals. Vector integral theorems:

Green's theorem – Stoke's and Gauss's Divergence Theorem (Without proof). Application of Green's – Stoke's and Gauss's Theorems.

Text Books:

- 1. Higher Engineering Mathematics, B.S. Grewal, Khanna publishers-42 Edition(2012)
- 2. Engineering Mathematics, Volume I, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher 1st Edition (2010)

- 1. Engineering Mathematics Volume-I, by T.K.V. Iyengar, S.Chand publication-12th Edition(2013)
- 2. Engineering Mathematics, Volume I, by G.S.S.Raju, CENGAGE publisher.(2013)
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India-10thEdition(2012)
- 4. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers(2008)
- 5. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier-1st Edition(2001)

B.Tech. I Year Th Tu C
3 1 5

(13A12101) PROGRAMMING IN C & DATA STRUCTURES

Course Objective:

- To make the student understand problem solving techniques
- Students will be able to understand the syntax and semantics of C programming language and other features of the language
- Get acquaintance with data structures, searching and sorting techniques

Learning Outcome:

- Student can effectively apply problem solving techniques in designing the solutions for a wide-range of problems
- Student can choose appropriate data structure and control structure depending on the problem to be solved
- Student can effectively use existing data structures and design new data structures appropriate to the problem to be solved
- Student can modularize the problem and also solution
- Student can use appropriate searching and sorting technique to suit the application.

UNIT I

Introductory Concepts: Introduction to computers, What is a Computer, Block diagram of Computer, Computer Characteristics, Hardware Vs Software, How to develop a program, Software development life cycle, Structured programming, Modes of operation, Types of programming languages, Introduction to C, Desirable program characteristics.

Introduction to Computer problem solving: Introduction, The problem solving aspect, Top down design, Implementation of algorithms.

Introduction to C programming: The C character set, Writing first program of C, Identifiers and key words, A more useful C program, Entering the program into the computer, Compiling and executing the program, Data types, Constants, Variables and arrays, Declarations, Expressions, Statements, Symbolic Constants.

Operators and Expressions: Arithmetic operators, Unary operators, Relational and Logical operators, Assignment operators, Conditional operator, Library functions.

Fundamental algorithms: Exchanging the values of two variables, Factorial computation, Sine function computation, Reversing the digits of an integer, Generating prime numbers.

UNIT II

Data Input and Output: Preliminaries, Single character input-getchar function, Single character output-putchar function, Entering input data-the scanf function, More about the scanf function, Writing output data-The printf function, More about the printf function, The gets and puts functions, Interactive(conversational) programming.

Preparing and running a complete C program: Planning a C program, Writing a C program, Error diagnostics, Debugging techniques.

Control statements: Preliminaries, Branching: if-else statement, Looping: The while statement, More looping: The do-while statement, Still more looping: The for statement, Nested control structures, The switch statement, Break statement, Continue statement, The comma operator, The goto statement.

Functions: A brief overview, Defining a function, Accessing a function, Function prototypes, Passing arguments to a function, Recursion

UNIT III

Program Structure: Storage classes, Automatic variables, External (global) variables, Static variables, Multi file programs, More about library functions.

Arrays: Defining an array, Processing an array, Passing arrays to functions, Multi dimensional arrays.

Array Techniques: Array order reversal, Removal of duplicates from an ordered array, Finding the K^{th} smallest element.

Merging, Sorting and Searching: The two way merge, Sorting by selection, Sorting by exchange, Sorting by insertion, Sorting by partitioning, Recursive Quick sort, Binary Search.

Strings: Defining a string, NULL character, Initialization of strings, Reading and Writing a string, Processing the strings, Character arithmetic, Searching and Sorting of strings, Some more Library functions for strings

UNIT IV

Pointers: Fundamentals, Pointer Declarations, Passing pointer to a function, Pointers and one dimensional array, Dynamic memory allocation, Operations on pointers, Pointers and multi dimensional arrays, Arrays of pointers, Passing functions to other functions, More about pointer declarations.

Structures and Unions: Defining a structure, Processing a structure, User defined data type (typedef), Structures and Pointers, Passing structures to functions, Unions.

File Handling: Why files, Opening and closing a data file, Reading and Writing a data file, Processing a data file, Unformatted data files, Concept of binary files, Accessing the file randomly (using fseek).

Additional Features: Register variables, Bitwise operations, Bit Fields, Enumerations, Command line parameters, More about Library functions, Macros, The C Preprocessor

UNIT V

Introduction to Data Structures: Data abstraction

Stacks and Queues: Stacks, Stacks using dynamic arrays, Queues, Circular Queues using dynamic arrays

Evaluations of expressions: Expressions, Evaluating postfix expressions, Infix to Postfix, Multiple Stacks and Oueues.

Linked Lists: Singly Linked lists and chains, Representing chains in C, Linked Stacks and Queues.

Text Books:

- I. "Programming with C", Byron Gottfried, Third Edition, Schaum"s Outlines, Mc Graw Hill.
- 2. "Fundamentals of Data Structures in C", Horowitz, Sahni, Anderson-freed, Second Edition, Universities Press.
- 3. "How to Solve it by Computer", R.G. Dromey, Pearson. (Pascal implementations may be considered without loss of generality or Instructors may replace them with C language programs)

- 1. "Programming in C", Pradip Dey, Manas Ghosh, Oxford Higher Education
- 2. "Programming in C and Data Structures", Hanly, Koffman, Kamthane, Ananda Rao, Pearson.
- 3. "Programming in C", Reema Thareja, Oxford Higher Education.
- 4. "Computer Fundamentals and C Programming", First Edition, Dr.P.Chenna Reddy, Available at: www.pothi.com.
- 5. "Data Structure and Program Design in C", Second Edition, Kruse, Tondo, Leung, Mogalla, Pearson.
- 6. "Programming with C", R.S. Bichkar, University Press.
- 7. "Computer Science A Structured Programming Approach Using C", Third Edition, Fourouzan & Gilberg, Cengage Learning.

B.Tech. - I Year Th Tu C 3 1 5

(13A54102) MATHEMATICS – II

Course Objective:

- This course aims at providing the student with the concepts of Matrices, Fourier series, Fourier and Z-transforms and partial differential equations which find the applications in engineering.
- Our emphasis will be more on logical and problem solving development in Numerical methods and their applications.

Learning Outcome:

- The student becomes familiar with the application of Mathematical techniques like Fourier series, Fourier and z-transforms.
- The student gains the knowledge to tackle the engineering problems using the concepts of Partial differential equations and Numerical methods.

UNIT I

Rank – Echelon form, normal form – Consistency of System of Linear equations. Linear transformations

Hermitian, Skew-Hermitian and Unitary matrices and their properties. Eigen Values, Eigen vectors for both real and complex matrices. Cayley – Hamilton Theorem and its applications – Diagonolization of matrix. Calculation of powers of matrix. Quadratic forms – Reduction of quadratic form to canonical form and their nature.

UNIT II

Solution of Algebraic and Transcendental Equations: The Bisection Method – The Method of False Position–Newton-Raphson Method.

Interpolation: Newton's forward and backward interpolation formulae – Lagrange's Interpolation formula.

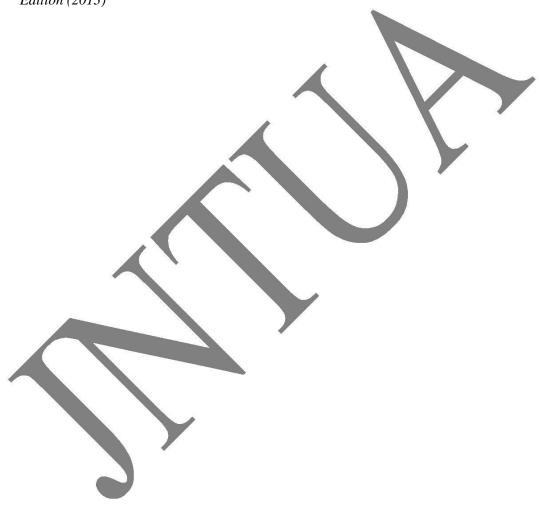
Curve fitting: Fitting of a straight line – Second degree curve – Exponentional curve-Power curve by method of least squares. Numerical Differentiation and Integration – Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule.

UNIT III

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Euler's Method-Runge-Kutta Methods – Predictor-Corrector Method – Milne's Method. Numerical solution of Laplace equation using finite difference approximation. Fourier Series: Determination of Fourier coefficients – Fourier series – Even and odd functions – Fourier series in an arbitrary interval – Even and odd periodic continuation – Half-range Fourier sine and cosine expansions.

UNIT IV

Fourier integral theorem (only statement) – Fourier sine and cosine integrals. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms. z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.


UNIT V

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Method of separation of variables – Solutions of one dimensional wave equation, heat equation and two-dimensional Laplace's equation under initial and boundary conditions.

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers- 42 Edition(2012)
- 2. Introductory Methods of Numerical Analysis, S.S. Sastry, PHI publisher 5th Edition (2012)

- 1. Engineering Mathematics, Volume II, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher-1st Edition (2010)
- 2. Engineering Mathematics, Volume II, by G.S.S.Raju, CENGAGE publisher 1st Edition(2013)
- 3. Mathematical Methods by T.K.V. Iyengar, S. Chand publication-8th Edition(2013)
- 4. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers (2008)
- 5. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India 10th Edition (2013)

B.Tech. I Year Th Tu C 3 1 5

(13A04101) NETWORK ANANLYSIS

Course Objective:

To help students develop an understanding on analyzing electrical circuits using various techniques. To make the student familiarize with the fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.

Learning Outcome:

Upon completion of the course, students will be able to:

- Solve the electrical network using mesh and nodal analysis by applying network theorems.
- Understand the basic concepts of coupled circuits, resonance and filters and solve problems.
- Analyze transient response in AC and DC electric circuits

UNIT I

Circuit Analysis Techniques: Voltage and Current Laws, Basic Nodal and Mesh Analysis, Network Topology-Formation of Incidence Matrix, Tieset and Cutset Matrix formation, Network Theorems-Linearity and Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Milliman, Miller & Tellegan's Theorems. Source Transformation.

UNIT II

RL and **RC** Circuits: The Source free RL Circuit, The Source free RC Circuit, Properties of Exponential Response, Natural & Forced Response, RLC Circuits, Complete Response of Source free parallel RLC Circuits, Source free Series RLC Circuits.

Sinusoidal Steady State Analysis: Characteristics of Sinusoids, Forced Response of Sinusoidal Functions, The Complex forcing Function, The Phasor, Phasor relationships for R,L, and C, Impedance, Admittance.

A.C Circuit Power Analysis: Instantaneous Power, Average Power, Effective Values of Current and Voltage, Apparent Power, Power Factor, Complex Power. **Circuit Analysis in S-Domain:** Z(S) and Y(S), Poles, Zeros and Transfer Functions, The Complex- Frequency Plane, Natural Response and the S-Plane.

UNIT III

Resonance: Introduction, Definition of 'quality factor **Q**' of inductor and capacitor, Series resonance, Bandwidth of the series resonant circuits, Parallel resonance (or anti-resonance), Conditions for maximum impedance, Currents in parallel resonance, Impedance variation with frequency; universal resonance curves, Bandwidth of parallel resonant circuits, General case of parallel resonance circuit, Anti-resonance at all frequencies, variable phase angle circuit, reactance curves, Impedance Transformation.

Magnetically Coupled Circuits: Mutual Inductance, Energy Considerations, The Linear Transformer, The Ideal Transformer

UNIT IV

Two Port Networks: Relationship of two port variables, Short circuit Admitance parameters, Open circuit Impedance parameters, Transmission Parameters, Hybrid Parameters, Relationship between parameter sets, Parallel connection of two port networks, State Variable Networks.

State Variable Analysis: Introduction to state variables – state variables of circuits, state and output equations, advantages of state variable analysis, Circuit state equations, Proper and improper circuits, Equations for proper circuits, Transform solution of state equations, Illustrative problems.

UNIT V

Filters: Introduction, the neper & decibel, Characteristic Impedance of symmetrical networks, Currents & voltage ratios as exponentials; the propagation constant, Hyperbolic trigonometry, Properties of symmetrical networks, Filter fundamentals; pass and stop bands, Behavior of characteristic impedance, The constant – k low pass filter, the constant – k high pass filter, The mderived T section, The m-derived π section, Variation of characteristic impedance over the pass band, Termination with m-derived half sections, Band-pass filters, Band elimination filters, Illustrative problems.

Text Books:

- 1. W H Hayt, J E Kemmerly and S M Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, 7th edition, 2010.
- 2. Van Valkenburg, "Network Analysis", PHI, 3rd Edition, 2011.

- 1. John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.
- 2. A. Sudhakar & Shyam Mohan S.Pillai "Circuits & Network Analysis & Synthesis", Tata McGraw Hill, 2nd Edition, 1994
- 3. Franklin F. Kuo, "Network Analysis and synthesis", Wiley India Pvt Ltd, 2nd Edition.
- 4. Circuit Theory (Analysis & Synthesis) by A. Chakrabarti, Dhanpat Rai & Sons, 2010.
- 5. K.Chenna Venkatesh, D.Ganesh Rao, "Network Analysis- A Simplified Approach", Elsevier, 2nd Edition 2010

B.Tech. I Year L C 3 4

(13A12102) PROGRAMMING IN C & DATA STRUCTURES LAB

Course Objective:

- To make the student learn C Programming language.
- To make the student solve problems, implement them using C language.
- To strengthen the ability to identify and apply the suitable data structure for the given real world problem.

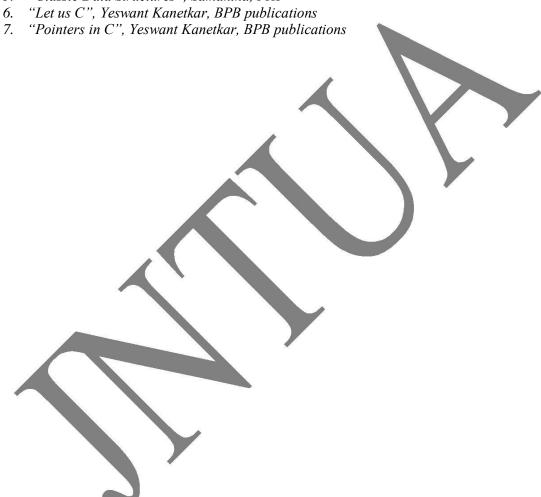
Learning Outcome:

- Apply problem solving techniques to find solutions to problems.
- Able to use C language features effectively and implement solutions using C language.
- Be capable to identity the appropriate data structure for a given problem or application.
- Improve logical skills.

LIST OF EXPERIMENTS/TASKS

- 1. Practice DOS and LINUX Commands necessary for design of C Programs.
- 2. Study of the Editors, Integrated development environments, and Compilers in chosen platform.
- 3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the programming environment.
- 4. Practice programs: Finding the sum of three numbers, exchange of two numbers, maximum of two numbers, to read and print variable values of all data types of C language, to find the size of all data types, to understand the priority and associativity of operators using expressions, to use different library functions of C language.
- 5. Write a program to find the roots of a quadratic equation.
- 6. Write a program to compute the factorial of a given number.
- 7. Write a program to check whether the number is prime or not.
- 8. Write a program to find the series of prime numbers in the given range.
- 9. Write a program to generate Fibonacci numbers in the given range.
- 10. Write a program to find the maximum of a set of numbers.
- 11. Write a program to reverse the digits of a number.
- 12. Write a program to find the sum of the digits of a number.
- 13. Write a program to find the sum of positive and negative numbers in a given set of numbers.
- 14. Write a program to check for number palindrome.
- 15. Write a program to evaluate the sum of the following series up to 'n' terms ${}^{x}=1+x+x^{2}/2!+x^{3}/3!+x^{4}/4!+-----$
- 16. Write a program to generate Pascal Triangle.
- 17. Write a program to read two matrices and print their sum and product in the matrix form.
- 18. Write a program to read matrix and perform the following operations.
 - i. Find the sum of Diagonal Elements of a matrix.
 - ii. Print Transpose of a matrix.
 - iii. Print sum of even and odd numbers in a given matrix.
- 19. Write a program to accept a line of characters and print the count of the number of Vowels, Consonants, blank spaces, digits and special characters.
- 20. Write a program to insert a substring in to a given string and delete few characters from the string. Don't use library functions related to strings.
- 21. Write a program to perform the operations addition, subtraction, multiplication of complex numbers.

e


- 22. Write a program to split a 'file' in to two files, say file1 and file2. Read lines into the 'file' from standard input. File1 should consist of odd numbered lines and file2 should consist of even numbered lines.
- 23. Write a program to merge two files.
- 24. Write a program to implement numerical methods Lagrange's interpolation, Trapezoidal rule.
- 25. Write a program to read a set of strings and sort them in alphabetical order.
- 26. Write a program to sort the elements of an array using sorting by exchange.
- 27. Write a program to sort the elements of an array using Selection Sort.
- 28. Write a program to perform Linear Search on the elements of a given array.
- 29. Write a program to perform Binary Search on the elements of a given array.
- 30. Write a program to find the number of occurrences of each number in a given array of numbers.
- 31. Write a program to read two strings and perform the following operations without using built-in string Library functions and by using your own implementations of functions.
 - i. String length determination

- ii .Compare Two Strings
- iii. Concatenate them, if they are not equal
- iv. String reversing
- 32. Write programs using recursion for Factorial of a number, GCD, LCM, Towers of Hanoi.
- 33. Write a program to convert infix expression to postfix expression and evaluate postfix expression.
- 34. Write a program to exchange two numbers using pointers.
- 35. Write a program to implement stack, queue, circular queue using array and linked lists.
- 36. Write a program to perform the operations creation, insertion, deletion, and traversing a singly linked list
- 37. Write a program to read student records into a file. Record consists of rollno, name and marks of a student in six subjects and class. Class field is empty initially. Compute the class of a student. The calculation of the class is as per JNTUA rules. Write the first class, second class, third class and failed students lists separately to another file.
- 38. A file consists of information about employee salary with fields employeeid, name, Basic, HRA, DA, IT, other-deductions, Gross and Net salary. Initially only employeeid, name, and basic have valid values. HRA is taken as 10% of the basic, DA is taken as 80% of basic, IT is 20% of the basic, other deductions is user specified. Compute the Gross and Net salary of the employee and update the file.
- 39. Write a program to perform Base (decimal, octal, hexadecimal, etc) conversion.
- 40. Write a program to find the square root of a number without using built-in library function.
- 41. Write a program to convert from string to number.
- 42. Write a program to generate pseudo random generator.
- 43. Write a program to remove duplicates from ordered and unordered arrays.
- 44. Write a program to sort numbers using insertion sort.
- 45. Write a program to implement quick sort using non-recursive and recursive approaches. Use randomized element as partitioning element.
- 46. Write a program to search a word in a given file and display all its positions.
- 47. Write a program to generate multiplication tables from 11 to 20.
- 48. Write a program to express a four digit number in words. For example 1546 should be written as one thousand five hundred and forty six.
- 49. Write a program to generate a telephone bill. The contents of it and the rate calculation etc should be as per BSNL rules. Student is expected to gather the required information through the BSNL website.
- 50. Write a program for tic-tac-toe game.
- 51. Write a program to find the execution time of a program.
- 52. Design a file format to store a person's name, address, and other information. Write a program to read this file and produce a set of mailing labels

Note: The above list consists of only sample programs. Instructors may choose other programs to illustrate certain concepts, wherever is necessary. Programs should be there on all the concepts studied in the Theory on C programming and Data structures. Instructors are advised to change atleast 25% of the programs every year until the next syllabus revision.

References:

- "Programming with C", Byron Gottfried, Third Edition, Schaum"s Outlines, Mc Graw Hill. 1.
- "Fundamentals of Data Structures in C", Horowitz, Sahni, Anderson-freed, Second Edition, Universities Press.
- 3. "How to Solve it by Computer", R.G. Dromey, Pearson.
- "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, Pearson.
- "Classic Data Structures", Samantha, PHI

B.Tech. I Year L C 3 4

Common to All Branches (13A99102) ENGINEERING PHYSICS & ENGINEERING CHEMISTRY LAB

ENGINEERING PHYSICS LAB

LIST OF EXPERIMENTS

Any 10 of the following experiments has to be performed:

- 1. Determination of wavelengths of various colours of mercury spectrum using diffraction grating in normal incidence method
- 2. Determination of dispersive power of the prism
- 3. Determination of thickness of thin object by wedge method
- 4. Determination of radius of curvature of lens by Newton's Rings
- 5. Laser: Diffraction due to single slit
- 6. Laser: Diffraction due to double slit
- 7. Laser: Determination of wavelength using diffraction grating
- 8. Determination of Numerical aperture of an optical fiber
- 9. Meldes experiment: Determination of the frequency of tuning fork
- 10. Sonometer: Verification of the three laws of stretched strings
- 11. Energy gap of a material using p-n junction diode
- 12. Electrical conductivity by four probe method
- 13. Determination of thermistor coefficients (α , β)
- 14. Hall effect: Determination of mobility of charge carriers in semiconductor
- 15. B-H curve
- 16. Magnetic field along the axis of a current carrying coil Stewart and Gee's method.
- 17. Determination of lattice constant using X-ray spectrum.

ENGINEERING CHEMISTRY LAB

Preamble:

The experiments are designed in a manner that the students can validate their own theory understanding in chemistry by self involvement and practical execution. Thus the execution of these experiments by the student will reinforce his/her understanding of the subject and also provide opportunity to refine their understanding of conceptual aspects. As a result, the student gets an opportunity to have feel good factor at the laboratory bench about the chemical principles that he/she learned in the classroom.

Course Objective:

- Will learn practical understanding of the redox reaction
- Will able to understand the function of fuel cells, batteries and extend the knowledge to the processes of corrosion and its prevention
- Will learn the preparation and properties of synthetic polymers and other material that would provide sufficient impetus to engineer these to suit diverse applications
- Will also learn the hygiene aspects of water would be in a position to design methods to produce potable water using modern technology

Learning Outcome:

 Would be confident in handling energy storage systems and would be able combat chemical corrosion

- Would have acquired the practical skill to handle the analytical methods with confidence.
- Would feel comfortable to think of design materials with the requisite properties
- Would be in a position to technically address the water related problems.

LIST OF EXPERIMENTS

Any 10 of the following experiments has to be performed:

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of Copper by EDTA method.
- 3. Estimation of Dissolved Oxygen by Winkler's method
- 4. Determination of Copper by Iodometry
- 5. Estimation of iron (II) using diphenylamine indicator (Dichrometry Internal indicator method).
- 6. Determination of Alkalinity of Water
- 7. Determination of acidity of Water
- 8. Preparation of Phenol-Formaldehyde (Bakelite)
- 9. Determination of Viscosity of oils using Redwood Viscometer I
- 10. Determination of Viscosity of oils using Redwood Viscometer II
- 11. Conductometric titration of strong acid Vs strong base (Neutralization titration).
- 12. Conductometric titration of Barium Chloride vs Sodium Sulphate (Precipitation Titration)
- 13. Determination of Corrosion rate and inhibition efficiency of an inhibitor for mild steel in hydrochloric acid medium.
- 14. Estimation of Chloride ion using potassium Chromite indicator (Mohrs method)

References:

- 1. Vogel"s Text book of Quantitative Chemical Analysis, J. Mendham et al, Pearson Education, Sixth Edition, 2012.
- 2. Chemistry Practical Lab Manual by K.B.Chandra Sekhar, G.V. Subba Reddy and K.N.Jayaveera, SM Publications, Hyderabad, 3rd Edition, 2012.

B.Tech. I Year L C 3 4

Common to All Branches (13A99103) ENGINEERING & I.T. WORKSHOP

ENGINEERING WORKSHOP

Course Objective:

The budding Engineer may turn out to be a technologist, scientist, entrepreneur, practitioner, consultant etc. There is a need to equip the engineer with the knowledge of common and newer engineering materials as well as shop practices to fabricate, manufacture or work with materials. Essentially he should know the labour involved, machinery or equipment necessary, time required to fabricate and also should be able to estimate the cost of the product or job work. Hence engineering work shop practice is included to introduce some common shop practices and on hand experience to appreciate the use of skill, tools, equipment and general practices to all the engineering students

1. TRADES FOR EXERCISES:

- a. Carpentry shop—Two joints (exercises) involving tenon and mortising, groove and tongue: Making middle lap T joint, cross lap joint, mortise and tenon T joint, Bridle T joint from out of 300 x 40 x 25 mm soft wood stock
- b. Fitting shop—Two joints (exercises) from: square joint, V joint, half round joint or dove tail joint out of $100 \times 50 \times 5 \text{ mm M.S. stock}$
- c. Sheet metal shop—Two jobs (exercises) from: Tray, cylinder, hopper or funnel from out of 22 or 20 guage G.I. sheet
- d. House-wiring—Two jobs (exercises) from: wiring for ceiling rose and two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp, wiring for a water pump with single phase starter.
- e. Foundry–Preparation of two moulds (exercises): for a single pattern and a double pattern.
- f. Welding Preparation of two welds (exercises): single V butt joint, lap joint, double V butt joint or T fillet joint.

2. TRADES FOR DEMONSTRATION:

- a. Plumbing
- b. Machine Shop
- c. Metal Cutting

Apart from the above the shop rooms should display charts, layouts, figures, circuits, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, Plastics, steels, meters, gauges, equipment, CD or DVD displays, First aid, shop safety etc. (though they may not be used for the exercises but they give valuable information to the student). In the class work or in the examination knowledge of all shop practices may be stressed upon rather than skill acquired in making the job.

References:

- 1. Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt. Ltd., 2009
- 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.
- 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, 4/e Vikas
- 4. Dictionary of Mechanical Engineering, GHF Nayler, Jaico Publishing House.

I.T. WORKSHOP

Course Objective:

- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations
- To make the students know about the internal parts of a computer, assembling a computer from the parts, preparing a computer for use by installing the operating system
- To learn about Networking of computers and use Internet facility for Browsing and Searching.

Learning Outcome:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors
- Prepare Slide presentations using the presentation tool
- Interconnect two or more computers for information sharing
- Access the Internet and Browse it to obtain the required information
- Install single or dual operating systems on computer

Preparing your Computer (5 weeks)

Task 1: Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2: Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods available (eg: beeps). Students should record the process of assembling and trouble shooting a computer.

Task 3: Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4: Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet (4 weeks)

Task 5: Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc should be done by the student. The entire process has to be documented.

Task 6: Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc.

If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7: Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools (6 weeks)

Task 8: Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the color, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered.

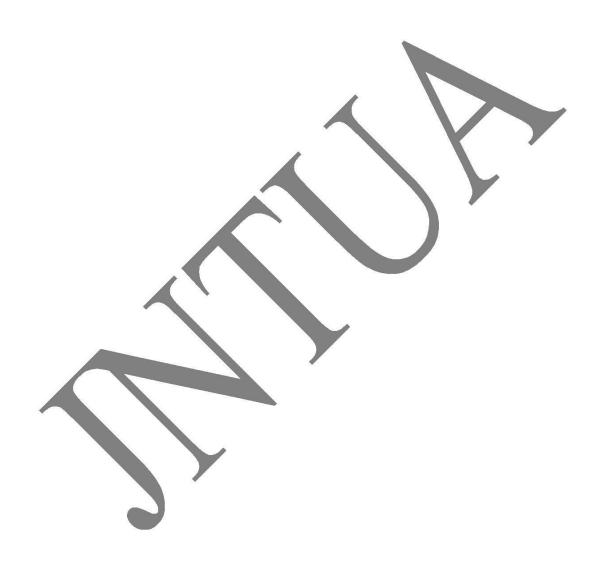
Task 9: Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet application considered.

Task 10: Presentations: creating, opening, saving and running the presentations. Selecting the style for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show. Students should submit a user manual of the Presentation tool considered.

Optional Tasks:

Task 11: Laboratory Equipment: Students may submit a report on specifications of various equipment that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop computer
- Server computer
- Switch (computer science related)
- Microprocessor kit
- Micro controller kit
- Lathe machine
- Generators
- Construction material
- Air conditioner
- UPS and Inverter
- RO system
- Electrical Rectifier
- CRO
- Function Generator
- Microwave benches


Task 12: Software: Students may submit a report on specifications of various software that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. The software may be proprietary software or Free and Open source software. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop operating system
- Server operating system
- Antivirus software
- MATLAB

- CAD/CAM software
- AUTOCAD

References:

- 1. Introduction to Computers, Peter Norton, Mc Graw Hill
- 2. MOS study guide for word, Excel, Powerpoint & Outlook Exams", Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs", Bigelows, TMH

B.Tech. I Year L C 3 4

Common to All Branches (13A52102) ENGLISH LANGUAGE COMMUNICATION SKILLS (ELCS) LAB

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations and contexts.

Course Objective:

- *To train students to use language effectively in everyday conversations.*
- To expose the students to a varied blend of self-instructional learner-friendly modes of language learning through computer-aided multi-media instruction.
- To enable them to learn better pronunciation through stress on word accent, intonation, and rhythm.
- To help the second language learners to acquire fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

Learning Outcome:

- Becoming active participants in the learning process and acquiring proficiency in spoken English of the students
- Speaking with clarity and confidence thereby enhancing employability skills of the students

PHONETICS

Importance of speaking phonetically correct English Speech mechanism-Organs of speech Uttering letters-Production of vowels sounds Uttering letters -Production of consonant sounds Uttering words-Stress on words and stress rules Uttering sentences-Intonation-tone group

LISTENING

Listening as a skill Listening activities

PRESENTATIONAL SKILLS

Preparation
Prepared speech
Impromptu speech
topic originative techniques
JAM (Just A Minute)
Describing people/object/place
PresentationStage dynamics
Body language

SPEAKING SKILLS

Telephone skills Role plays Public Speaking

GROUP ACTIVITIES

Debates

Situational dialogues

MINIMUM REQUIREMENT FOR ELCS LAB:

The English Language Lab shall have two parts:

Computer Assisted Language Learning (CALL) Lab:

- The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self- study by learners.
- The Communication Skills Lab with movable chairs and audio-visual aids with a P.A. system, Projector, a digital stereo-audio & video system and camcorder etc.

System Requirement (Hardware component):

- Computer network with LAN with minimum 60 multimedia systems with the following specifications:
 - o P IV Processor
 - o Speed 2.8 GHZ
 - o RAM 512 MB Minimum
 - \circ Hard Disk 80 GB
 - Headphones of High quality

SUGGESTED SOFTWARE:

- Clarity Pronunciation Power Part I (Sky Pronunciation)
- Clarity Pronunciation Power part II
- K-Van Advanced Communication Skills
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- English Pronunciation in Use (Elementary, Intermediate, Advanced) CUP
- Cambridge Advanced Learners' English Dictionary with CD.
- Oxford Advanced Learner's Compass, 8th Edition
- Communication Skills, Sanjay Kumar & Pushp Lata. 2011. OUP

References:

- 1. Strengthen Your Steps, Maruthi Publicaions, 2012.
- 2. A Course in Phonetics and Spoken English, <u>Dhamija Sethi</u>, Prentice-Hall of India Pvt.Ltd.
- 3. A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian. (Macmillian),2012.
- 4. Speaking English Effectively, 2nd Edition Krishna Mohan & NP Singh, 2011. (Mcmillan).
- 5. Listening in the Language Classroom, John Field (Cambridge Language Teaching Library),2011
- 6. A Hand Book for English Laboratories, E.Suresh Kumar, P.Sreehari, Foundation Books, 2011
- 7. English Pronunciation in Use. Intermediate & Advanced, Hancock, M. 2009. CUP.
- 8. Basics of Communication in English, Soundararaj, Francis. 2012.. New Delhi: Macmillan
- 9. Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
- 10. English Pronouncing Dictionary, Daniel Jones, Current Edition with CD.Cambridge, 17th edition, 2011.

B.Tech. II - I Sem. Th Tu C 3 1 3

(13A54302) MATHEMATICS – III

Course Objective:

• To enable the students to understand the mathematical concepts of special functions & complex variables and their applications in science and engineering.

Learning Outcome:

• The student achieves the knowledge to analysis the problems using the methods of special functions and complex variables.

UNIT I

Special Functions: Gamma and Beta Functions – their properties – Evaluation of improper integrals. Series Solutions of ordinary differential equations (Power series and Frobenius Method).

UNIT II

Bessel functions – Properties – Recurrence relations – Orthogonality. Legendre polynomials – Properties – Rodrigue's formula – Recurrence relations – Orthogonality.

UNIT III

Functions of a complex variable – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions – Milne – Thompson method.

Conformal mapping: Transformation of e^z , Inz, z^2 , Sin z, cos z, Bilinear transformation - Translation, rotation, magnification and inversion - Fixed point - Cross ratio - Determination of bilinear transformation.

UNIT IV

Complex integration: Line integral – Evaluation along a path and by indefinite integration – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula.

Complex power series: Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point – Isolated singular point – Pole of order m – Essential singularity.

UNIT V

Residue – Evaluation of residue by formula and by Laurent series – Residue theorem. Evaluation of integrals of the type

(a) improper real integrals
$$\int_{-\infty}^{\infty} f(x)dx$$
 (b) $\int_{c}^{c+2\pi} f(\cos\theta, \sin\theta)d\theta$ (c) $\int_{c}^{imx} f(x)dx$

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Advanced Engineering Mathematics, Peter V.O"Neil, CENGAGE publisher.

- 1. Mathematics III by T.K.V. Iyengar, S.Chand publications.
- 2. Engineering Mathematics, Volume III, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher.
- 3. Complex variables by Raisinghania
- 4. Advanced Engineering Mathematics by M.C. Potter, J.L. Goldberg, Edward F.Aboufadel, and Oxford.

B.Tech. II - I Sem. Th Tu C 3 1 3

(13A04301) ELECTRONIC DEVICES AND CIRCUITS

Course Objective:

- To give understanding on semiconductor physics of the intrinsic, p and n materials, characteristics of the p-n junction diode, diode"s application in electronic circuits, Characteristics of BJT,FET,MOSFET, characteristics of special purpose electronic devices.
- To familiarize students with DC biasing circuits of BJT, FET and analyzing basic transistor amplifier circuits.

Learning Outcome:

Upon completion of the course, students will:

- Analyze the operating principles of major electronic devices, its characteristics and applications.
- Design and analyze the DC bias circuitry of BJT and FET.
- Design and analyze basic transistor amplifier circuits using BJT and FET.

UNIT I

PN JUNCTION DIODE & ITS APPLICATIONS:

Review of semi conductor Physics n and p –type semi conductors, Mass Action Law, Continuity Equation, Hall Effect, Fermi level in intrinsic and extrinsic semiconductors, PN Diode Equation, Volt-Ampere (V-I) Characteristics, Temperature Dependence of V-I Characteristics, Ideal Versus Practical Static and Dynamic Resistances, Diode Equivalent circuits, Break down Mechanisms in semiconductor Diodes, Zener Diode Characteristics. PN Junction as a Rectifier, Half wave rectifier, ripple factor, full wave rectifier, Bridge Rectifier, Harmonic components in a rectifier circuit, Inductor filter, Capacitor filter, L- section filter, π - section filter, Use of Zener Diode as a Regulator, Illustrative problems.

UNIT II

TRANSISTOR AND FET CHARECTERISTICS: Transistor construction, BJT Operation, BJT Symbol, Transistor as an Amplifier, Common Emitter, Common Base and Common Collector Configurations, Limits of Operation, BJT Specifications, The Junction Field Effect Transistor (Construction, Principle of Operation, Symbol) - Pinch-Off Voltage – Volt-Ampere Characteristics, FET as Voltage Variable Resistor, Comparison between BJT and FET, MOSFET- Basic Concepts, Construction, modes (depletion & enhancement), symbol, principle of operation, characteristics.

UNIT III

BIASING AND STABILISATION: Operating Point, DC and AC Load Lines, Importance of Biasing, Fixed Bias, Collector to Base Bias, Self Bias, Bias Stability, Stabilization against Variations in I_{CO}, V_{BE} and β, Bias Compensation Using Diodes and Transistors, Thermal Runaway, Condition for Thermal Stability in CE configuration, Biasing of FET – Source self bias, Biasing for zero current Drift, Biasing against Devices variation, Illustrative problems.

UNIT IV

SMALL SIGNAL ANALYSIS OF AMPLIFIERS (BJT & FET):

BJT Modeling using h-parameters, Determination of h-Parameters from Transistor Characteristics, Measurement of h-Parameters, Analysis of CE, CB and CC configurations using h-Parameters, Comparison of CB, CE and CC configurations, Simplified Hybrid Model, Millers Theorem, Dual of Millers Theorem. Small Signal Model of JFET & MOSFET ,Small signal analysis of Common Source, and Common Drain Amplifiers using FET, Illustrative problems.

UNIT V

SPECIAL PURPOSE ELECTRONIC DEVICES:

Principle of Operation, and Characteristics of Tunnel Diode, Varactor Diode, Schottky Barrier Diode, Silicon Control Rectifier, Diac, Triac & Uni-Junction Transistor (UJT), Semiconductor photo devices - LDR, LED, Photo diodes & Photo transistors.

Text Books:

- 1. J.Millman and Christos. C. Halkias, Satyabrata, "Electronic Devices and Circuits", TMH Third edition, 2012,
- 2. K.Lal kishore, "Electronic Devices and Circuits", BSP. 2nd edition, 2005,

- 1. R.L. Boylestad, "Introductory Circuit Analysis", PEARSON, 12th edition, 2013
- 2. B.P.Singh and Rekha Singh, "Electronic Devices and Circuits", PEARSON, 2nd Edition2013.
- 3. David A. Bell, "Electronic Devices and Circuits", Oxford University press, 5th Edition, 2008,.
- 4. Mohammad H.Rashid, "Electronic Devices and Circuits", CENGAGE Learning.
- 5. N.Salivahanan, and N.Suresh Kumar, "Electronic Devices and Circuits", TMH ,3rd Edition, 2012
- 6. A. S. Sedra and K. C. Smith, "Microelectronic Circuits", Oxford University Press, 5th Ed.

B.Tech. II - I Sem. Th Tu C 3 1 3

(13A04302) SIGNALS AND SYSTEMS

Course Objective:

- To study about signals and systems.
- To do analysis of signals & systems (continuous and discrete) using time domain & frequency domain methods.
- To understand the stability of systems through the concept of ROC.
- To know various transform techniques in the analysis of signals and systems.

Learning Outcome:

- For integro-differential equations, the students will have the knowledge to make use of Laplace transforms.
- For continuous time signals the students will make use of Fourier transform and Fourier series.
- For discrete time signals the students will make use of Z transforms.
- The concept of convolution is useful for analysis in the areas of linear systems and communication theory.

UNIT I

Signals and Systems: Continuous-Time and Discrete-Time Signals, Transformations of the Independent Variable, Exponential and Sinusoidal Signals, the Unit Impulse and Unit Step Functions, Continuous-Time and Discrete-Time Systems, Basic System Properties, Linear Time-Invariant Systems - Discrete-Time LTI Systems, The Convolution Sum, Continuous-Time LTI Systems - The Convolution Integral, Properties of Linear Time-Invariant Systems, Causal LTI Systems Described by Differential and Difference Equations, Singularity Functions.

UNIT II

Fourier Series Representation of Periodic Signals: The Response of LTI Systems to Complex Exponentials. Fourier Series Representation of Continuous-Time Periodic Signals, Convergence of the Fourier Series, Properties of Continuous-Time Fourier Series, Fourier Series Representation of Discrete-Time Periodic Signals, Properties of Discrete-Time Fourier Series, Fourier Series and LTI Systems, Filtering - Examples of Continuous-Time Filters Described by Differential Equations, Examples of Discrete-Time Filters Described by Difference Equations.

UNIT III

The Continuous-Time Fourier Transform: Representation of Aperiodic Signals, The Continuous-Time Fourier Transform, The Fourier Transform for Periodic Signals, Properties of the Continuous-Time Fourier Transform, The Convolution Property, Fourier Properties and Basic Fourier Transform Pairs, Systems characterized by Linear constant coefficient differential equations, The Discrete-Time Fourier Transform - Representation of Aperiodic Signals, The Discrete-Time Fourier Transform, The Convolution Property, Fourier Transform Properties and Basic Fourier Transform Pairs, Duality, Systems Characterized by Linear Constant-Coefficient Difference Equations.

UNIT IV

Time & Frequency Characterization of Signals and Systems: The Magnitude-Phase Representation of the Fourier Transform, The Magnitude-Phase Representation of the Frequency Response of LTI Systems, Time-Domain Properties of Ideal Frequency-Selective Filters, Time-Domain and Frequency-Domain Aspects of Non-ideal Filters, First-Order and Second-Order

Continuous-Time Systems, First-Order and Second-Order Discrete-Time Systems, Examples of Timeand Frequency-Domain Analysis of Systems,

Sampling: Representation of a Continuous-Time Signal by Its Samples - Sampling Theorem, Reconstruction of a Signal from Its Samples Using Interpolation. Effect of under sampling: Aliasing, Discrete-Time Processing of Continuous-Time Signals.

UNIT V

Laplace and z-Transforms: The Laplace Transform. The Region of Convergence for Laplace Transforms, The Inverse Laplace Transform, Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot, Properties of the Laplace Transform, Some Laplace Transform Pairs, Analysis and Characterization of LTI Systems Using the Laplace Transform, System Function Algebra and Block Diagram Representations, Unilateral Laplace Transform, The Z-Transform - Region of Convergence for the z-Transform, The Inverse z-Transform, Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot, Properties of the z-Transform, Some Common z-Transform Pairs, Analysis and Characterization of LTI Systems Using z-Transforms, System Function Algebra and Block Diagram Representations, Unilateral z-Transforms.

Text Books:

- 1. Alan V. Oppenheim, Alan S. Willsky, & S. Hamid, "Signals and Systems," Pearson Higher *Education*, 2nd *Ed.*, 1997.
- 2. B.P. Lathi, "Principles of LINEAR SYSTEMS and SIGNALS," Oxford Univ. Press, Second Edition International version, 2009

- 1. Simon Haykin and B. Van Veen, "Signals & Systems," John Wiley, 2nd Edition, 2003.
- 2. M. E. Van Valkenburg, Network Analysis, PHI Publications, 3rdEdition, 2000.
- Luis F. Chaparro, "Signals and Systems using MATLAB," Academic Press, 2011.
 Narayana Iyer, "Signals and Systems," CENGAGE Learning, 2011.
- 5. Michel J. Robert, "Fundamentals of Signals and Systems," MGH International Edition, 2008.
- 6. C. L. Philips, J. M. Parr and Eve A. Riskin, "Signals, Systems and Transforms," Pearson education, 4th Edition, 2008.

B.Tech. II – I Sem. Tu C 3 1 3

(13A04303) SWITCHING THEORY AND LOGIC DESIGN

Course Objective:

• To provide fundamental concepts used in the design of digital systems and learn the methods for the design of digital circuits.

Learning Outcome:

- To introduce basic postulates of Boolean algebra and the methods for simplifying Boolean expressions
- To illustrate the concepts and study the procedures for the analysis and design of combinational circuits and sequential circuits
- To introduce the concepts of programmable logic devices.

UNIT I

NUMBER SYSTEM & BOOLEAN ALGEBRA

Digital systems, Binary Numbers, Number base conversions, Complements of numbers, Signed binary numbers, Binary codes. Boolean Algebra-Basic definition, Basic theorems and properties, Boolean Functions, Canonical & Standard forms, Other logic operations & Logic gates.

UNIT II

GATE LEVEL MINIMIZATION

The map method, four variable, K-map, Five variable map, POS & SOP Simplification, Don't care conditions, NAND & NOR Implementation, Other two level Implementation, Ex-or Function, Tabular Method- Simplification of Boolean function using tabulation Method.

UNIT III

ANALYSIS AND SYNTHESIS OF COMBINATIONAL CIRCUITS:

Combinational circuits, Analysis & Design procedure, Binary Adder-subtractor, Decimal Adder, Binary Multiplier, Magnitude comparator, Decoder, Encoders, Multiplexers.

UNIT IV

ANALYSIS AND SYNTHESIS OF SEQUNTIAL CIRCUITS:

Sequential Circuits, Latches Flips-Flops, Analysis of Clocked sequential circuits, State Reduction & Assignment, Design procedure, Registers & Counters – Registers, Shift Registers, Ripple Counters, Synchronous counters, other counters.

UNIT V

Asynchronous sequential Logic & Programmable Memories

Introduction, Analysis Procedure, Circuits with Latches, Design Procedure, Reduction of State flow tables, Race-free State Assignment, Hazards. Random Access Memory, Memory Decoding Error detection and correction, ROM, PLA, PAL.

Text Books:

- 1. M.Morris Mano & Michel D. Ciletti, "Digital Design", Pearson, 5th Edition.
- 2. Zvi Kohavi and Nirah K.Jha, "Switching theory and Finite Automata Theory", Cambridge, 3rd Edition

- 1. Subratha Goshal, "Digital Electronics", Cambridge.
- 2. Comer, "Digital & State Machine Design", Third Indian edition, OXFORD.

B.Tech. II – I Sem. Tu C 3 1 3

(13A04304) PROBABILITY THEORY & STOCHASTIC PROCESSES

Course Objective:

- To understand the concepts of a Random Variable and operations that may be performed on a single Random variable.
- To understand the concepts of Multiple Random Variables and operations that may be performed on Multiple Random variables.
- To understand the concepts of Random Process and Temporal & Spectral characteristics of Random Processes.

Learning Outcome:

• A student will able to determine the temporal and spectral characteristics of random signal response of a given linear system.

UNIT I

Probability: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, Bays' Theorem, Independent Events:

The Random Variable : Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete and Continuous, Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Raleigh, Conditional Distribution, Methods of defining Conditioning Event, Conditional Density, Properties.

UNIT II

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions.

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT III

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT IV

Random Processes – **Spectral Characteristics:** The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function.

UNIT V

Linear Systems with Random Inputs: Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties.

Text Books:

- 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", TMH, 4th Edition. 2001.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", PHI, 4th Edition, 2002.

- 1. R.P. Singh and S.D. Sapre, "Communication Systems Analog & Digital", TMH, 1995. Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing", Pearson Education, 3rd Edition.
- 2. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis", Oxford, 3rd Edition, 1999.
 - 3. S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 4. B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 2003.

B.Tech. II - I Sem. Th Tu C 3 1 3

(13A02303) ELECTRICAL TECHNOLOGY

Course Objective:

• This course introduces the concepts of three phase circuits and basics of the DC and AC Machines which facilitates to study of the performance of Generators, motors, Transformers etc.

UNIT I

THREE PHASE CIRCUITS

Phase Sequence- Star and Delta Connection-Relation Between Line and Phase Voltages and Currents in Balanced Systems-Analysis of Balanced Three Phase Circuits- Measurement of Active and Reactive Power in Balanced and Unbalanced Three Phase Systems. Analysis of Three Phase Unbalanced Circuits-Loop Method- Application of Millman's Theorem- Star Delta Transformation Technique – Two Wattmeter Method of Measurement of Three Phase Power.

UNIT II

DC MACHINES

DC Generators: Principle of Operation of DC Machines, EMF Equation, Types of Generators, Magnetization and Load Characteristics of DC Generators.

DC Motors: DC Motors, Types of Motors, Characteristics of DC Motors, Losses and Efficiency, Swinburne's Test, Speed Control of DC Shunt Motor, Flux and Armature Voltage Control Methods.

UNIT III

TRANSFORMERS

Principle of Operation of Single Phase Transformers-Types - Constructional Details. Emf Equation - Operation on No Load and On Load - Phasor Diagrams. Equivalent Circuit, Losses and Efficiency, Regulation. OC and SC Tests - Predetermination of Efficiency and Regulation (Simple Problems)

UNIT IV

3-PHASE INDUCTION MOTORS

Polyphase Induction Motors-Construction Details of Cage and Wound Rotor Machines-Production of a Rotating Magnetic Field - Principle of Operation — Slip - Rotor Emf and Rotor Frequency - Rotor Reactance, Rotor Current and Pf at Standstill and During Operation. Torque Equation- - Expressions for Maximum Torque and Starting Torque - Torque Slip Characteristic

UNIT V

SYNCHRONOUS GENERATORS

Principle And Constructional Features of Salient Pole and Round Rotor Machines – Pitch, Distribution, Winding Factors – E.M.F Equation- Synchronous Reactance and Impedance – Experimental Determination – Phasor Diagram – Load Characteristics. Voltage Regulation Methods – E.M.F Method.

Text Books:

- 1. Basic Electrical Engineering by D P KOTHARI & I J NAGRATH, Tata McGraw Hill, Second Edition, 2007.
- 2. Electrical Circuit Theory and Technology by JOHN BIRD, Routledge publisher, 4Th Edition, 2011.

Reference Books:

1. Electrical & Electronic Technology by Edward Hughes, 10th Edition, Pearson, 2008.

B.Tech. II - I Sem.
L C
3 2

(13A02304) ELECTRICAL ENGINEERING LAB

PART-A

- 1. Verification of KVL And KCL.
- 2. Serial and Parallel Resonance Timing, Resonant Frequency, Bandwidth and Q-Factor Determination for RLC Network.
- 3. Time Response of First Order RC/RL Network for Periodic Non-Sinusoidal Inputs Time Constant and Steady State Error Determination.
- 4. Two Port Network Parameters Z-Y Parameters, Chain Matrix and Analytical Verification.
- 5. Two Port Network Parameters ABCD and H-Parameters.
- 6. Verification of Superposition and Reciprocity Theorems.
- 7. Verification of Maximum Power Transfer Theorem. Verification on DC, Verification on AC with Resistive and Reactive Loads.
- 8. Experimental Determination of Thevenin's and Norton's Equivalent Circuits and Verification by Direct Test.
- 9. Constant K Low Pass Filter and High Pass Filter

PART-B

- 1. Magnetization Characteristics of D.C.Shunt Generator. Determination of Critical Field Resistance.
- 2. Swinburne's Test on DC Shunt Machine (Predetermination of Efficiency of a Given DC Shunt Machine Working as Motor and Generator).
- 3. Brake Test on DC Shunt Motor. Determination of Performance Characteristics.
- 4. OC & SC Tests on Single-Phase Transformer (Predetermination of Efficiency and Regulation at Given Power Factors and Determination of Equivalent Circuit).
- 5. Load Test on Single Phase Transformer.

Note: Any 12 of the above Experiments are to be conducted

B.Tech. II - I Sem. L C 3 2

(13A04305) ELECTRONIC DEVICES AND CIRCUITS LABORATORY

Course Objective:

• This Lab provides the students to get an electrical model for various semiconducter devices. Students can find and plot V_I characteristics of all semiconductor devices. Student learns the practical applications of the devices. They can learn and implement the concept of the feedback and frequency response of the small signal amplifier

Learning Outcome:

• Students able to learn electrical model for various semiconductor devices and learns the practical applications of the semiconductor devices

PART A: Electronic Workshop Practice

- 1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- 2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- 4. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO.

PART B: List of Experiments

(For Laboratory Examination-Minimum of Ten Experiments)

1. P-N Junction Diode Characteristics

Part A: Germanium Diode (Forward bias & Reverse bias)

Part B: Silicon Diode (Forward bias only)

2. Zener Diode Characteristics

Part A: V-I Characteristics

Part B: Zener Diode act as a Voltage Regulator

3. Rectifiers (without and with c-filter)

Part A: Half-wave Rectifier

Part B: Full-wave Rectifier

4. BJT Characteristics(CE Configuration)

Part A: Input Characteristics

Part B: Output Characteristics

5. FET Characteristics(CS Configuration)

Part A: Drain (Output) Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

PART C: Equipment required for Laboratory

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters

- 5. Decade Résistance Boxes/Rheostats
- 6.
- 7.
- 8.
- Decade Capacitance Boxes
 Ammeters (Analog or Digital)
 Voltmeters (Analog or Digital)
 Active & Passive Electronic Components
 Bread Boards 9.
- 10.
- Connecting Wires CRO Probes etc. 11.
- 12.

B.Tech. II - I Sem. 2 (13A52301) HUMAN VALUES & PROFESSIONAL ETHICS (AUDIT COURSE)

Course Objective:

This course deals with professional ethics which includes moral issues and virtues, social responsibilities of an engineer, right, qualities of Moral Leadership.

UNIT I

ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of Moral Issues – Types of Inquiry – Moral Dilemmas – Moral Autonomy – Kohlberg's Theory – Gilligan's Theory – Consensus and Controversy – Professions and Professionalism – Professional Ideals and Virtues – Uses of Ethical Theories

UNIT II

ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as Responsible Experimenters – Research Ethics – Codes of Ethics – Industrial Standards – A Balanced Outlook on Law – The Challenger Case Study

UNIT III

ENGINEER"S RESPONSIBILITY FOR SAFETY

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis – Reducing Risk – The Government Regulator's Approach to Risk – Chernobyl Case Studies and Bhopal

UNIT IV

RESPONSIBILITIES AND RIGHTS

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality– Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT V GLOBAL ISSUES

Multinational Corporations – Business Ethics – Environmental Ethics – Computer Ethics - Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample Code of Conduct

Text Books:

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York 2005.
- 2. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Thompson Learning, 2000.

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 1999.
- 2. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
- 4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, 2004.
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.

B.Tech. II - II Sem. Th Tu C 3 1 3

(13A01403) ENVIRONMENTAL SCIENCE

Course Objective:

• To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life to save earth from the inventions by the engineers.

UNIT I

MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES: – Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT II

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological sucession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION: Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-soports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III

ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wates – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT IV

SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to Sustainable development

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Proggramme. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, birds — river, hill slopes, etc.

Text Books:

- 1. Text book of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission, Universities Press, 2005.
- 2. Environmental Studies by Palanisamy, Pearson education, 2012
- 3. Environmental Studies by R.Rajagopalan, Oxford University Press, 2nd edition, 2011.

- 1. Textbook of Environmental Studies by Deeksha Dave and E.Sai Baba Reddy, Cengage Pubilications, 2nd edition, 2012.
- 2. Text book of Environmental Science and Technology by M.Anji Reddy, BS Publication, 2009.
- 3. Comprehensive Environmental studies by J.P.Sharma, Laxmi publications, 2nd edition, 2006.
- 4. Environmental sciences and engineering J. Glynn Henry and Gary W. Heinke Printice hall of India Private limited, 2nd edition, 1996.
- 5. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Printice hall of India Private limited, 3rd edition, 2007.

B.Tech. II - II Sem. Tu C 3 1 3

(13A04401) PULSE AND DIGITAL CIRCUITS

Course Objective:

- To study various wave shaping circuits and their applications.
- To study different circuits that produce non-sinusoidal waveforms(multivibrators) and their applications
- *To study various voltage time base generators and their applications.*
- To study different logic families and their comparison.

Learning Outcome:

Students will be able to design different pulse circuits based on the above concepts.

UNIT I

LINEAR WAVESHAPING

High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. High Pass RC network as Differentiator, Low Pass RC network as integrator, attenuators and its applications as a CRO probe, RL circuits and its response for step input, Illustrative Problem.

UNIT II

NON-LINEAR WAVE SHAPING

Diode clippers, Transistor clippers, clipping at two independent levels, Comparators, applications of voltage comparators, clamping operation, clamping circuits taking source and Diode resistances into account, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Synchronized Clamping.

UNIT III

MULTIVIBRATORS

Transistor as a switch, Break down voltages, Transistor-Switching Times, Triggering circuits. Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger circuit using BJT.

UNIT IV

TIME BASE GENERATORS

General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators—basic principles, Transistor miller time base generator, Transistor Bootstrap time base generator, Transistor Current time base generators, Methods of linearity Improvements.

SYNCHRONIZATION AND FREQUENCY DIVISION

Pulse Synchronization of relaxation Devices, Frequency division in sweep circuit, Stability of relaxation Devices, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals.

UNIT V SAMPLING

GATES

Basic operating principles of sampling gates, Unidirectional and Bi-directional sampling gates, Four Diode Sampling Gate, Reduction of pedestal in gate circuits, Six Diode Gate, Application of Sampling Gates.

Digital Logic Circuits: AND, OR, & NOT gates using Diodes, and Transistors, Analysis of DCTL, RTL, DTL, TTL, ECL and CMOS Logic Families, and comparison between the logic families.

Text Books:

- 1. J.Millman, H.Taub and Mothiki S. Prakash Rao, "Pulse, Digital and Switching Waveforms", TMH, 2nd Edition, 2008.
- 2. David A. Bell, "Solid State Pulse Circuits", PHI, 4th edition, 2002.

- 1. Jacob Millman, Christos C. Halkias, "Integrated electronics" Tata McGraw Hill Publication
- 2. A. Anand Kumar, "Pulse and Digital Circuits", PHI, 2005.
- 3. Ronald J. Tocci, "Fundamentals of Pulse and Digital Circuits", 3rd edition, 2008.

B.Tech. II - II Sem. Tu C 3 1 3

(13A04402) ELECTRONIC CIRCUITS ANALYSIS & DESIGN

Course Objective:

• The aim of this course is to familiarize the student with the analysis and design of multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers. To study and analyze the frequency response of amplifier circuits.

Learning Outcome:

Upon completion of this course, student will be able to:

- Analyze the frequency response of the BJT amplifiers at low and high frequencies.
- Analyze and design multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers.

UNIT I

MULTISTAGE AMPLIFIERS.

Classification of Amplifiers- Distortion in amplifiers, Analysis of CE amplifier with Emitter Resistance and Emitter follower, Different Coupling Schemes used in Amplifiers- RC Coupled Amplifier, Direct and Transformer Coupled Amplifiers, Design of Single stage RC Coupled Amplifier Using BJT, Analysis of Cascaded RC Coupled BJT Amplifiers, Darlington Pair, Cascode Amplifier, Illustrative design problems.

UNIT II

FREQUENCY RESPONSE

Logarithms, Decibels, General Frequency considerations, Frequency Response of BJT Amplifier, Analysis at Low and High Frequencies, Effect of Coupling and bypass Capacitors, The Hybrid-pi (π) -Common Emitter Transistor Model, CE short Circuit Current gain, Current gain with Resistive Load, Single Stage CE Transistor Amplifier response, Gain-Bandwidth Product, Emitter follower at higher frequencies, Illustrative design problems.

UNIT III

ANALYSIS AND DESIGN OF FEEDBACK AMPLIFIERS AND OSCILLATORS

Concepts of Feedback, Classification of Feedback Amplifiers, General Characteristics of Negative Feedback Amplifiers, Effect of Feedback on Amplifier characteristics, Voltage Series, Voltage Shunt, Current Series and Current Shunt Feedback Configurations, Illustrative design Problems.

Conditions for Oscillations, RC and LC type Oscillators, RC-Phase shift and Wien-Bridge Oscillators, Generalized Analysis of LC Oscillators, Hartley and Colpitts Oscillators, Crystal Oscillators, Frequency and Amplitude Stability of Oscillators, Illustrative design problems.

UNIT IV POWER AMPLIFIERS

Classification, Series fed Class A Power Amplifier, Transformer Coupled Class A Amplifier, Efficiency, Push Pull Amplifier- Complementary Symmetry Class-B Power Amplifier, Amplifier Distortion, Power Transistor Heat sinking, Class C and Class D Power amplifiers, Illustrative design problems.

UNIT V

TUNED AMPLIFIERS

Introduction, Q-Factor, Small Signal Tuned Amplifiers, Effect of Cascading Single Tuned Amplifiers on Bandwidth, Effect of Cascading Double Tuned Amplifiers on Bandwidth, Stagger Tuned Amplifiers, Stability of Tuned Amplifiers, Illustrative design problems.

Text Books:

- 1. Jacob Millman, Christos C Halkias, "Integrated Electronics", Mc Grawhill.
- K.Lal Kishore, "Electronic Circuit Analysis", BSP, Second Edition.

- 1. Robert L.Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 9th edition, 2008
- 2. Donald A Neamen, "Electronic Circuits Analysis and Design", Tata McGraw-Hill, Third Edition, 2009.
- sedra, Kenneth, Smith, "Microelectric circuits", Oxford University Press, 5th edition, 2011.
 Mohammad H. Rashid, "Electronic Circuit and Applications" CENGAGE Learning.
- 5. Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th edition, 2009,

B.Tech. II - II Sem. Th Tu C 3 1 3

(13A04403) ELECTROMAGNETIC THEORY & TRANSMISSION LINES

Course Objective:

- *Understanding and the ability to use vector algebra, and vector calculus.*
- Proficiency in the use of vector identities, and various Coordinate systems & transformations.

Learning Outcome:

This course provides the foundational education in static electromagnetic fields, and time varying electromagnetic waves. Through lecture, and out-of-class assignments, students are provided learning experiences that enable them to:

- Analyze and solve the problems of electric and magnetic fields that vary with three dimensional spatial co-ordinates as well as with time.
- Become proficient with analytical skills for understanding propagation of electromagnetic waves in different media.
- Understand the concept of transmission lines & their applications.
- Develop technical & writing skills important for effective communication.
- Acquire team-work skills for working effectively in groups.

UNIT I

Electrostatics: Review of Vector algebra, Co-ordinate systems & transformation, Vector calculus, Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Electric dipole, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT II

Magnetostatics: Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, Inductances and Magnetic Energy, Illustrative Problems.

UNIT III

Maxwell"s Equations (for Time Varying Fields): Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems.

UNIT IV

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

UNIT-V

Transmission Lines: Types, Transmission line parameters (Primary and Secondary), Transmission line equations, Input impedance, Standing wave ratio & power, Smith chart & its applications, Applications of transmission lines of various lengths, Micro-strip transmission lines – input impedance, Illustrative Problems.

Text Books:

- 1. Matthew N.O. Sadiku, "Elements of Electromagnetics," Oxford Univ. Press, 4th ed., 2008.
- 2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics," TMH, 7th ed., 2006.

- 1. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems" PHI, 2nd Ed.,
- 2. John D. Krauss, "Electromagnetics", McGraw-Hill publications, 3rd ed., 1988.
- 3. John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.
- 4. Schaum"s out lines, "Electromagnetics,", Tata McGraw-Hill publications, Second Edition, 2006.
- 5. G. S. N. Raju, "Electromagnetic Field Theory and Transmission Lines," Pearson Education, 2013
 6. N. Narayana Rao, "Fundamentals of Electromagnetics for Engineering," Pearson Edu. 2009.

B.Tech. II - II Sem.

Th Drg C
1 3 3

(13A03304) ENGINEERING GRAPHICS

Course Objective:

- By studying the engineering drawing, a student becomes aware of how industry communicates technical information. Engineering drawing teaches the principles of accuracy and clarity in presenting the information necessary about objects.
- This course develops the engineering imagination i.e., so essential to a successful design, By learning techniques of engineering drawing changes the way one things about technical images.
- It is ideal to master the fundamentals of engineering drawing first and to later use these fundamentals for a particular application, such as computer aided drafting. Engineering Drawing is the language of engineers, by studying this course engineering and technology students will eventually be able to prepare drawings of various objects being used in technology.

UNIT I

Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance-Conventions in Drawing-Lettering – BIS Conventions. Curves used in Engineering Practice.

- a) Conic Sections including the Rectangular Hyperbola- General method only,
- b) Cycloid, Epicycloid and Hypocycloid

UNIT II

Projection of Points & Lines: Principles of orthographic projection — Convention — First angle projections, projections of points, lines inclined to one or both planes, Problems on projections, Finding True lengths.

UNIT III

Projections of Planes: Projections of regular plane surfaces- plane surfaces inclined to one plane. **Projections of Solids**: Projections of Regular Solids with axis inclined to one plane.

UNIT IV

Sections and Developments of Solids: Section Planes and Sectional View of Right Regular Solids-Prism, cylinder, Pyramid and Cone. True shapes of the sections. Development of Surfaces of Right Regular Solids-Prism, Cylinder, Pyramid, Cone.

UNIT V

Isometric and Orthographic Projections: Principles of isometric projection- Isometric Scale-Isometric Views- Conventions- Isometric Views of lines, Planes Figures, Simple solids (cube, cylinder and cone). Isometric projections of spherical parts. Conversion of isometric Views to Orthographic Views.

Text Books:

- 1. Engineering Drawing, N.D. Bhatt, Charotar Publishers
- 2. Engineering Drawing, K.L. Narayana& P. Kannaih, Scitech Publishers, Chennai

- 1. Engineering Drawing, Johle, Tata McGraw-Hill Publishers
- 2. Engineering Drawing, Shah and Rana, 2/e, Pearson Education
- 3. Engineering Drawing and Graphics, Venugopal/New age Publishers
- 4. Engineering Graphics, K.C. John, PHI,2013
- 5. Engineering Drawing, B.V.R. Guptha, J.K. Publishers

Suggestions:

- 1. Student is expected to buy a book mentioned under "Text books" for better understanding.
- 2. Students can find the applications of various conics in engineering and application of involute on gear teeth. The introduction for drawing can be had on line from:
 - *Introduction to engineering drawing with tools youtube*
 - Http-sewor. Carleton.ca /- g kardos/88403/drawing/drawings.html
 - Conic sections-online. red woods.edu

The skill acquired by the student in this subject is very useful in conveying his ideas to the layman easily.

B.Tech. II - II Sem. Tu C 3 1 3

(13A04404) ANALOG COMMUNICATION SYSTEMS

Course Objective:

- *To study the fundamental concept of the analog communication systems.*
- To analyze various analog modulation and demodulation techniques.
- To know the working of various transmitters and receivers.
- To understand the influence of noise on the performance of analog communication systems, and to acquire the knowledge about information and capacity.

Learning Outcome:

This course provides the foundational education in Analog Communication systems, and applications. The students are provided the learning experience through class room teaching and solving assignment & tutorial problems. At the end of course, students should be able to:

- Acquire knowledge on the basic concepts of Analog Communication Systems.
- Analyze the analog modulated and demodulated systems.
- Verify the effect of noise on the performance of communication systems.
- Know the fundamental concepts of information and capacity.

UNIT I

Introduction: Elements of communication systems, Information, Messages and Signals, Modulation, Modulation Methods, Modulation Benefits and Applications.

Amplitude Modulation & Demodulation: Baseband and carrier communication, Amplitude Modulation (AM), Rectifier detector, Envelope detector, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Switching modulators, Ring modulator, Balanced modulator, Frequency mixer, sideband and carrier power of AM, Generation of AM signals, Quadrature amplitude modulation (QAM), Single sideband (SSB) transmission, Time domain representation of SSB signals & their demodulation schemes (with carrier, and suppressed carrier), Generation of SSB signals, Vestigial sideband (VSB) modulator & demodulator, Carrier Acquisition- phased locked loop (PLL), Costas loop, Frequency division multiplexing (FDM), and Super-heterodyne AM receiver, Illustrative Problems.

UNIT II

Angle Modulation & Demodulation: Concept of instantaneous frequency, Generalized concept of angle modulation, Bandwidth of angle modulated waves — Narrow band frequency modulation (NBFM); and Wide band FM (WBFM), Phase modulation, Verification of Frequency modulation bandwidth relationship, Features of angle modulation, Generation of FM waves —

Indirect method, Direct generation; Demodulation of FM, Bandpass limiter, Practical frequency demodulators, Small error analysis, Pre-emphasis, & De-emphasis filters, FM receiver, FM Capture Effect, Illustrative Problems.

UNIT III

Noise in Communication Systems: Thermal noise, Time domain representation of narrowband noise, Filtered white noise, Quadrature representation of narrowband noise, Envelope of narrowband noise plus sine wave, Signal to noise ratio & probability of error, Noise equivalent bandwidth, Effective noise temperature, and Noise figure, Baseband systems with channel noise, Performance analysis (i.e. finding SNR expression) of AM, DSB-SC, SSB-SC, FM, PM in the presence of noise, Illustrative Problems.

UNIT IV

Analog pulse modulation schemes: Pulse amplitude modulation – Natural sampling, flat top sampling and Pulse amplitude modulation (PAM) & demodulation, Pulse-Time Modulation - Pulse Duration and Pulse Position modulations, and demodulation schemes, PPM spectral analysis, Illustrative Problems.

Radio Receiver measurements: Sensitivity, Selectivity, and fidelity.

UNIT V

Information & Channel Capacity: Introduction, Information content of message, Entropy, Entropy of symbols in long independent and dependent sequences. Entropy and information rate of Markoff sources. Shannon's encoding algorithm, Discrete communication channels, Rate of information over a discrete channel, Capacity of discrete memoryless channels, Discrete channels with memory, Shannon - Hartley theorem and its implications, Illustrative problems.

Text Books:

- 1. B. P. Lathi, "Modern Digital and Analog Communication Systems," Oxford Univ. press. 3rd Edition, 2006.
- 2. Sham Shanmugam, "Digital and Analog Communication Systems", Wiley-India edition,

- 1. A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010.
- Simon Haykin, "Communication Systems", Wiley-India edition, 3rd edition, 2010.
 Herbert Taub & Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 4. R.E. Ziemer & W.H. Tranter, "Principles of Communication-Systems Modulation & Noise", Jaico Publishing House, 2001.
- 5. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH, 2004.

B.Tech. II - II Sem.
L C
3 2

(13A04405) ELECTRONIC CIRCUITS ANALYSIS AND DESIGN LAB

List of Experiments (12 experiments to be done):

Course Objective:

- Help students make transition from analysis of electronic circuits to design of electronic circuits.
- To understand the Analysis of transistor at high frequencies.
- To understand the concept of designing of tuned amplifier.
- The student will construct and analyze voltage regulator circuits.
- To understand the circuit configuration and the principle operation of converters, including diode rectifiers, controlled AC-DC converters and DC choppers

Learning Outcome:

- The ability to analyze and design single and multistage amplifiers at low, mid and high frequencies.
- Designing and analyzing the transistor at high frequencies.
- Determine the efficiencies of power amplifiers.
- Determine Frequency response and design of tuned amplifiers.
- Able to Analyze all the circuits using simulation software and Hardware.

I) Design and Simulation in Simulation Laboratory using Any Simulation Software. (Minimum of 6 Experiments):

- 1. Common Emitter Amplifier
- 2. Common Source Amplifier
- 3. A Two Stage RC Coupled Amplifier.
- 4. Current shunt and Voltage Series Feedback Amplifier
- 5. Cascade Amplifier
- 6. Wien Bridge Oscillator using Transistors
- 7. RC Phase Shift Oscillator using Transistors
- 8. Class A Power Amplifier (Transformer less)
- 9. Class B Complementary Symmetry Amplifier
- 10. High Frequency Common base (BJT) / Common gate (JFET) Amplifier.

II) Testing in the Hardware Laboratory (6 Experiments)

Any Three circuits simulated in Simulation laboratory

Any Three of the following

Class A Power Amplifier (with transformer load)

Class C Power Amplifier

Single Tuned Voltage Amplifier

Hartley & Colpitt's Oscillators.

Darlington Pair.

MOSFET Amplifier

III) Equipments required for Laboratories:

For software simulation of Electronic circuits

Computer Systems with latest specifications.

Connected in LAN (Optional). Operating system (Windows XP).

Suitable Simulations software.

For Hardware simulations of Electronic Circuits

Regulated Power Supply (0-30V)

CRO's

Functions Generators.

Multimeters.

B.Tech. II - II Sem.

L
C
3
2

(13A04406) PULSE & DIGITAL CIRCUITS LAB

Course Objective:

- To generate Different types of non-sinusoidal signals.
- To generate and processing of non-sinusoidal signals.
- To learn about Limiting and storage circuits and their applications.
- To learn about Different synchronization techniques, basics of different sampling gates and their uses.
- To obtain Basics of digital logic families.

Learning Outcome:

- Student understands the various design and analysis to generate various types of signals.
- Student can design various digital circuits based on the application and specifications.

Minimum Twelve experiments to be conducted:

- 1. Linear wave shaping.
- 2. Non Linear wave shaping Clippers.
- 3. Non Linear wave shaping Clamper's.
- 4. Transistor as a switch.
- 5. Study of Logic Gates & Some applications.
- 6. Study of Flip-Flops & some applications.
- 7. Sampling Gates.
- 8. Astable Multivibrator
- 9. Monostable Multivibrator
- 10. Bistable Multivibrator.
- 11. Schmitt Trigger.
- 12. UJT Relaxation Oscillator.
- 13. Bootstrap sweep circuit.
- 14. Constant Current Sweep Generator using BJT.

Equipment required for Laboratories:

1. RPS - 0-30 V 2. CRO - 0-20 M Hz. 3. Function Generators - 0-1 M Hz

- 4. Components
- 5. Multi Meters

B.Tech. III- I Sem. Th Tu C 3 1 3

(13A02402) CONTROL SYSTEMS ENGINEERING

Course Objective:

In this course it is aimed to introduce to the students the principles and applications of control systems in everyday life. The basic concepts of block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in frequency domain and time domain.

UNIT I CONTROL SYSTEMS CONCEPTS

Open Loop and closed loop control systems and their differences- Examples of control systems-Classification of control systems, Feedback Characteristics, Effects of positive and negative feedback. Mathematical models – Differential equations of Translational and Rotational mechanical systems, and Electrical Systems, Block diagram reduction methods – Signal flow graph - Reduction using Mason's gain formula. Transfer Function of DC Servo motor - AC Servo motor - Synchro transmitter and Receiver

UNIT II TIME RESPONSE ANALYSIS

Step Response - Impulse Response - Time response of first order systems - Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications - Steady state response - Steady state errors and error constants - Effects of proportional, integral, derivative Controllers, Design of P. PD, PI, PID Controllers.

UNIT III STABILITY ANALYSIS IN FREQUENCY DOMAIN

The concept of stability – Routh's stability criterion – Stability and conditional stability – limitations of Routh's stability. The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT IV FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Stability Analysis from Bode Plots. Polar Plots-Nyquist Plots- Phase margin and Gain margin-Stability Analysis.

Compensation techniques Lag, Lead, Lead-Lag Compensators design in frequency Domain.

UNIT V STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS

Concepts of state, state variables and state model, derivation of state models from Schematic models, differential equations, Transfer function, block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and it's Properties. System response through State Space models.

Text Books:

- 1. Modern Control Engineering by Katsuhiko Ogata Prentice Hall of India Pvt. Ltd., 5th edition, 2010.
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International (P) Limited, Publishers, 5th edition, 2007.

- 1. Control Systems Engineering by NISE 5th Edition John wiley & sons, 2010.
- 2. Control Systems by A. Nagoor Kani- First Edition RBA Publications, 2006.
- 3. Automatic Control Systems—by B. C. Kuo and Farid Golnaraghi John wiley and sons, 8th edition, 2003.

B.Tech. III - I Sem. Tu C 3 1 3

(13A05401) COMPUTER ORGANIZATION AND ARCHITECTURE

Course Objective:

- To learn the fundamentals of computer organization and its relevance to classical and modern problems of computer design
- To make the students understand the structure and behavior of various functional modules of a computer.
- To understand the techniques that computers use to communicate with I/O devices
- To study the concepts of pipelining and the way it can speed up processing.
- To understand the basic characteristics of multiprocessors

Learning Outcome:

- Ability to use memory and I/O devices effectively
- Able to explore the hardware requirements for cache memory and virtual memory
- Ability to design algorithms to exploit pipelining and multiprocessors

UNIT I

Introduction to Computer Organization and Architecture

Basic Computer Organization – CPU Organization – Memory Subsystem Organization and Interfacing – I/O Subsystem Organization and Interfacing – A Simple Computer Levels of Programming Languages, Assembly Language Instructions, Instruction Set Architecture Design, A simple Instruction Set Architecture

UNIT II

CPU Design and Computer Arithmetic

CPU Design: Instruction Cycle - Memory - Reference Instructions - Input/output and Interrupt - Addressing Modes - Data Transfer and Manipulation - Program Control.

Computer Arithmetic: Addition and Subtraction – Multiplication Algorithms – Division Algorithms – Floating-Point Arithmetic Operations – Decimal Arithmetic unit.

UNIT III

Register Transfer Language and Design of Control Unit

Register Transfer: Register Transfer Language – Register Transfer – Bus and Memory Transfers – Arithmetic Micro operations – Logic Micro operations – Shift Micro operations.

Control Unit: Control Memory – Address Sequencing – Micro program Example – Design of Control Unit.

UNIT IV

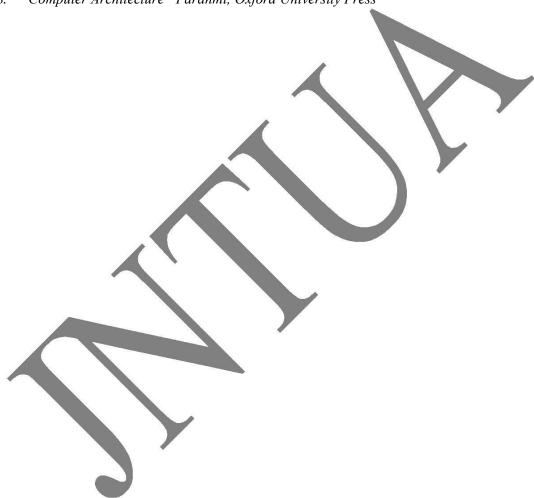
Memory and Input/output Organization

Memory Organization: Memory Hierarchy – Main Memory – Auxiliary Memory – Associative Memory – Cache Memory – Virtual Memory.

Input/output Organization: Input-Output Interface – Asynchronous Data Transfer – Modes of Transfer – Priority Interrupt – Direct Memory Access (DMA).

UNIT V

Pipeline and Multiprocessors


Pipeline: Parallel Processing – Pipelining – Arithmetic Pipeline – Instruction Pipeline.

Multiprocessors: Characteristics of Multiprocessors – Interconnection Structures – Inter Processor Arbitration – Inter Processor Communication and Synchronization.

Text Books:

- 1. "Computer Systems Organization and Architecture", John D. Carpinelli, PEA, 2009.
- 2. "Computer Systems Architecture", 3/e, M. Moris Mano, PEA, 2007.

- "Computer Organization", Carl Hamacher, Zvonks Vranesic, SafeaZaky, 5/e, MCG, 2002.
- 2. "Computer Organization and Architecture", 8/e, William Stallings, PEA, 2010.
- "Computer Systems Architecture a Networking Approach", 2/e, Rob Williams. 3.
- 4.
- "Computer Organization and Architecture" Ghoshal, Pearson Education, 2011. "Computer Organization and Architecture", V. Rajaraman, T. Radakrishnan. 5.
- "Computer Organization and Design", P. Pal Chaudhuri, PHI
- "Structured Computer Organization", Andrew S. Janenbaum, Todd Austin 7.
- "Computer Architecture" Parahmi, Oxford University Press

B.Tech. III - I Sem. Tu C 3 1 3

(13A04501) ANTENNAS & WAVE PROPAGATION

Course Objective:

- 1. To introduce the fundamental principles of antenna theory and various types of antennas.
- 2. Applying the principles of antennas to the analysis, design, and measurements of antennas.
- 3. To know the applications of some basic and practical configurations such as dipoles, loops, and broadband, aperture type and horn antennas.

Learning Outcome:

Through lecture, and out-of-class assignments, students are provided learning experiences that enable them to:

- a. Understand the basic principles of all types of antennas and
- b. Analyze different types of antennas designed for various frequency ranges.
- c. Become proficient with analytical skills for understanding practical antennas.
- d. Design some practical antennas such as dipole, Yagi uda, and horn antennas.
- e. Determine the radiation patterns (in principal planes) of antennas through measurement setups.
- f. Develop technical & writing skills important for effective communication
- g. Acquire team-work skills for working effectively in groups.

UNIT I

Antenna Basics & Dipole antennas: Introduction, Basic antenna parameters- patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective height, Fields from oscillating dipole, Field Zones, Shape-Impedance considerations, Polarization – Linear, Elliptical, & Circular polarizations, Antenna temperature, Antenna impedance, Front—to-back ratio, Antenna theorems, Radiation – Basic Maxwell's equations, Retarded potential-Helmholtz Theorem, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field Components, Radiated power, Radiation Resistance, Beam width, Natural current distributions, far fields and patterns of Thin Linear Center-fed Antennas of different lengths, Illustrative problems.

UNIT II

VHF, UHF and Microwave Antennas - I: Loop Antennas - Introduction, Small Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements - Yagi - Uda Arrays, Folded Dipoles & their characteristics. Helical Antennas-Helical Geometry, Helix modes, Practical Design considerations for Monofilar Helical Antenna in Axial and Normal Modes. Horn Antennas-Types, Fermat's Principle, Optimum Horns, Design considerations of Pyramidal Horns, Illustrative Problems.

UNIT III

VHF, UHF and Microwave Antennas - II: Micro strip Antennas - Introduction, features, advantages and limitations, Rectangular patch antennas - Geometry and parameters, characteristics of Micro strip antennas, Impact of different parameters on characteristics, reflector antennas - Introduction, Flat sheet and corner reflectors, parabola reflectors geometry, pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications, Illustrative Problems.

UNIT IV

Antenna Arrays & Measurements: Point sources - Definition, Patterns, arrays of 2 Isotropic sources- Different cases, Principle of Pattern Multiplication, Uniform Linear Arrays - Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, BSAa with Non-uniform Amplitude Distributions - General considerations and Bionomial Arrays, Illustrative problems.

Antenna Measurements: Introduction, Concepts- Reciprocity, Near and Far Fields, Coordination system, sources of errors, Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by comparison, Absolute and 3-Antenna Methods).

UNIT V

Wave Propagation: Introduction, Definitions, Characterizations and general classifications, different modes of wave propagation, Ray/Mode concepts, Ground wave propagation (Qualitative treatment) - Introduction, Plane earth reflections, Space and surface waves, wave tilt, curved earth reflections, Space wave propagation - Introduction, field strength variation with distance and height, effect of earth's curvature, absorption, Super refraction, M-curves and duct propagation, scattering phenomena, tropospheric propagation, fading and path loss calculations, Sky wave propagation - Introduction, structure of Ionosphere, refraction and reflection of sky waves by Ionosphere, Ray path, Critical frequency, MUF, LUF, OF, Virtual height and Skip distance, Relation between MUF and Skip distance, Multi-HOP propagation, Energy loss in Ionosphere, Summary of Wave Characteristics in different frequency ranges, Illustrative problems.

Text Books:

- 1. John D. Kraus and Ronald J. Marhefka and Ahmad S.Khan, "Antennas and wave propagation," TMH, New Delhi, 4th Ed., (special Indian Edition), 2010.
- 2. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems," PHI, 2nd Edn, 2000.

- 1. C.A. Balanis, "Antenna Theory- Analysis and Design," John Wiley & Sons, 2nd Edn., 2001.
- 2. K.D. Prasad, Satya Prakashan, "Antennas and Wave Propagation," Tech. India Publications, New Delhi, 2001.
- 3. E.V.D. Glazier and H.R.L. Lamont, "Transmission and Propagation The Services Text Book of Radio," vol. 5, Standard Publishers Distributors, Delhi.
- 4. F.E. Terman, "Electronic and Radio Engineering," McGraw-Hill, 4th edition, 1955.
- 5. John D. Kraus, "Antennas," McGraw-Hill (International Edition), 2nd Edn., 1988.

B.Tech. III - I Sem. Tu C 3 1 3

(13A04502) DIGITAL COMMUNICATION SYSTEMS

Course Objective:

- The students to be able to understand, analyze, and design fundamental digital communication systems.
- To know various coding techniques such as source coding, line coding, and channel coding.
- *To understand various digital modulation techniques and their applications.*
- The course focuses on developing a thorough understanding of digital communication systems by using a series of specific examples and problems.

Learning Outcome:

At the end of the course, the students should be able to:

- Know the difference between source coding, channel coding, and line coding techniques and apply their concepts in the analysis and design of digital communication systems.
- Understand the basic principles of baseband and passband digital modulation schemes.
- Analyze probability of error performance of digital systems and are able to design digital communication systems.
- Understand the basics of information theory and error correcting codes.

UNIT I

Source Coding Systems: Introduction, sampling process, quantization, quantization noise, conditions for optimality of quantizers, encoding, Pulse-Code Modulation (PCM), Line codes, Differential encoding, Regeneration, Decoding & Filtering, Noise considerations in PCM systems, Time-Division Multiplexing (TDM), Synchronization, Delta modulation (DM), Differential PCM (DPCM), Processing gain, Adaptive DPCM (ADPCM), Comparison of the above systems.

UNIT II

Baseband Pulse Transmission: Introduction, Matched filter, Properties of Matched filter, Matched filter for rectangular pulse, Error rate due to noise, Inter-symbol Interference (ISI), Nyquist's criterion for distortion less baseband binary transmission, ideal Nyquist channel, Raised cosine filter & its spectrum, Correlative coding — Duo binary & Modified duo binary signaling schemes, Partial response signaling, Baseband M-array PAM transmission, Eye diagrams.

UNIT III

Signal Space Analysis: Introduction, Geometric representation of signals, Gram-Schmidt orthogonalization procedure, Conversion of the Continuous AWGN channel into a vector channel, Coherent detection of signals in noise, Correlation receiver, Equivalence of correlation and Matched filter receivers, Probability of error, Signal constellation diagram.

UNIT IV

Passband Data Transmission: Introduction, Passband transmission model, Coherent phase-shift keying – binary phase shift keying (BPSK), Quadrature shift keying (QPSK), Binary Frequency shift keying (BFSK), Error probabilities of BPSK, QPSK, BFSK, Generation and detection of Coherent BPSK, QPSK, & BFSK, Power spectra of above mentioned modulated signals, M-array PSK, M-array quadrature amplitude modulation (M-array QAM), Non-coherent orthogonal modulation schemes - Differential PSK, Binary FSK, Generation and detection of non-coherent BFSK, DPSK, Comparison of power bandwidth requirements for all the above schemes.

UNIT V

Channel Coding: Error Detection & Correction - Repetition & Parity Check Codes, Interleaving, Code Vectors and Hamming Distance, Forward Error Correction (FEC) Systems, Automatic Retransmission Query (ARQ) Systems, Linear Block Codes – Matrix Representation of Block Codes, Convolutional Codes – Convolutional Encoding, Decoding Methods.

Text Books:

- 1. Simon Hakin, "Communication Systems," Wiley India Edition, 4th Edition, 2011.
- 2. A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010.

- 1. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley, 2005.
- 2. B.P. Lathi, & Zhi Ding, "Modern Digital & Analog Communication Systems", Oxford University Press, International 4th edition, 2010.
- 3. Bernard Sklar, "Digital Communications", Prentice-Hall PTR, 2nd edition, 2001.
- 4. Herbert Taub & Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 5. J. G. Proakis, M Salehi, Gerhard Bauch, "Modern Communication Systems Using MATLAB," CENGAGE, 3rd Edition, 2013.

B.Tech. III - I Sem. Tu C 3 1 3

(13A04503) LINEAR IC APPLICATIONS

Course Objective:

• To make the student understand the basic concepts in the design of electronic circuits using linear integrated circuits and their applications. To introduce some special function ICs.

Learning Outcome:

Upon completion of the course, students will be able to:

- Understand the basic building blocks of linear integrated circuits and its characteristics.
- Analyze the linear, non-linear and specialized applications of operational amplifiers.
- *Understand the theory of ADC and DAC.*

UNIT I

DIFFERENTIAL AMPLIFIERS AND OPAMPS

Differential Amplifiers: Differential amplifier configurations, Balanced and unbalanced output differential amplifiers, current mirror, level Translator.

Operational amplifiers: Introduction, Block diagram, Ideal op-amp, Equivalent Circuit, Voltage Transfer curve, open loop op-amp configurations.

UNIT II

OP-AMP WITH NEGATIVE FEEDBACK AND FREQUENCY RESPONSE

Introduction, feedback configurations, voltage series feedback, voltage shunt feedback and differential amplifiers, properties of Practical op-amp.

Frequency response: Introduction, compensating networks, frequency response of internally compensated op-amps and non compensated op-amps, High frequency op-amp equivalent circuit, open loop gain Vs frequency, closed loop frequency response, circuit stability, slew rate.

UNIT III

OP-AMP APPLICATIONS -1

DC and AC amplifiers, peaking amplifier, summing, scaling and averaging amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, integrator, differentiator, active filters.

UNIT IV

OP-AMP APPLICATIONS -2

Oscillators, Phase shift and wein bridge oscillators, Square, triangular and sawtooth wave generators, Comparators, zero crossing detector, Schmitt trigger, characteristics and limitations.

Specialized applications: 555 timer IC (monostable & astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.

UNIT V

ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

Analog and Digital Data Conversions, D/A converter – specifications – weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R - 2R Ladder types -switches for D/A converters, high speed sample-and-hold circuits, A/D Converters –specifications – Flash type – Successive Approximation type – Single Slope type – Dual Slope type – A/D Converter using Voltage-to-Time Conversion – Over-sampling A/D Converters.

Text Books:

- 1. D. Roy Chowdhury, "Linear Integrated Circuits", New Age International (p) Ltd, 2nd Edition, 2003.
- 2. K.Lal Kishore, "Operational Amplifiers and Linear Integrated Circuits", Pearson Education, 2007.

- 1. Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", PHI, 4th edition, 1987.
- 2. R.F.Coughlin & Fredrick Driscoll, "Operational Amplifiers & Linear Integrated Circuits", 6th Edition, PHI.
- 3. David A. Bell, "Operational Amplifiers & Linear ICs", Oxford University Press, 2nd edition, 2010.
- 4. Sergio Franco, "Design with Operational Amplifiers & Analog Integrated Circuits" McGraw Hill, 1988.
- 5. C.G. Clayton, "Operational Amplifiers", Butterworth & Company Publ. Ltd./ Elsevier, 1971.

B.Tech. III - I Sem. Tu C 3 1 3

(13A04504) DIGITAL IC APPLICATIONS

Course Objective:

- To be able to use computer-aided design tools for development of complex digital logic circuits
- To be able to model, simulate, verify, analyze, and synthesize with hardware description languages
- To be able to design and prototype with standard cell technology and programmable logic
- To be able to design tests for digital logic circuits, and design for testability

Learning Outcome:

- Able to use computer-aided design tools for development of complex digital logic circuits.
- Able to model, simulate, verify, analyze, and synthesize with hardware description languages.
- Able to design and prototype with standard cell technology and programmable logic.
- Able to design tests for digital logic circuits, and design for testability.

UNIT I

CMOS LOGIC: Introduction to logic families, CMOS logic, CMOS steady state electrical behavior, CMOS dynamic electrical behavior, CMOS logic families.

BIPOLAR LOGIC AND INTERFACING: Bipolar logic, Transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic, Comparison of logic families, Familiarity with standard 74XX and CMOS 40XX series-ICs – Specifications.

UNIT II

The VHDL Hardware Description Language: Design flow, program structure, types and constants, functions and procedures, libraries and packages.

The VHDL design elements: Structural design elements, behavioral design elements, time dimension and simulation synthesis.

UNIT III

Combinational Logic Design: Decoders, encoders, three state devices, multiplexers and demultiplexers, Code Converters, EX-OR gates and parity circuits, comparators, adders & subtractors, ALUs, Combinational multipliers, VHDL models for the above ICs.

UNIT IV

Design Examples (using VHDL): Barrel shifter, comparators, floating-point encoder, and dual parity encoder.

Sequential logic Design: Latches & flip flops, PLDs, counters, shift register and their VHDL models, Synchronous design methodology.

UNIT V

ROMs: Internal Structure, 2D – decoding commercial types, timing and applications.

Static RAMs: Internal Structure, timing and standard SRAMs, Synchronous SRAMs.

Dynamic RAMs: Internal Structure, timing and standard DRAMs, Synchronous DRAMs.

Text Books:

- 1. Digital Design Principles & Practices John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005.
- 2. A VHDL Primer J. Bhasker, Pearson Education/PHI, 3rd Edition.

- 1. Digital System Design Using VHDL Charles H. Roth Jr., PWS Publications, 2nd edition, 2008.
- 2. Fundamentals of Digital Logic with VHDL Design Stephen Borwn and Zvonko Vramesic, McGraw Hill, 2nd Edition., 2005.

B.Tech. III - I Sem.

L
C
3
2

(13A04505) IC APPLICATIONS LAB

Course Objective:

- To verify the applications of Op-amp
- To verify applications IC555 and IC566
- To use computer-aided design tools for development of complex digital logic circuits
- To model, simulate, verify, analyze, and synthesize with hardware description languages
- To design and prototype with standard cell technology and programmable logic
- To design tests for digital logic circuits, and design for testability

Learning Outcome:

- Able to verify applications of Op-amp
- Able to verify applications of IC555 and IC566
- Able to use computer-aided design tools for development of complex digital logic circuits.
- Able to model, simulate, verify, analyze, and synthesize with hardware description languages.
- Able to design and prototype with standard cell technology and programmable logic.
- Able to design tests for digital logic circuits, and design for testability.

Minimum Twelve Experiments to be conducted:

Part A (IC Application Lab):

- 1. OP AMP Applications Adder, Subtractor, Comparator Circuits.
- 2. Active Filter Applications LPF, HPF (first order).
- 3. Function Generator using OP AMPs.
- 4. IC 555 Timer Monostable and Astable Operation Circuit.
- 5. IC 566 VCO Applications.
- 6. Voltage Regulator using IC 723.
- 7. 4 bit DAC using OP AMP.

Part B (ECAD Lab):

Simulate the internal structure of the following Digital IC"s using VHDL / VERILOG and verify the operations of the Digital IC"s (Hardware) in the Laboratory

- 1. Logic Gates- 74XX.
- 2. Half Adder, Half Subtractor, Full Adder, Full Subtractor & Ripple Carry Adder.
- 3. 3-8 Decoder -74138 & 8-3 Encoder- 74X148.
- 4. 8 x 1 Multiplexer -74X151 and 2x4 Demultiplexer-74X155.
- 5. 4 bit Comparator-74X85.
- 6. D Flip-Flop 74X74.
- 7. JK Flip-Flop 74X109.
- 8. Decade counter-74X90.
- 9. Universal shift register -74X194.

Equipment required for Laboratories:

- 1. RPS
- 2. CRO
- 3. Function Generator
- 4. Multi Meters
- 5. IC Trainer Kits (Optional)
- 6. Bread Boards
- 7. Components: IC741, IC555, IC566, 7805, 7809, 7912 and other essential components.
- 8. Analog IC Tester

B.Tech. III - I Sem.

L
C
3
2

(13A04506) ANALOG COMMUNICATION SYSTEMS LAB

Course Objective:

- To provide a real time experience for different analog modulation systems and demodulation schemes
- To provide exposure to the real time behavior of different elements available in analog communication system such as filters, amplifiers etc
- To perform radio receiver measurements and antenna measurements

Learning Outcome:

After completion of the course the students will be able

- To experience real time behavior of different analog modulation schemes
- Technically visualize spectra of different analog modulation schemes
- Analyze practical behavior of different elements available in analog communication system such as filters, amplifiers etc.
- Measure characteristics of radio receiver and antenna measurements.

List of Experiments: (All Experiments are to be conducted)

- 1. Amplitude modulation and demodulation.
- 2. Frequency modulation and demodulation.
- 3. Characteristics of Mixer.
- 4. Pre-emphasis & de-emphasis.
- 5. Pulse amplitude modulation & demodulation.
- 6. Pulse width modulation & demodulation
- 7. Pulse position modulation & demodulation.
- 8. Radio receiver measurements sensitivity selectivity and fidelity.
- 9. Measurement of half power beam width (HPBW) and gain of a half wave dipole antenna.
- 10. Measurement of radiation pattern of a loop antenna in principal planes.

Equipment required for the Laboratory:

1. Regulated Power Supply equipments	0–30 V
2. CROs	0-20 M Hz.
3. Function Generators	0-3 M Hz
4. RF Signal Generators	0- 1000 M Hz

- 5. Multimeters
- 6. Required electronic components (active and passive) for the design of experiments from 1 7
- 7. Radio Receiver Demo kits or Trainers.
- 8. RF power meter frequency range 0 1000 MHz
- 9. Spectrum Analyzer
- 10. Dipole antennas (2 Nos.) 850 MHz 1GHz
- 11. Loop antenna (1 no.) 850 MHz 1GHz
- 12. Bread Boards

B.Tech. III - II Sem. Tu C 3 1 3

(13A52501) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objective:

The objective of this course is to equip the student with the basic inputs of Managerial Economics and Economic Environment of business and to enrich analytical skills in helping them take sound financial decisions for achieving higher productivity.

Learning Outcome:

The thorough understanding of Managerial Economics and Analysis of Financial Statements facilitates the Technocrats – cum – Entrepreneurs to take-up decisions effectively and efficiently in the challenging Business Environment.

UNIT I

INTRODUCTION TO MANAGERIAL ECONOMICS

Managerial Economics - Definition, nature and scope - contemporary importance of Managerial Economics - Demand Analysis: Determinants- Law of Demand - Elasticity of Demand. Significance - types - measurement of elasticity of demand - Demand forecasting- factors governing demand forecasting- methods of demand forecasting - Relationship of Managerial Economics with Financial Accounting and Management.

UNIT II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function – Short-run and long- run production - Isoquants and Isocosts, MRTS, least cost combination of inputs - Cobb-Douglas production function - laws of returns - Internal and External economies of scale - **Cost Analysis**: Cost concepts - Break-Even Analysis (BEA) - Managerial significance and limitations of BEA - Determination of Break Even Point (Simple Problems)

UNIT III

INTRODUCTION TO MARKETS AND NEW ECONOMIC ENVIRONMENT

Market structures: Types of Markets - Perfect and Imperfect Competition - Features, Oligopoly - Monopolistic competition. Price-Output determination - Pricing Methods and Strategies. Forms of Business Organization - Sole Proprietorship- Partnership - Joint Stock Companies - Public Sector Enterprises - New Economic Environment- Economic systems - Economic Liberalization - Privatization and Globalization

UNIT IV

CAPITAL AND CAPITAL BUDGETING

Concept of Capital - Over and Under capitalization – Remedial measures - Sources of Short term and Long term capital - Estimating Working Capital requirement – Capital budgeting – Features of Capital budgeting proposals – Methods and Evaluation of Capital budgeting – Pay Back Method – Accounting Rate of Return (ARR) – Net Present Value (NPV) – Internal Rate Return (IRR) Method (simple problems)

UNIT V

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Financial Accounting – Concept - emerging need and importance - Double-Entry Book Keeping-Journal - Ledger – Trial Balance - Financial Statements - - Trading Account – Profit & Loss Account – Balance Sheet (with simple adjustments). Financial Analysis – Ratios – Techniques – Liquidity, Leverage, Profitability, and Activity Ratios (simple problems).

Text Books:

- 1. Aryasri: Managerial Economics and Financial Analysis, 4/e, TMH, 2009.
- 2. Varshney & Maheswari: Managerial Economics, Sultan Chand, 2009.

- 1. Premchand Babu, Madan Mohan: Financial Accounting and Analysis, Himalaya, 2009
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International,. 2009.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New
- Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2009.
- 5. H.L.Ahuja: Managerial Economics, S.Chand, 3/e, 2009

B.Tech. III - II Sem. Th Tu C 3 1 3

(13A04601) MICROPROCESSORS AND MICROCONTROLLERS

Course Objective:

- To understand the architecture of 8086 MICROPROCESSOR.
- To learn various 8086 Instruction set and Assembler Directives.
- To become skilled in 8086 Assembly Language programming.
- To understand programmable peripheral devices and their Interfacing.
- To understand and learn 8051 microcontroller.
- To learn 8051 Assembly Language programming

Learning Outcome:

- Becomes skilled in various 8086 Instruction set and Assembler Directives
- Able to write8086 Assembly Language programs.
- Able to understand programmable peripheral devices and their Interfacing.
- Able to write 8051 assembly Language programs.

UNIT I

8085 ARCHITECTURE

Introduction-8085 Architecture-Block Diagram, Flag Register, Pin Diagram, Timing and Control Signals, System Timing Diagram, Instruction Set of 8085- Instruction & Data Formats- Addressing Modes- Instructions.

UNIT II

8086 ARCHITECTURE

8086 Overview-Internal Architecture- Register Organization, Memory Segmentation, Flag Register, Pin Configuration, Physical Memory Organization, General Bus Operation- Minimum and Maximum Mode Signals, Timing Diagrams - Interrupts Of 8086.

UNIT III

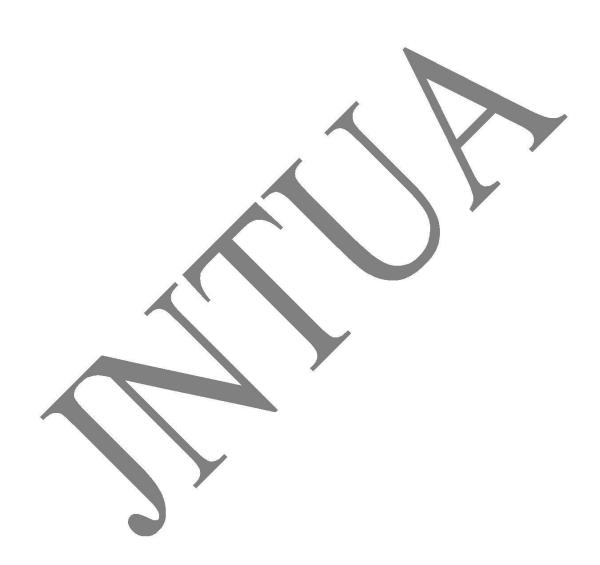
INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING OF 8086

Instruction Formats -Addressing Modes-Instruction Set, Assembler Directives-Macros, Programs Involving Logical, Branch Instructions - Sorting and Evaluating Arithmetic Expressions - String Manipulations-Simple ALPs.

UNIT IV INTERFACING DEVICES

8255 PPI- Block Diagram, Various Modes of Operation-Programmable Interval Timer 8254-Architecture, Operating Modes – Key Board/Display Controller 8279- Architecture, Modes of Operation, Command Words and Key Code and Status Data Formats-Programmable Communication Interface8251 USART-Architecture, Description Of Operating Modes-DMA Controller 8257-Internal Architecture and Signal Description .

UNIT V


INTRODUCTION TO MICRO CONTROLLERS 8051

Introduction, Architecture, Registers, Pin Description, Connections, I/O Ports, Memory Organization, Addressing Modes, Instruction Set, Architectural features of Intels 16 bit Micro Controller.

Text Books:

- 1. A.K.Ray and Bhurchandi, "Advanced Microprocessors and Peripherals", 2nd Edition, TMH Publications.
- 2. Ajay V. Deshmukh, "Microcontrollers, Theory and applications", Tata McGraw-Hill Companies 2005

- Douglas V.Hall, "Microprocessors and Interfacing", 2nd Revised Edition, TMH Publications.
 Liu & Gibson, "Microcomputer Systems: The 8086/8088 Family: Architecture, Programming and Design", 2nd ed., PHI
 Kenneth j.Ayala, Thomson, "The 8051 Microcontrollers", Asia Pte.Ltd
 Krishna Kant, "Microprocessors and Microcontrollers", PHI Publishers

B.Tech. III - II Sem.

Th
Tu
C
3
1
3

(13A04602) DIGITAL SIGNAL PROCESSING

Course Objective:

- To use Z transforms and discrete time Fourier transforms to analyze a digital system.
- To design and understand simple finite impulse response filters
- To understand stability of FIR filters
- To know various structures used in the implementation of FIR and IIR filters
- Window method design structure for implementation.

Learning Outcome:

At the end of the course, the student should be able to:

- Describe the Sampling Theorem and how this relates to Aliasing and Folding.
- Determine if a system is a Linear Time-Invariant (LTI) System and Take the Z-transform of a LTI system.
- Find the frequency response of FIR and IIR filters through analysis.
- Understand the relationship between poles, zeros, and stability and determine the spectrum of a signal using the DFT, FFT, and spectrogram.
- Design, analyze, and implement various digital filters.

UNIT I

Introduction: Review of discrete-time signals and systems – Time domain analysis of discrete-time signals & systems, Frequency domain analysis of discrete-time signals and systems.

Discrete Fourier Transform: Frequency-domain sampling and reconstruction of discrete-time signals, Discrete Fourier Transform (DFT), The DFT as a linear transformation, Relationship of the DFT to other transforms, Properties of DFT, Linear filtering methods based on DFT, Frequency analysis of signals using the DFT.

UNIT II

Fast Fourier Transform Algorithms (FFTA): Efficient computation of the DFT – Direct computation of DFT, Divide and conquer approach to computation of DFT, Radix-2, Radix-4, and Split radix FFT algorithms. Implementation of FFT algorithms, Applications of FFT algorithms – Efficient computation of the DFT of two real sequences, 2N point real sequences, Use of the FFT algorithm in linear filtering and correlation, A linear filtering approach to computation of the DFT-the Goertzel, and the Chirp-z transform algorithms, Quantization errors in the computation of DFT.

UNIT III

Implementation of Discrete-Time Systems: Structures for the realization of discrete-time systems, Structures for FIR systems - Direct form, Cascade form, Frequency sampling, and Lattice structures, Structures for IIR systems - Direct form, Signal flow graphs & Transposed, Cascade form, Parallel form and Lattice structures, Conversion from Lattice structure to direct form, lattice -Ladder structure.

UNIT IV

Design of Digital Filters: General considerations – Causality and its implications, Characteristics of practical Frequency Selective Filters, Design of Finite Impulse Response (FIR) filters – Symmetric and asymmetric FIR filters, Design of linear phase FIR filters using windows, Design of linear phase FIR filters by the frequency sampling method, Design of optimum equi-ripple linear phase FIR filters, Comparison of design methods for linear phase FIR filters, Design of Impulse Invariance Response (IIR) filters from analog filters – IIR filter design by approximation of derivatives, by Impulse invariance, and by bilinear transformation methods, Characteristics of commonly used analog filters,

Design examples of both FIR and IIR filters, Frequency transformation in the analog and digital domains, Illustrative problems.

UNIT V

Multirate Digital Signal Processing: Introduction, Decimation, and interpolation, Sampling rate conversion by a rational factor, Implementation of sampling rate conversion, Multistage implementation of sampling rate conversion, Sampling rate conversion of bandpass signals, Sampling rate conversion by arbitrary factor, Applications of multirate signal processing.

Text Books:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4th ed., 2007.
- 2. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3^{rd} edition, 2009.

- 1. A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd ed., Pearson Education, 2012.
- 2. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 3. Li Tan, Jean Jiang, "Digital Signal Processing, Fundamentals and Applications," Academic Press, Second Edition, 2013.
- 4. Andreas Antoniou, "Digital Signal Processing," TATA McGraw Hill, 2006.
- 5. Schaum"s outlines M H Hayes, "Digital Signal Processing," TATA Mc-Graw Hill, 2007.
- 6. A. Anand Kumar, "Digital Signal Processing," PHI Learning, 2011.

B.Tech. III - II Sem.

Th Tu C
4 1 4

(13A04603) MICROWAVE ENGINEERING

Course Objective:

- To analyze micro-wave circuits incorporating hollow, dielectric and planar waveguides, transmission lines, filters and other passive components, active devices.
- To Use S-parameter terminology to describe circuits.
- To explain how microwave devices and circuits are characterized in terms of their "S" Parameters.
- To give students an understanding of microwave transmission lines.
- To Use microwave components such as isolators, Couplers, Circulators, Tees, Gyrators etc..
- To give students an understanding of basic microwave devices (both amplifiers and oscillators).
- To expose the students to the basic methods of microwave measurements.

Learning Outcome:

At the end of the semester, students are provided learning experiences that enable them to:

- Analyze micro-wave circuits incorporating hollow, dielectric and planar waveguides, transmission lines, filters and other passive components, active devices.
- Understand the various principles involved in various Microwave oscillators and amplifiers such as Klystron tubes, TWTs, Magnetrons, Gunn diode etc.
- Use S-parameter terminology & to describe the characteristics of microwave circuits through scattering parameters.
- Ability to understanding of microwave transmission lines and how to use microwave components such as isolators, Couplers, Circulators, Tees, Gyrators etc.
- Set up the microwave benches for measurement of various parameters such as microwave frequency, VSWR, Impedance of unknown load etc.
- *Verify the characteristics of Microwave devices through measurements.*

UNIT I

Waveguides & Resonators: Introduction, Microwave spectrum and bands, applications of Microwaves, Rectangular Waveguides-Solution of Wave Equation in Rectangular Coordinates, TE/TM mode analysis, Expressions for fields, Cutoff frequencies, filter characteristics, dominant and degenerate modes, sketches of TE and TM mode fields in the cross-section, Mode characteristics - Phase and Group velocities, wavelengths and impedance relations, Circular Waveguides - Dominant mode (qualitative treatment only), Rectangular Waveguides - Power Transmission and Power Losses, Impossibility of TEM Modes, losses, Q-factor, Cavity resonators-introduction, Rectangular and cylindrical cavities, dominant modes and resonant frequencies, Q-factor and coupling coefficients, Illustrative Problems.

UNIT II

Waveguide Components: Scattering Matrix - Significance, Formulation and properties, Coupling mechanisms - Probe, Loop, Aperture types, Wave guide discontinuities - waveguide Windows, tuning screws and posts, matched loads, Waveguide attenuators - Resistive card, rotary vane Attenuators, waveguide phase shifters-dielectric, rotary vane phase shifters, Wave guide multiport junctions - E plane and H plane Tees, Magic Tee, Directional couplers-2 hole, Bothe hole types, Ferrites-composition and characteristics, Faraday rotation, Ferrite components - Gyrator, Isolator, Circulator, S Matrix calculations for 2-port junction, E plane and H plane Tees, Magic Tee, Directional coupler, circulator and Isolator, Illustrative Problems.

UNIT III

Linear beam Tubes: Limitations and losses of conventional tubes at microwave frequencies, Classification of Microwave tubes, O type tubes - 2 cavity klystrons-structure, Reentrant cavities, velocity modulation process and Applegate diagram, bunching process and small signal theory-Expressions for o/p power and efficiency, Reflex Klystrons-structure, Velocity Modulation, Applegate diagram, mathematical theory of bunching, power output, efficiency, oscillating modes and o/p characteristics, Effect of Repeller Voltage on Power o/p, Significance, types and characteristics of slow wave structures, structure of TWT and amplification process (qualitative treatment), Suppression of oscillations, Gain considerations.

UNIT IV

Cross-field Tubes & Microwave Semiconductor Devices: Introduction, Cross field effects, Magnetrons-different types, cylindrical travelling wave magnetron-Hull cutoff and Hartree conditions, modes of resonance and PI-mode operation, separation of PI-mode, O/P characteristics, Introduction to Microwave semiconductor devices, classification, applications, Transfer Electronic Devices, Gunn diode - principles, RWH theory, Characteristics, Basic modes of operation - Gunn oscillation modes, LSA Mode, Varactor diode, Parametric amplifier, Introduction to Avalanche Transit time devices (brief treatment only), Illustrative Problems.

UNIT V

Microwave Measurements: Description of Microwave bench-different blocks and their features, errors and precautions, Microwave power measurements, Measurement of attenuation, frequency, VSWR (low, medium, high), Measurement of 'Q' of a cavity, Impedance measurements.

Text Books:

- 1. Samuel Y. Liao, "Microwave devices and circuits," Pearson, 3rd Edition, 2003.
- 2. Herbert J. Reich, J. G. Skalnik, P. F. Ordung and H. L. Krauss, "Microwave principles," CBS publishers and distributors, New Delhi, 2004.

- 1. R. E. Collin, "Foundations for microwave engineering," IEEE press, John Wiley, 2nd Edition, 2002.
- 2. Om. P. Gandhi, "Microwave Engineering and Applications," Pergamon, 1981.
- 3. David M. Pozer, "Microwave Engineering," Wiley India Pvt. Ltd., 3rd Edition, 2010.
- 4. Rajeswari Chatterjee, "Elements of Microwave Engineering," Ellis Horwood Ltd., Publisher, 1986.
- 5. Peter A.Rizzi, "Microwave Engineering Passive Circuits," PHI, 1999.
- 6. F. E. Terman, "Electronic and Radio Engineering," McGraw-Hill, 4th Edition, 1995.

B.Tech. III - II Sem.

Th
Tu
C
3
1
3

(13A04604) ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Objective:

- To study about functioning of different meters associated with measurements of signal characteristics
- To study and employ CRO for measuring Signal characteristics
- To study in detail about different bridges employed for Electronic measurements
- To study working of advanced measuring instruments such as logic analyzers and spectrum analyzers

Learning Outcome:

After the completion of the course the students will be able to

- Understand basic principles involved in the meters for measuring voltage, current, resistance, frequency and so on.
- Employ CRO for measuring voltage, current, resistance, frequency and so on.
- Understand principles of measurements associated with different bridges.
- Get complete knowledge regarding working of advanced instruments such as logic analyzers and spectrum analyzers.

UNIT I

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters-multirange, range extension/solid state and differential voltmeters, AC voltmeters – multirange, range extension. Thermocouple type RF ammeter, ohm meters, series type, shunt type, multimeter for voltage, current and resistance measurements.

UNIT II

Oscilloscopes: Standard specifications of CRO,CRT features, derivation of deflection sensitivity, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive, and attenuator type, triggered sweep CRO, and Delayed sweep, dual trace/beam CRO, Measurement of amplitude, frequency and phase (Lissajous method). Principles of sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

UNIT III

Signal generator-fixed and variable, AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach). Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

UNIT IV

Review of DC Bridges: Wheatstone bridge, Wein Bridge, errors and precautions in using bridges, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance- Schearing Bridge. Kelvin Bridge, Q-meter, EMI and EMC, Interference and noise reduction techniques.

UNIT V

Sensors and Transducers - Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples, and thermistors), Velocity, Acceleration, Vibration, pH measurement Signal Conditioning Circuits.

Text Books:

- 1. H.S.Kalsi, "Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- 2. K. Lal Kishore, "Electronic Measurements & Instrumentations", Pearson Education, 2009.

- 1. A.D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 5th Edition, 2002.
- 2. Ernest O Doebelin and Dhanesh N Manik, "Measurement Systems Application and Design", TMH, 5th Edition, 2009.
- 3. Oliver and Cage, "Electronic Measurement and Instrumentation", TMH.
- 4. Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", Pearson Education, 2nd Ed., 2004.
- 5. David A. Bell, "Electronic Instrumentation & Measurements", PHI, 2nd Edition, 2003.

B.Tech. III - II Sem. L C 3 2

(13A04605) MICROPROCESSORS & MICROCONTROLLERS LAB

Course Objective:

- To become skilled in 8086 Assembly Language programming.
- To understand programmable peripheral devices and their Interfacing.
- To understand and learn 8051 microcontroller.
- To learn 8051 assembly Language programming

Learning Outcome:

- Able to write 8086 Assembly Language programs.
- Able to understand programmable peripheral devices and their Interfacing.
- Able to write 8051 assembly Language programs.

Minimum **Ten** Experiments to be conducted (**Five** from each section)

I) 8086 Microprocessor Programs using MASM/8086 kit.

- 1. Introduction to MASM Programming.
- 2. Arithmetic operation Multi byte Addition and Subtraction, Multiplication and Division Signed and unsigned Arithmetic operation, ASCII arithmetic operation.
- 3. Logic operations Shift and rotate Converting packed BCD to unpacked BCD, BCD to ASCII conversion.
- 4. By using string operation and Instruction prefix: Move Block, Reverse string, Sorting, Length of the string, String comparison.

Interfacing:

- 1. 8259 Interrupt Controller and its interfacing programs
- 2. 8255 PPI and its interfacing programs (A /D, D/A, stepper motor,)
- 3. 7-Segment Display.

II) Microcontroller 8051 Trainer kit

- 1. Arithmetic operation Multi byte Addition and Subtraction, Multiplication and Division Signed and unsigned Arithmetic operation.
- 2. Logic operations Shift and rotate.
- 3. Sorting- Ascending and descending order.

Interfacing using 8051 Trainer kit:

- 1. Key board Interfacing
- 2. Seven Segment display
- 3. Switch Interfacing
- 4. Relay Interfacing
- 5. UART

B.Tech. III - II Sem.

L C
3 2

(13A04606) DIGITAL SIGNAL PROCESSING LAB

Course Objective:

- To design real time DSP systems and real world applications.
- To implement DSP algorithms using both fixed and floating point processors.
- To generate the basis function of different transforms.

Learning Outcome:

- *Able to design real time DSP systems and real world applications.*
- Able to implement DSP algorithms using both fixed and floating point processors.

List of Experiments: (Minimum of 5 experiments are to be conducted from each part) Software Experiments (PART - A)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- 3. Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- 6. Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Using DSP Processor kits (Floating point) and Code Composure Studio (CCS) (PART – B)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- 3. Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- 6. Design of FIR filter using windowing technique and verify the frequency response of the filter
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Equipment/Software Required:

- 1. Licensed MATLAB software with required tool boxes for 30 users.
- 2. DSP floating Processor Kits with Code Composure Studio (8 nos.)
- 3. Function generators
- 4. CROs
- 5. Regulated Power Supplies.

B.Tech. III - II Sem.
L C
3 2

(13A04607) DIGITAL COMMUNICATION SYSTEMS LAB

Course Objective:

• To provide a real time experience for different digital modulation and demodulation schemes

Learning Outcome:

• After completion of the course the students will be able to experience real time behavior of different digital modulation schemes and technically visualize spectra of different digital modulation schemes

Minimum of Ten experiments to be conducted (Five from each Part-A&B) HARDWARE EXPERIMENTS (PART – A)

- 1. Sampling Theorem verification.
- 2. Time division multiplexing.
- 3. Pulse code modulation.
- 4. Differential pulse code modulation.
- 5. Delta modulation.
- 6. Frequency shift keying.
- 7. Differential phase shift keying.
- 8. QPSK modulation and demodulation.

SOFTWARE EXPERIMENTS (PART-B)

Modeling of Digital Communications using MATLAB

- 1. Sampling Theorem verification.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Phase shift keying.
- 7. Differential phase shift keying.
- 8. QPSK modulation and demodulation.

Equipment required for Laboratories:

1. RPS - 0-30 V 2. CROs - 0-20 M Hz. 3. Function Generators - 0-1 M Hz 4. RF Generators (3 Nos.) - 0-1000 M Hz.

- 5. Multimeters
- 6. Lab Experimental kit for Pulse Code Modulation (Experiment No.3 of part A)
- 7. Required Electronic Components (Active and Passive) which include required ICs
- 8. Arbitrary Wave form generators/ PNS generators -2 Nos. (to generate digital data at required data rates)
- 9. Licensed MATLAB software for 30 users with required tool boxes.

B.Tech. III - II Sem.

(13A52502) ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS LAB (Audit Course)

Introduction:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use "good" English and perform the following:

- Gathering ideas and information to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- *Making oral presentations.*
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

Course Objective:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students" fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

Learning Outcome:

- Accomplishment of sound vocabulary and its proper use contextually
- Flair in Writing and felicity in written expression.
- Enhanced job prospects.
- Effective Speaking Abilities

The following course content to conduct the activities is prescribed for the Advanced English Language Communication Skills (AELCS) Lab:

UNIT I

COMMUNICATIVE COMPETENCY

- 1. Reading Comprehension
- 2. Listening comprehension
- 3. Vocabulary for competitive purpose
- 4. Spotting errors

UNIT II

TECHNICAL WRITING

- 1. Report writing
- 2. Curriculum vitae
- 3. Covering letter
- 4. E-mail writing

UNIT III

PRESENTATIONAL SKILLS

- 1. Oral presentation
- 2. Power point presentation
- 3. Poster presentation
- 4. Stage dynamics

UNIT IV

CORPORATE SKILLS

- 1. Dress code
- 2. Telephonic skills
- 3. Net Etiquettes

UNIT V

GETTING READY FOR JOB

- 1. Group discussions
- 2. Interview skills
- 3. Psychometric tests

MINIMUM REQUIREMENT:

The Advanced English Language Communication Skills (AELCS) Laboratory shall have the following infra-structural facilities to accommodate at least 60 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V. a digital stereo & Camcorder
- Headphones of High quality

Suggested Software:

The software consisting of the prescribed topics elaborated above should be procured and used.

- 1. K-VAN SOLUTIONS-Advanced communication lab
- 2. DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- 3. TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- 4. Train2success.com

References:

- 1. Objective English For Competitive Exams, Hari Mohana Prasad, 4th edition, Tata Mc Graw Hill
- 2. Technical Communication by Meenakshi Raman & Sangeeta Sharma, O U Press 2009.
- 3. Books on TOEFL/GRE/GMAT/CAT/ IELTS by Barron"s/DELTA/Cambridge University Press.2012.
- 4. Soft Skills for Everyone, Butterfield Jeff, Cengage Publications, 2011.
- 5. Practice Psychometric Tests: How to familiarize yourself with genuine recruitment tests, 2012.
- 6. Management Shapers Series by Universities Press (India) Pvt Ltd., Himayatnagar, Hyderabad 2008.
- 7. Handbook for Technical Writing by David A McMurrey & Joanne Buckely CENGAGE Learning 2008.
- 8. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.
- 9. Word Power Made Handy, Shalini Verma, S Chand Publications, 2011.
- 10. Effective Technical Communication, Ashrif Rizvi, TataMcGrahill, 2011.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A52601) MANAGEMENT SCIENCE

Course Objective:

The objective of this course is to equip the student the fundamental knowledge of Management Science and its application to effective management of human resources, materials and operations of an organization. It also aims to expose the students about the latest and contemporary developments in the field of management.

Learning Outcome:

This course enables the student to know the principles and applications of management knowledge and exposure to the latest developments in the field. This helps to take effective and efficient managerial decisions on physical and human resources of an organization. Besides, the knowledge of Management Science facilitates for his/her personal and professional development.

UNIT I

INTRODUCTION TO MANAGEMENT

Definition of Management- Function of Management- Management as a Science and Art-Management as a Profession- Universality of Management- Henri Faylo's Administrative Theory – Elton Mayo's Human Relations Movement- Systems theory – Contingency theory- Monetary and non-monetary incentives to motivate work teams- Leadership –Definition- Qualities of successful leaders- Different leadership styles.

UNIT II

ORGANIZATION DESIGN AND STRUCTURE

Organization design and structure-Principles—Types of organization structure-Mechanic and Organic Structures- Line organization Line & Staff organization- Functional Organization — Matrix organization structures- merits and demerits- Departmentation and Decentralization-Power and Authority-Delegation of authority-Principles for effective delegation of authority.

UNIT III

HUMAN RESOURCE AND MATERIALS MANAGEMENT

Concept of HRM-functions – Human Resource Planning-Job Analysis-Recruitment and Selection-Training and Development- Performance appraisal –methods- Wage and Salary Administration-Grievances handling Procedure-Material Management- Need for Inventory control- Economic order quantity- ABC analysis- Management of purchase, stores and stores records.-Marketing Management – Concept- Channels of distribution- Marketing mix and product mix.

UNIT IV

MANAGEMENT OF OPERATIONS & PROJECT MANAGEMENT

Nature of organizational control- Marketing control- HR control- effective control systems-Operations Management- Essentials of operations management- Trends in operational management-Designing operation system for effective management of an organization-Project Management – Network Analysis-PERT and CPM-Project crashing (Simple problems)

UNIT V

CONTEMPORARY MANAGEMENT ISSUES

Strategic Management-Concept- Mission-Vision-Core values-Setting objectives-Corporate planning – Environmental scanning-SWOT analysis- Steps in strategy formulation & implementation-Management Information System (MIS)- Enterprise Resource Planning (ERP)-Just-in-Time (JIT)-Total Quality Management (TQM) – Supply Chain Management-Six Sigma-Business Process Outsourcing (BPO).

Text Books:

- 1. Stoner, Freeman, Gilbert, Management, Pearson, Six Edition 2008
- 2. Aryasri: Management Science, Fourth Edition TMH, 2012.

- 1. Vijay Kumar & Apparo, Introduction to Management Science, Cengage, 2011.
- 2. Kotler Philip & Keller Kevin Lane: Marketing Management, 14th Edition, Pearson, 2012.
- 3. Aswathappa, Human Resource Management, Himalaya, 2012.
- 4. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2011.
- 5. Schermerhorn, Capling, Poole & Wiesner: Management, Wiley, 2012.
- 6. Joseph M Putti, Management Principles, Mc Millan Publishers, 2012.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A04701) VLSI DESIGN

Course Objective:

- To understand VLSI circuit design processes.
- To understand basic circuit concepts and designing Arithematic Building Blocks.
- To have an overview of Low power VLSI.

Learning Outcome:

- Will be able to do VLSI circuit design.
- Will be able to do basic circuit concepts and designing Arithematic Building Blocks.

UNIT I

Introduction: Brief Introduction to IC technology – MOS, PMOS, NMOS, CMOS & BiCMOS technologies – Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and Capacitors.

Basic Electrical Properties of MOS and BiCMOS Circuits: $I_{ds} - V_{ds}$ relationships, MOS transistor threshold Voltage, g_{m} , g_{ds} , figure of merit ω_0 : Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT II

Basic Circuit Concepts: Sheet Resistance R_s and its concepts to MOS, Area Capacitance calculations, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fanout.

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT III

Gate level Design: Logic gates and other complex gates, Switch logic, Alternate gate circuits. **Physical Design:** Floor-Planning, Placement, routing, Power delay estimation, Clock and Power routing

UNIT IV

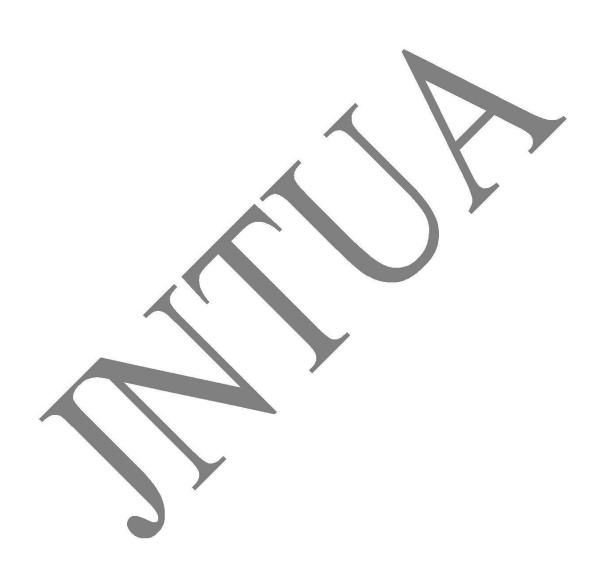
Subsystem Design: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High Density Memory Elements.

VLSI Design styles: Full-custom, Standard Cells, Gate-arrays, FPGAs, CPLDs and Design Approach for Full-custom and Semi-custom devices.

UNIT V

VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation, Layout, Design capture tools, Design Verification Tools.

Test and Testability: Fault-modeling and simulation, test generation, design for testability, Built-inself-test.


Text Books:

- 1. Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, "Essentials of VLSI circuits and systems", PHI, 2013 Edition.
- 2. K.Lal Kishore and V.S.V. Prabhakar, "VLSI Design", IK Publishers

- 1. Weste and Eshraghian, "Principles of CMOS VLSI Design", Pearson Education, 1999.
- 2. Wayne Wolf, "Modern VLSI Design", Pearson Education, 3rd Edition, 1997.
- 3. John P. Uyemura, "Chip Design for Submicron VLSI: CMOS layout and Simulation", Thomson Learning.

 4. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John wiley, 2003.

 5. John M. Rabaey, "Digital Integrated Circuits", PHI, EEE, 1997.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A04702) OPTICAL FIBRE COMMUNICATION

Course Objective:

- *To learn the basic concepts of fibre optics communications.*
- To make the students learn the system with various components or process for various applications.
- To enlighten the student with latest trends in optical communications.

Learning Outcome:

- Graduate will demonstrate the ability to design a system, component or process as per needs and specification.
- Students can learn about SONET/SDH and its application.

UNIT I

Introduction to Optical Fibers: Evolution of fiber optic system- Element of an Optical Fiber Transmission link- Ray Optics-Optical Fiber Modes and Configurations –Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes –Single Mode Fibers-Graded Index fiber structure.

UNIT II

Signal Degradation Optical Fibers: Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides - Information Capacity determination –Group Delay- Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling –Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT III

Fiber Optical Sources and Coupling : Direct and indirect Band gap materials-LED structures –Light source materials –Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition –Rate equations –External Quantum efficiency –Resonant frequencies – Temperature effects, Introduction to Quantum laser, source-to-fiber Power Launching, Lensing schemes, Fibre –to- Fibre joints, Fibre splicing.

UNIT IV

Fiber Optical Receivers : PIN and APD diodes —Photo detector noise, SNR, Detector Response time, Avalanche Multiplication Noise —Comparison of Photo detectors —Fundamental Receiver Operation — preamplifiers, Error Sources —Receiver Configuration —Probability of Error — Quantum Limit.

UNIT V

System Design and Applications : Design of Analog Systems: system specification, power budget, bandwidth budget

Design of Digital Systems: system specification, rise time budget, power budget, Receiver sensitivity. **Applications**: Telephony, Telemetry, video distribution, military applications, passive and active sensing.

Text Books:

- 1. Gerd Keiser, "Optical Fiber Communication" McGraw –Hill International, Singapore, 3rd ed., 2000.
- 2. J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 1994.

- 1. Max Ming-Kang Liu, "Principles and Applications of Optical Communications", TMH, 2010.
- 2. S.C.Gupta, "Text book on optical fiber communication and its applications", PHI, 2005.
- 3. Satish Kumar, "Fundamentals of Optical Fiber communications", PHI, 2009.

B.Tech. IV - I Sem.

Th
Tu
C
3
1
3

(13A04703) EMBEDDED SYSTEMS

Course Objective:

- To understand the fundamental concepts of Embedded systems.
- To learn the kernel of RTOS, architecture of ARM processor.
- To know various embedded Tools.

Learning Outcome:

- Learns the fundamental concepts of Embedded systems.
- Learns the kernel of RTOS, architecture of ARM processor
- Becomes aware of various embedded Tools.

UNIT I

Introduction to Embedded Systems: Embedded Systems, Processor embedded into a system, Embedded hardware units and devices in a system, Embedded software in a system, Examples of embedded systems, Embedded systems, Classification of embedded systems, Skills required for an embedded system designer.

UNIT II

8051 Microcontroller: Architecture: Hardware and Features of 8051; Addressing modes of 8051, Instruction set of 8051, Assembly language programming of 8051, External memory interfacing with 8051, 8051 Parallel I/O Ports, 8051 Interrupts, Timer and Counter Programming.

UNIT III

Advanced Processors: ARM7 Processor:-Architecture, Features; SHARC Processor:-Architecture, Features.

Devices and Communication Buses for Devices and Network: I/O types and examples, serial communication devices, parallel port devices, wireless devices, Timer and Counting devices, Watchdog timer, Real time clock.

UNIT IV

Device Drivers and Interrupts Service Mechanism: Programmed I/O Busy-wait Approach without Interrupt service mechanism, ISR Concept, Interrupt Sources, Interrupt handling mechanism, Multiple Interrupts, DMA, Device driver programming.

Interprocess Communication and Synchronization of Process, Threads and Tasks: Multiple process in an application, Multiple threads in an application, Tasks, Task states, Task and Data, Clear cut distinction between functions, ISRS and tasks by their characteristics.

UNIT V

Real Time Operating Systems: OS Services, Process Management, Timer functions, Event functions, Memory management, Device file and I/O Management, Interrupt Routines in RTOS environment and Handling of Interrupt Source Calls, Real Time Operating Systems, Basic Design using an RTOS, RTOS Task Scheduling Models, Interrupt Latency and Response of the Tasks as Performance Metrics, OS Security Issues.

Text Books:

- 1. Raj Kamal, "Embedded Systems", Tata Mcgraw Hill(TMH) Second Edition.
- 2. Kenneth J. Ayala Penram, "The 8051 Microcontroller", International (PI) Second Edition

- 1. Frank Vahid, Tony D. Givargis, "Embedded System Design A Unified Hardware/Software Introduction", John Wiley, 2002.
- 2.KVKK Prasad, "Embedded / Real Time Systems" Dreamtech Press, 2005. 3. Jonathan W. Valvano, Brooks / Cole, "Embedded Microcomputer Systems", Thompson Learning.
- 4. David E. Simon, "An Embedded Software Primer", Pearson Ed., 2005.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A04704) DIGITAL IMAGE PROCESSING Elective-II

Course Objective:

- To learn the fundamentals of Image Processing.
- *To learn sampling and reconstruction procedures.*
- To learn the various transforms used in image Processing.
- To study various concepts of image enhancement, reconstruction and image compression.
- To design image processing systems.

Learning Outcome:

- Develops ability to identify, formulate &solve problems involving images.
- Develops ability to design &conduct experiments, analyze &interpret image data.
- To design a software, Component or process as per needs &specifications.
- It will demonstrate the skills to use modern engineering tools, software"s &equipment to analyze problems.
- Develop confidence for self-education&ability for life-long learning.
- It will show the ability to participate &try to succeed in competitive Exams.

UNIT I

Digital Image fundamentals: Digital Image representation – Digital image processing System – Visual Perception- Sampling and Quantization - Basic relationships between pixels, and imaging geometry.

UNIT II

Image Transforms: Discrete Fourier Transform — Properties of 2 — D Fourier Transform — Fast Fourier Transform, Walsh, Hadamard, Discrete cosine transforms.

UNIT III

Image Enhancement: Background enhancement by point processing Histogram processing, Spatial filtering, Enhancement in frequency Domain, Image smoothing, Image sharpening, Colour images

UNIT IV

Image Restoration: Degradation model, Algebraic approach to restoration – Inverse filtering – Least Mean Square filters, Constrained Least square restoration.

UNIT V

Image Coding and Segmentation: Fidelity criteria, Encoding process, transform encoding, Detection and discontinuities, Edge linking and Boundary detection, Boundary description.

Text Books:

- 1. R. C. Gonzalez & R.E. Woods, "Digital Image Processing", Addison Wesley/Pearson education, 3rd Edition, 2010.
- 2. A.K. Jain, "Fundamentals of Digital Image processing", PHI.

- 1. Rafael C. Gonzalez, Richard E woods and Steven L.Eddins, "Digital Image processing using MATLAB", Tata McGraw Hill, 2010.
- 2. S jayaraman, S Esakkirajan, T Veerakumar, "Digital Image processing", Tata McGraw Hill
- 3. William K. Pratt, "Digital Image Processing", John Wilely, 3rd Edition, 2004.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A04705) RADAR ENGINEERING AND NAVIGATIONAL AIDS (Elective-II)

Course Objective:

- This course describes the understanding of the components of a radar system and their relationship to overall system performance
- To become familiar with design, operation, and applications of various types of radar systems
- To understand clutter and its effects of radar system performance and learn the principle of target track and various types of radar antennas.

Learning Outcome:

- To become familiar with fundamentals of radar.
- To gain in knowledge about the different types of radar and their operation.
- Need for signal detection in radar and various radar signal detection techniques.
- Will demonstrate the ability to design a system component or process as per needs & specifications.
- Will demonstrate the ability to identify, formulate & solve engineering problems.
- Will show the ability to participate and try to succeed in competitive examination

UNIT I

Nature of Radar and Radar equation – Simple form of Radar equation – Radar block diagram and operation, Radar frequencies, Applications of Radar.

Minimum Detectable signal – Receiver noise, Probability – Density functions, signal – to – noise ratio, Radar cross section of targets, cross-section fluctuations system losses.

UNIT II

Radar components: RF amplifier, TWT, CFA, Modulators, mixers – Conversion loss, Noise figure, Balanced mixer, Image recovery mixer, Duplexers – Branch type, Balanced type and solid state duplexers, limiters, Displays – CRT displays, A,B,C,D – scopes PPI and RHI.

UNIT III

Radar systems: CW radar, frequency-modulates CW radar, multiple - Frequency CW radar. MTI radar - Delay line cancellers, Pulse repetition frequencies, Range-gated Doppler filters tracking radar - Range and angle tracking sequential lobing and conical scanning.

UNIT IV

Radio direction finding and radio ranges, the loop antenna, the goniometer, errors in direction finding the LF/MF four-course radio range, VHF-VOR, VOR receiving equipment.

UNIT V

Hyperbolic systems of navigation & DME: TACAN: Loran-A, Loran-C, The decca navigation system, decca receivers.

DMA-operation, TACAN STACAN equipment.

Text Books:

- 1. M.I.Skolnik, "Introduction to radar systems", 2nd edition, TMH 1980.
- 2. N.S.Nagaraja, "Elements on electronic navigation", 2nd edition, TMH 1996.

- 1. 1.G.M.Miller, "Modern electronic communication", Prentice Hall, 6th Edition, 1999.
- 2. Kennedy & Davis, "Electronic communication systems", Mc Graw Hill, 4th Edition, 1993.

B.Tech. IV - I Sem. Tu C 3 1 3

(13A04706) TELEVISION ENGINEERING (Elective-II)

Course Objective:

- To understand working principles of Monochrome and color television
- To gain sufficient knowledge regarding different modules present in the TV transmitter and receiver and their design considerations
- To get adequate knowledge regarding functioning of modern televisions system such as DTH

Learning Outcome:

After completion of this course the student will be able to

- Get complete knowledge regarding the working principles involved in both Monochrome and Color Television
- Get Adequate knowledge regarding different modules present in the TV transmitter and receiver and their design considerations
- Get familiarized with principles involved in the of functioning of modern televisions system such as DTH

UNIT I

Fundamentals of Telivision: Geometry form and Aspect Ratio - Image Continuity - Number of scanning lines - Interlaced scanning - Picture resolution - Camera tubes- Image orthicon - vidicon-plumbicon-silicon diode array vidicon-solid state image scanners- monochrome picture tubes-composite video signal-video signal dimension- horizontal sync. Composition- vertical sync. Details – functions of vertical pulse train – scanning sequence details. Picture signal transmission – positive and negative modulation – **VSB** transmission sound signal transmission – standard channel bandwidth.

UNIT II

Monochrome Television Transmitter and Receiver: TV transmitter – TV signal propagation – Interference – TV transmission Antennas – Monochrome TV receiver – RF tuner – UHF, VHF tuner-Digital tuning techniques- AFT-IF subsystems - AGC – Noise cancellation- Video and sound inter carrier detection- vision IF subsystem- video amplifiers requirements and configurations - DC reinsertion - Video amplifier circuits- Sync separation – typical sync processing circuits- Deflection current waveform – Deflection Oscillators – Frame deflection circuits – requirements- Line Deflection circuits – EHT generation – Receiver Antennas.

UNIT III

Essentials of Colour Television: Compatibility – colour perception– Three colour theory- luminance, hue and saturation-colour television cameras- values of luminance and colour difference signals-colour television display tubes- delta – gun-precision – in-line and Trinitron colour picture tubes-purity and convergence- purity and static and dynamic convergence adjustments- pincushion correction techniques- automatic degaussing circuit- grey scale tracking – colour signal transmission-bandwidth- modulation of colour difference signals – weighting factors- Formation of chrominance signal.

UNIT IV

Colour Television systems:NTSC colour TV system- NTSC colour receiver- limitations of NTSC system – PAL colour <u>TV</u> system – cancellation of phase errors- PAL –D colour system- PAL coder – Pal-Decolour receiver- chromo signal <u>amplifier</u>- separation of U and V signals- colour burst separation – Burst phase Discriminator – ACC amplifier- Reference Oscillator- Ident and colour killer

circuits- U and V demodulators- C colour signal matrixing – merits and demerits of the PAL system – SECAM system – merits and demerits of SECAM system.

UNIT V

Advanced Television Systems: Satellite TV technology- Cable TV – VCR- Video Disc recording and playback- Tele Text broadcast receiver – digital television – Transmission and reception-projection Television – Flat panel display TV receiver – Sterio sound in TV – 3D TV – EDTV – Digital equipments for TV studios.

Text Books:

- 1. R.R.Gulati, "Monochrome Television Practice, Principles, Technology and servicing, New age International Publishes, Second edition, 2004.
- 2. R.R.Gulati "Monochrome and colour television", New age Internationl Publisher, 2003.

Reference Books:

1. A.M Dhake, "Television and Video Engineering", TMH, Second edition, 2003. 2. S.P.Bali, "Color Television, Theory and Practice", TMH, 1994.

B.Tech. IV - I Sem.
L C
3 2

(13A04707) VLSI & EMBEDDED SYSTEMS LABORATORY

Note: The students are required to perform any **Five** Experiments from each Part of the following.

Part-A: VLSI Lab

Course Objective:

- To design and draw the internal structure of the various digital integrated circuits
- To develop VHDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- To verify the logical operations of the digital IC"s (Hardware) in the laboratory.

Learning Outcome:

After completion of the course the students will be able to

- Design and draw the internal structure of the various digital integrated circuits
- Develop VHDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- Verify the logical operations of the digital IC's (Hardware) in the laboratory

List of Experiments:

- 1. Realization of Logic Gates.
- 2. 3 to 8 Decoder- 74138.
- 3. 8 x 1 Multiplexer-74151 and 2 x 4 De-multiplexer-74155.
- 4. 4-Bit Comparator-7485.
- 5. D Flip-Flop-7474.
- 6. Decade counter-7490.
- 7. Shift registers-7495.
- 8. ALU Design.

Equipment Required:

- 1. Xilinx ISE Software.
- 2. Digital IC's
- 3. Personal Computers.
- 4. Necessary Hardware Kits.

Part-B: Embedded Systems Lab

Course Objective:

- To develop an algorithm, the flow diagram, source code in Embedded C and, perform the compilation
- To generate the required binary file which can be dumped into the controller and obtain the respective output control on the connected peripheral.
- To verify the logic with the necessary hardware.

Learning Outcome:

After completion of the course the students will be able to

- Develop an algorithm, the flow diagram, source code in Embedded C and, perform the compilation.
- Generate the required binary file which can be dumped into the controller and obtain the respective output control on the connected peripheral.
- *Verify the logic with the necessary hardware.*

List of Experiments:

- 1) To develop program for basic mathematical operations.
- 2) To develop a program for block operations.
- 3) To develop a program to generate square wave over port pins.
- 4) To develop a program to read keyboard and code.
- 5) To develop a program to drive Elevator.
- 6) To develop a program for temperature indicator using ADC.
- 7) Asynchronous serial communication.
- 8) DC-Motor control.

Equipment Required:

- 1) KEIL μ-vision 3 software.
- 2) Personal computers.
- 3) Necessary Hardware Kits (8051 Developer kit/ PIC μ-controller developers kit).
- 4) Necessary Interfacing boards.

B.Tech. IV - I Sem.
L C
3 2

(13A04708) MICROWAVE & OPTICAL COMMUNICATIONS LAB

Course Objective:

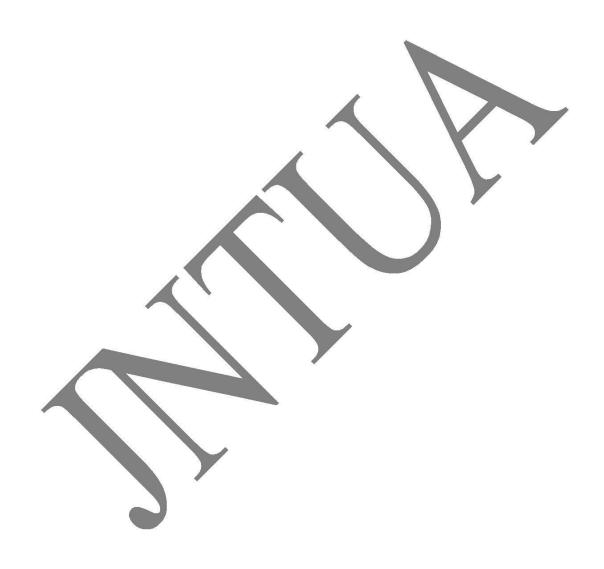
- To verify the characteristics of various microwave components using microwave test bench.
- Initiate an expose the newcomers to exciting area of optical communication

Learning Outcome:

- Students acquire applications and testing of microwave components.
- Students acquire knowledge on the various applications of optical fiber communications
- Students develop confidence for self education and ability for life -long learning.

Microwave Lab (PART - A) --- Any Seven (7) Experiments

- 1. Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- 5. VSWR Measurement.
- 6. Impedance Measurement.
- 7. Frequency and Wavelength measurements using slotted section.
- 8. Scattering parameters of Directional Coupler.
- 9. Scattering parameters of Magic Tee.
- 10. Radiation Pattern Measurement of horn Antennas (at least two antennas).


Optical Fiber Lab (PART – B) --- Any five (5) Experiments

- 1. Characterization of LED
- 2. Characterization of Laser Diode.
- 3. Intensity modulation of Laser output through an optical fiber.
- 4. Measurement of Data rate for Digital Optical link.
- 5. Measurement of Numerical Aperture of the given fiber.
- 6. Measurement of losses for Analog Optical link.

Equipment required for Laboratories:

1.	Regulated Klystron Power Supply	6 nos.
2.	VSWR Meter	6 nos.
3.	Milli/Micro Ammetersn	10 nos.
4.	Multi meters	10 nos.
5.	CROs	8 nos.
6.	GUNN Power Supply, Pin Moderator	4 nos.
7.	Reflex Klystron with mount	10 nos.
8.	Crystal Diodes	50 nos.
9.	Micro wave components (Attenuation)	10 nos.
10.	Frequency Meter (Direct frequency)	10 nos.
11.	Slotted line with carriage	10 nos.
12.	Probe detector	10 nos.
13.	wave guide shorts	6 nos.
14.	Dynamidal/agnical Horn Antonnas	4 nos.
	Pyramidal/conical Horn Antennas	4 1108.

16. Directional Couplers with different (coupling factors)			
17. E, H, Magic Tees	2 nos. each.		
18. Circulators, Isolator	10 nos.		
19. Matched Loads	30 nos.		
20. Antenna Training System with Tripod and Accessories			
21. Fiber Optic Analog Trainer based LED			
22. Fiber Optic Analog Trainer based laser			
23. Fiber Optic Digital Trainer			
24. Fiber cables -	(Plastic, Glass)		

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04801) MOBILE COMMUNICATION

Course Objective:

- To learn about the evolution process analog cellular system and its working operation.
- To enable the student to study the mobile radio channels and their effects.
- To understand various digital modulation techniques used in cellular systems.
- To enable the student to acquire the knowledge about various diversity and other schemes to improve the signal quality at the receiver.

Learning Outcome:

This course provides the students to learn fundamental concepts of cellular concepts in mobile communications. At the end of the semester, they should be able to:

- Know the types of mobile channels & their effects on the reception of signal strength.
- *Analyze the received signal characteristics.*
- Understand various digital modulation schemes used in cellular communications.
- Design suitable receiver systems to Counter balance the effects of the mobile channel on the received signal.

UNIT I

Mobile Radio & its Signal Environment: Introduction, Cellular network planning, The mobile radio communication medium, Propagation path loss, Multipath fading due to scattering factors, Delay spread, Coherence bandwidth, Multipath fading phenomenon, Review of statistical communication theory – Probability density functions & Level crossing rate.

UNIT II

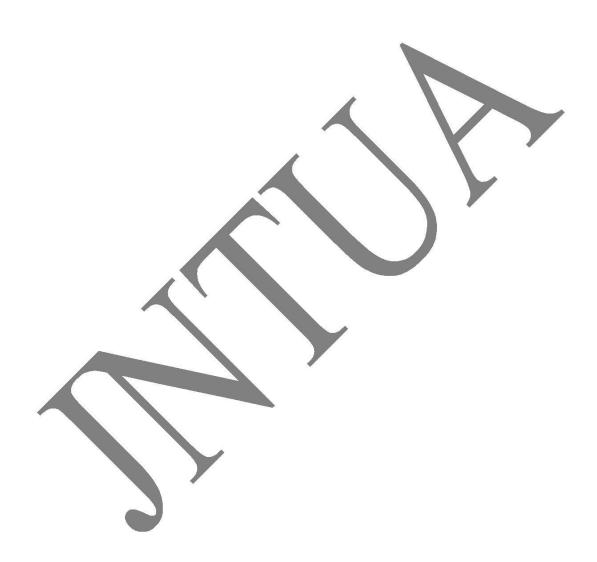
Path loss over Flat & Hilly Terrains: Path loss prediction based on model analysis, Diffraction loss, Diffraction loss over rounded hills, Path clearance criteria, Lee's Macro-cell & Microcell models, Inbuilding prediction models, Signal threshold prediction, Signal coverage area prediction, Wideband signal propagation.

UNIT III

Received Signal Characteristics: Short term versus long term fading, Model analysis of short term fading, Cumulative probability distribution (CPD), Level crossing rate, Calculating the average duration of fades, Random variables related to mobile radio signals, Phase correlation characteristics, Simulation models.

UNIT IV

Modulation Technology: Digital modulation for non-fading and fading cases, Constant envelope modulation – QPSK, OQPSK, $\pi/4$ - DQPSK, GMSK, OFDM modem, brief introduction to spread spectrum systems – Direct sequence, Frequency hopped modulation schemes.


UNIT V

Diversity Schemes & Interference Problems: Diversity schemes – Space diversity, Polarization diversity, Frequency diversity, & Time diversity (qualitative treatment only), Effects of interference, Co-channel interference, Adjacent channel interference, Hand off – different types of hand off mechanisms, Near-end, to Far-end ratio interference, inter-modulation interference, Inter-symbol interference.

Text Books:

- 1. William C. Y. Lee, "Mobile Communication Engineering Theory and Applicatons," McGraw Hill Education Private Limited, Second Edition 2008.
- 2. Gordon L. Stuber, "Principles of Mobile Communication," Kluwer Academic Publishers, Second Edition 2001.

- 1. William C. Y. Lee, "Mobile Cellular Telecommunications Analog and Digital Systems," McGraw Hill, Second Edition 2006.
- 2. G. Sasibhushana Rao, "Mobile Cellular Communication," Pearson, 2013.

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04802) COMPUTER NETWORKS

Course Objective:

- An understanding of the overriding principles of computer networking, including protocol design, protocol layering, algorithm design, and performance evaluation.
- An understanding of computer networking theory, including principles embodied in the protocols designed for the application layer, transport layer, network layer, and link layer of a networking stack.
- An understanding of specific implemented protocols covering the application layer, transport layer, network layer, and link layer of the Internet (TCP/IP) stack.
- An understanding of security issues.

Learning Outcome:

- Students will learn to list and classify network services, protocols and architectures, explain why they are layered.
- Student will learn to explain key Internet applications and their protocols.
- Students will learn to explain security issues in computer networks.
- To master the terminology and concepts of the OSI reference model and the TCP IP reference model.
- To master the concepts of protocols, network interfaces, and Design/performance issues in local area networks and wide area networks.
- To be familiar with wireless networking concepts.
- To be familiar with contemporary issues in networking technologies.
- To be familiar with network tools and network programming.

UNIT I

Theoretical basis for communication, Maximum data rate of channel, communications media, Network goals, Application of networks, protocol hierarchies, OSI reference model, Design issues for the layers in the model, Modulation and keying alternatives, multiplexing, modems, parallel and serial data transmission, handshake procedures, RS 232C, V.14/V.28, RS 449 interfaces, X.21, IEEE protocols, Link switching techniques.

UNIT II

Local Area Networks: Local communication alternatives, static and dynamic channel allocation in LANs, the ALOHA protocols, LAN protocols, IEEE logical link control, Ethernet, Token bus and Token ring protocols.

Data link layer: Design issues, Error detection and correction, sliding window protocols, Wide area network standards, SDLC, HDLC, X.25 protocols.

UNIT III

Network layer Design issues, Routing algorithms, congestion control algorithms, Internetworking, Transport layer design issues, connection management, Transport protocol X.25, session layer design issues, Remote procedure cell.

UNIT IV

Presentation layer, Abstract syntax notation, Data compression techniques, Cryptography, Application such as file transfer, Electronic mail and virtual terminals, X.400 protocol for electrical messaging, overview of ARPANET, MAP, TOP, Novell Netware, PC/NOS, unix support for networking.

UNIT V

World wide web, web browsers, web servers, uniform resource locator, Home pages, Basics of HTML, creating links, Anatomy of URL and kinds of URLs, HTML assignments, Editors and converters, New features of HTML, creating tables, Using images, Using external media, writing and designing web pages, Introduction to CGI scripts.

Text Books:

- 1. Andrew S Tenenbaum, "Computer Networks", PHI, 3rd edition, 1997.
- 2. Laura Lemay, web publishing with HTML 3.0, PHI, 2nd edition, 1996.

- 1. Michael A. Gallo, William M. Hancock, "Computer Communications and Networking Technologies", Cengage Learning.
- 2. Natalia Olifer, Victor Olifer, "Computer Networks-Principles, Technologies and Protocols for Network Design", Wiley India.
- 3. Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, 4th Edition.
- 4. Nader F. Mir, "Computer and Communication Networks", Pearson Education.

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04803) SATELLITE COMMUNICATION (Elective-III)

Course Objective:

- To introduce the basic principles of Satellite Communication systems, orbital mechanics, launchers.
- To introduce the basic concepts and designing of Satellite links.
- To introduce the basic concepts of earth station transceiver.
- To know the basic concepts of various multiple access techniques and GPS systems.

Learning Outcome:

- Students can determine the location of Satellite.
- Students can design satellite uplink and downlink.
- Students can design earth station transmitter, receiver and antenna systems.

UNIT I

INTRODUCTION TO SATELLITE COMMUNICATIONS:

Origin of satellite communications, Historical background, basic concepts of satellite communications, frequency allocations for satellite services, applications, future trends of satellite communications.

Orbital Mechanics look angle determination, orbital perturbations, orbit determination, launches and launch vehicles, orbital effects in communication systems performance.

UNIT II

SATELLITE SUBSYSTEMS AND LINK DESIGN:

Attitude and orbital control system. Telemetry, Tracking, command and monitoring, power systems, communication subsystems, satellite antenna equipment reliability and space qualification.

Basic transmission theory, system noise temperature and G/T ratio, design of down links, uplink design, design of satellite links for specified C/N, system design example.

UNIT III

EARTH STATION TECHNOLOGY, LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS:

Introduction, transmitters, receivers, Antennas, tracking systems, terrestrial interface, primary power test methods.

Orbit consideration, coverage and frequency considerations, delay and throughput considerations, system considerations, operational NGSO constellation designs.

UNIT IV MULTIPLE

ACCESS:

Frequency division multiple access (FDMA) Intermodulation, calculation of C/N, Time Division multiple access (TDMA) frame structure, examples. Satellite switched TDMA onboard processing, DAMA, code division multiple access (CDMA), spread spectrum transmission and reception.

UNIT V


SATELLITE NAVIGATION & THE GLOBAL POSITIONING SYSTEM:

Radio and satellite navigation, GPS position location principles, GPS receivers and codes, satellite signal acquisition, GPS navigation message, GPS signal levels, GPS receiver operation, GPS C/A code accuracy, differential GPS.

Text Books:

- 1. Timothi Pratt, Charles Bostian and Jeremy Allnutt, "Satellite communications", WSE, Wiley publications, 2nd Edition, 2003.
- 2. Wilbur L.Prichard, Robert A. Nelson & Henry G.Suyderhoud, "Satellite communications Engineering", Pearson Publications, 2nd Edition, 2003.

- Dennis Roddy, "Satellite communications", McGraw Hill, 2nd Edition, 1996.
 M. Richharia, "Satellite communications: Design principles", BS publications, 2nd Edition, 2003.
 D.C.Agarwal, "Satellite communications", Khanna publications, 5th Ed.
 K.N.Raja rao, "Fundamentals of Satellite communications", PHI, 2004.

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04804) SPREAD SPECTRUM COMMUNICATION (Elective-III)

Course Objective:

- To understand the general concepts of spread spectrum
- To generate spread spectrum signals.
- To study various applications of spread spectrum.
- To learn the working operation of CDMA systems.

Learning Outcome:

At the end of the course the students should be able to:

- Understand the general concepts of spread spectrum techniques.
- Generate spread spectrum signals through hardware and computer simulations.
- Know various applications of spread spectrum techniques and working operation of CDMA systems of 2G and 3G standards.

UNIT I

Fundamentals of Spread Spectrum: General concepts, Direct sequence (DS), Bi-phase and quadriphase modulations, Pseudo noise (PN) signal characteristics, Direct Sequence receiver, Frequency Hopping – transmitter, receiver, Time Hopping, Comparison of modulation methods.

UNIT II

Analysis of Direct-Sequence & Avoidance type Spread Spectrum Systems: Properties of PN sequences, Properties of m-sequences, Partial Correlation, PN signals from PN sequences, Partial correlation of PN signals, Generation of PN signal, Despreading the PN signal, Interference rejection, Output Signal – to – Noise ratio, Antijam characteristics, Interception, Energy and Bandwidth efficiency. The frequency hopped signal, Interference rejection in a Frequency – Hopping receiver, The Time-Hopped Signal.

UNIT III

Generation and Detection of Spread Spectrum Signals: Shift register sequence generators, Discrete-Frequency Synthesis, Saw device PN generators, Charge coupled devices, Coherent Direct – sequence receivers, Other methods of carrier tracking, Delay lock loop analysis, Tau-Dither loop, Coherent carrier tracking, Non-coherent frequency hop receiver, Acquisition of Spread Spectrum Signals, Acquisition by cell-by-cell searching, Reduction of Acquisition time, Acquisition with matched filters for PN sequences, Matched filters for Frequency Hopped signals, Matched filters with acquisition aiding waveforms.

UNIT IV

Application of Spread Spectrum to Communications: General characteristics of Spread spectrum, Multiple access considerations – number of active users (equal powers), number of active users (unequal powers), bandwidth limited channels, power limited channels, Energy and bandwidth efficiency in multiple access, Selective calling and identification, Antijam considerations, Jamming direct-sequence systems, Jamming Frequency – Hopping Systems, Intercept considerations.

UNIT V

CDMA Digital Cellular Systems:

Introduction, Cellular radio concept, CDMA Digital cellular systems, Specific examples of CDMA digital cellular systems based on 2G, and 3G standards and their technical specifications.

Text Books:

- 1. George. R. Cooper and Clare D. McGillem, "Modren Communications and Spread Spectrum", McGraw Hill Book Company, 1986.
- 2. Roger L. Peterson, Rodger E. Ziemer & David E. Borth, "Introduction to Spread Spectrum Communications", McGraw Hill, 2011.

Reference Books:

- 1. Dr. Kamilo Feher, "Wireless Digital Communications Modulation & Spread Spectrum Applications", PHI, 1999.
- 2. T. S. Rappaport, "Wireless Communications Principles and Practice," PHI, 2001.
- 3. Upena Dalal, "Wireless Communication", Oxford Higher Education, 2009.
- 4. Andrea Goldsmith "Wireles Communications", Cambridge University Press, 2005.

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04805) MULTIMEDIA COMMUNICATION (Elective-III)

Course objective:

• This course is to provide students with a background in the engineering aspects of multimedia communications. The course is expected to cover the following topics: representation of multimedia information, Information compression, multimedia storage, internet applications, and multimedia communication over networks.

Learning Outcome:

• After completion students will have sufficient knowledge in communication, Data management, Multi media design, web applications. Having at least some basic skills and knowledge in these areas is considered part of the general skills, the so -called "transversal competencies" which are very important regardless of specialization

UNIT I

MULTIMEDIA COMMUNICATIONS: Introduction, multimedia networks, multimedia applications.

Multimedia information representation: Introduction, digitization principles, representation of text, images, audio & video.

UNIT II

TEXT & IMAGE COMPRESSION: Various compression principles.

TEXT COMPRESSION: Static Huffmann coding, dynamic Huffman coding, arithmetic coding, Lempel-ziv coding

IMAGE COMPRESSION: Graphics Interchange format, tagged image file format, digitized document, digitized pictures, JPEG (Introduction)

UNIT III

AUDIO & VIDEO COMPRESSION: Audio compression: Differential PCM, Adaptive differential PCM, Code excited LPC, MPEG audio coders, Dolby audio coders.

VIDEO COMPRESSION: Basic principles, Video compression standard H.26 J, h.263, MPEG (Basic introduction)

UNIT IV

INTERNET APPLICATIONS: Domain name system, name structure and administration, DNS resource records, Electronic mail message structure, content transfer, Basic concept of internet telephony, World Wide Web

UNIT V

MULTIMEDIA NETWORKING: Applications-streamed stored and audio-making the best Effort service-protocols for real time interactive Applications-distributing multimedia-beyond best effort service-secluding and policing Mechanisms-integrated services-differentiated Services-RSVP

Text Books:

- I. Fred Hulsall, "Multimedia communications", Pearson Education Asia.
- 2. K. Thakkar, "Multimedia SystemsDesign", PHI

Reference Books:

- 1, Ralf Stein Metz & Klara Nahrstedt, "Multimedia: Computing, Communications & Applications", Pearson Education.
- 2. Steve Rimmer, "Advanced Multimedia Programming", MB!
- 3. Tay Vaughan, "Multimedia: Making it Work", TMH, 3rd edition.

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04806) BIO-MEDICAL INSTRUMENTATION (Elective-IV)

Course Objective:

- To understand the functioning of Human Cell and its electrical characteristics.
- To get Sufficient knowledge about Cardiovascular measurement and circulatory System of heart
- *To get familiarize with pace makers and Defibrillators*
- To understand about the electrical hazards that may occur during the usage of medical instruments

Learning Outcome:

After completion of this course the student will be able to

- Understand the functioning of Human Cell and its electrical characteristics
- Acquire sufficient knowledge about Cardiovascular measurement and circulatory System of heart
- Get familiarize with pace makers and Defibrillators
- Understand about the electrical hazards that may occur during the usage of medical instruments

UNIT I

Human cell and its Electrical characteristics neuron and impulses, Recording Electrodes – Electrode-Electrolyte interface, polarizable – Non-polarizable Electrodes, body surface recording Electrodes, internal Electrodes, Micro Electrodes, Electrode array & Practical hints in using Electrodes.

UNIT II

Bioelectric potential and cardiovascular measurement circulatory system of heart – ECG Anatomy & Function of heart abnormal cardiac Rhythms – Arrhythmias – Einthoven triangle. EEG recording system (10-20 electrode System) Biorhythms – Sleep pattern

UNIT III

Therapeutic and prosthetic devices, Cardiac pace maker, Types – Asynchronous and Synchronous modes of operation (Demand). Asynchronous pace maker – Working principle and Function demand PM – Working principle – QRS triggered and atrioventricular Synchronized PM lead wires and Electrodes, Cardioverter.

Defibrillator: Working principle of DC Defibrillation Electrodes used. Infant incubator and Lithotripry.

UNIT IV

Electrical Hazards in medical instruments macro and micro shock – devices to protect against electrical hazards – Ground fault interrupter, isolation transformer, line isolation monitor, receptacle tester, electrical safety analyzer equipment, preventive maintenance.

UNIT V

Image Systems: Introduction, Basic principle and block diagram of x-ray machine, x-ray computed topography (C.T. Scanner) and Nuclear Magnetic resonance (NMR) Short-wave Diathermy, Microwave Diathermy, Ultrasound Therapy unit.

Recent trends: Ultrasonography -Introduction, medical ultrasound, block diagram of pulse echosystem, A-Scan, M-mode, B-scanner and real time ultrasound imaging systems – lasers principle and

operation of laser types of lasers – Pulsed Ruby laser – ND-YAG laser – Helium – Neon laser-Argon laser-C02 laser exciner laser, Semiconductor lasers – Laser safety.

Text Books:

- 1. John G.Webser, "Medical Instrumentation Applications and Design" John Wiley & Sons (1998).
- 2. Seslie Cromwell, Fred J.Weibell and Esich A.Plefittes, "BioMedical Instrumentation & measurements", Pearson Education, 9th edition.

Reference Books:

- 1. RS Khandpur, "Handbook of BioMedical Instrumentation", Tata Mc Graw Hill.
- 2. Walter Welko- Witiz and Sid Doutsch, "Biomedical Instruments: Theory and Design"

B.Tech. IV - II Sem. Tu C 3 1 3

(13A04807) SPEECH PROCESSING (Elective-IV)

Course Objective:

- To understand how speech signals are processed for Analysis and Synthesis. Also to understand speech processing in the context of its creation (anatomy, classification of sounds, etc.) as well as in its perception (psychology & neuroscience).
- To analyze tools that are needed for analysis and synthesis, in the areas of digital signal processing for time-frequency analysis.

Learning Outcome:

• After completing the course, the student will be familiar with the principles and the techniques

used in speech processing. This includes speech synthesis, speech coding and speech recognition.

UNIT I

FUNDAMENTALS OF DIGITAL SPEECH PROCESSING: Anatomy & Physiology of Speech organs, the process of speech production, the acoustic theory of speech production, Digital models for speech signals.

TIME DOMAIN MODELS FOR SPEECH PROCESSING: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech vs silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT II

LINEAR PREDICTIVE CODING (LPC) ANALYSIS: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition, Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT III

HOMOMORPHIC SPEECH PROCESSING: Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, the Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder.

SPEECH ENHANCEMENT: Nature of interfering sounds, Speech enhancement techniques, Spectral subtraction, Enhancement by re-synthesis.

UNIT IV

AUTOMATIC SPEECH RECOGNITION: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System

SPEAKER RECOGNITION: Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

UNIT V

HIDDEN MARKOV MODEL (HMM) FOR SPEECH: Hidden markov model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS, Adapting to variability in speech, Language models.

Text Books:

- 1. L.R Rabiner and S.W.Schafer, "Digital processing of speech signals", Pearson.
- 2. Douglas O Shaughnessy, "Speech communication", Second Edition Oxford University press, 2000.
- 3. L.R Rabinar and B.H.Juang, "Fundamentals of Speech Recognition"

Reference Books:

- 1. Thomas F. Quateri, "Discrete Time Speech Signal Processing", 1/e, Pearson
- 2. Ben Gold & Nelson Morgan, "Speech & Audio Signal Processing", 1/e, Wiley

B.Tech. IV - II Sem.

Th
Tu
C
3
1
3

(13A04808) DSP PROCESSORS & ARCHITECTURES

(Elective-IV)

Course Objective:

- To understand the concept of DSP Architecture & comparison of this with that of microprocessors.
- To understand addressing modes, instruction sets, pipelining and application programs in TMS320C54XX processor
- To understandthe architectural issues of programmable DSP devices and their relationship to the algorithmic requirements, architectures of commercially popular programmable devices and the use of such devices for software development and system design
- To highlight the suitability of programmable DSP devices for various application areas and motivate to design systems around these devices.

Learning Outcome:

- To become familiar with fundamentals of DSP Processors & architectures.
- To gain in knowledge about the different types of processors and their operation.
- Will demonstrate the ability to design a system component or process as per needs & specifications.
- Will demonstrate the ability to identify, formulate & solve engineering problems.

UNIT I

Introduction to Digital Signal Processing: Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation, Analysis and Design tool for DSP Systems MATLAB, DSP using MATLAB.

Computational Accuracy in DSP Implementations: Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT II

Architectures for Programmable DSP Devices: Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External interfacing.

Execution Control and Pipelining: Hardware looping, Interrupts, Stacks, Relative Branch support, Pipelining and Performance, Pipeline Depth, Interlocking, Branching effects, Interrupt effects, Pipeline Programming models.

UNIT III

Programmable Digital Signal Processors : Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On- Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

UNIT IV

Implementations of Basic DSP Algorithms: The Q-notation, FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, PID Controller, Adaptive Filters, 2-D Signal Processing.

Implementation of FFT Algorithms: An FFT Algorithm for DFT Computation, A Butterfly Computation, Overflow and scaling, Bit-Reversed index generation, An 8-Point FFT implementation on the TMS320C54XX, Computation of the signal spectrum.

UNIT V

Interfacing Memory And I/O Peripherals to Programmable DSP Devices :Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA). A Multichannel buffered serial port (McBSP), McBSP Programming, a CODEC interface circuit, CODEC programming, A CODEC-DSP interface example.

Text Books:

- 1. Avtar Singh and S. Srinivasan, "Digital Signal Processing", Thomson Publications, 2004.
- 2. Lapsley et al. S. Chand & Co, "DSP Processor Fundamentals, Architectures & Features", 2000.

Reference Books:

- 1. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", TMH, 2004.
- 2. Jonatham Stein, "Digital Signal Processing", John Wiley, 2005.

(Established by Govt. of A.P., Act. No. 30 of 2008) ANANTHAPURAMU – 515 002 (A.P.) INDIA.

Course Structure for B.Tech-R15 Regulations

Electronics & Communication Engineering

I B.Tech. - I Semester

S.N o	Course code	Subject	L	Т	Р	С
1.	15A52101	Functional English	3	1	-	3
2.	15A54101	Mathematics – I	3	1	-	3
3.	15A05101	Computer Programming	3	1	-	3
4.	15A51101	Engineering Chemistry	3	1	-	3
5.	15A01101	Environmental Studies	3	1	-	3
6.	15A52102	English Language Communication Skills	-	-	4	2
		Lab				
7.	15A51102	Engineering Chemistry Lab	-	-	4	2
8.	15A05102	Computer Programming Lab	-	-	4	2
		Total	15	5	12	21

I-II Semester

S.N o	Course code	Subject	L	Т	Р	Drg	С
1.	15A52201	English for Professional Communication	3	1	-	-	3
2.	15A54201	Mathematics – II	3	1	-	-	3
3.	15A04201	Network Analysis	3	1	-	-	3
4.	15A56101	Engineering Physics	3	1	-	-	3
5.	15A03101	Engineering Drawing	0	-	-	6	3
6.	15A04202	Network Analysis Lab	-	-	4	-	2
7.	15A56102	Engineering Physics Lab	-	-	4	-	2
8.	15A99201	Engineering and IT Workshop	-	-	4	-	2
		Total	12	4	12	6	21

^{*} L - Lecture hours

^{*}T - Tutorial hours

^{*}P - Practical hours

^{*}Drg - Drawing

^{*}C - Credits

II B. Tech - I sem

S.	Course	Subject	L	Т	Р	С
No	Code	•				
1	15A54301	Mathematics-III	3	1	-	3
2	15A04301	Electronic Devices and Circuits	3	1	-	3
3	15A04302	Switching Theory and Logic Design	3	1	-	3
4	15A04303	Signals and Systems	3	1	-	3
5	15A04304	Probability Theory and Stochastic	3	1	-	3
		Processes				
6	15A02306	Electrical Technology	3	1	-	3
7	15A04305	Electronic Devices and Circuits Laboratory	-	-	4	2
8	15A02307	Electrical Technology and Basic	-	-	4	2
		Simulation Laboratory				
		Total	18	06	08	22

II B. Tech - II sem

S.	Course	Subject	L	Т	Р	С
No	Code	,				
1	15A54402	Mathematics-IV	3	1	-	3
2	15A04401	Electronic Circuit Analysis	3	1	-	3
3	15A04402	Analog Communication Systems	3	1	-	3
4	15A04403	Electromagnetic Theory and Transmission	3	1	-	3
		Lines				
5	15A05201	Data Structures	3	1	-	3
6	15A02303	Control Systems Engineering	3	1	-	3
7	15A04404	Electronic Circuit Analysis Laboratory	-	-	4	2
8	15A04405	Analog Communication Systems	-	-	4	2
		Laboratory				
9	15A04406	Comprehensive Online Examination-I	-	-	-	1
		Total	18	06	08	23

B.Tech III-I Semester (ECE)

S.	Course	Subject	L	T	Р	С
No.	Code					
1.	15A04511	Computer Organization	3	1	-	3
2.	15A04501	Antennas and Wave Propagation	3	1	-	3
3.	15A04502	Digital Communication Systems	3	1	-	3
4.	15A04503	Linear Integrated Circuits and Applications	3	1	-	3
5.	15A04504	Digital System Design	3	1	-	3
6.		MOOCS-I	3	1	-	3
	15A04505	a. Linux Programming & Scripting				
	15A04506	b. MEMS & Microsystems				
7.	15A04507	IC Applications Laboratory	-	-	4	2
8.	15A04508	Digital Communication Systems Laboratory	-	-	4	2
9.	15A99501	Audit course - Social Values & Ethics	2	0	2	0
	•	Total	20	06	10	22

B.Tech III-II Semester(ECE)

S.	Course	Subject	L	Т	Р	С
No.	Code					
1.	15A52301	Managerial Economics and Financial	3	1	-	3
		Analysis				
2.	15A04601	Microprocessors & Microcontrollers	3	1	-	3
3.	15A04602	Electronic Measurements and	3	1	-	3
		Instrumentation				
4.	15A04603	Digital Signal Processing	3	1	-	3
5.	15A04604	VLSI Design	3	1	-	3
6.		CBCC-I	3	1	-	3
	15A04605	a. MATLAB Programming				
	15A04606	b. Industrial Electronics				
	15A02605	c. Neural Networks & Fuzzy Logic				
	15A01608	d. Intellectual Property Rights				
7.	15A04607	Microprocessors & Microcontrollers	-	-	4	2
		Laboratory				
8.	15A04608	Digital Signal Processing Laboratory	-	-	4	2
9.	15A52602	Advanced English Language Communication	-	-	2	-
		(AELCS) Laboratory (Audit Course)				
10.	15A04609	Comprehensive Online Examination-II	-	-	-	1
		Total	18	06	12	23

B.Tech IV-I Semester(ECE)

S.	Course	Subject	L	Т	Р	С
No.	Code	•				
1.	15A04701	Optical Fiber Communication	3	1	-	3
2.	15A04702	Embedded Systems	3	1	-	3
3.	15A04703	Microwave Engineering	3	1	-	3
4.	15A04704	Data Communications and Networking	3	1	-	3
5.		CBCC-II	3	1	-	3
	15A04705	a. Radar Systems				
	15A04706	b. Adaptive Signal Processing				
	15A04707	c. FPGA Design				
6.		CBCC-III	3	1	-	3
	15A04708	a. Digital Image Processing				
	15A04709	b. Cellular & Mobile Communication				
	15A04710	c. Real Time Systems				
7.	15A04711	Microwave and Optical Communication	-	-	4	2
		Laboratory				
8.	15A04712	VLSI & Embedded Systems Laboratory	-	-	4	2
	•	Total	18	06	08	22

B.Tech IV-II Semester(ECE)

S.	Course	Subject	L	Т	Р	С
No.	Code					
1.		MOOCS-II*	3	1	-	3
	15A04801	a. Advanced Digital Signal Processing-				
	15A04802	Multirate & Wavlet				
		b. Low Power VLSI Circuits & Systems				
2.		MOOCS-III *	3	1	-	3
	15A04803	a. Pattern Recognition & Applications				
	15A04804	b. RF Integrated Circuits				
3.	15A04805	Comprehensive Viva Voce	-	-	4	2
4.	15A04806	Technical Seminar	-	-	4	2
5.	15A04807	Project Work	-	-	24	12
	•	Total	6	02	32	22

Minor Discipline in ECE

S.	Course	Subject	L	T	Р	С
No.	Code					
1	15A04303	Signals & Systems	3	1	-	3
2	15A04304	Probability Theory & Stochastic Processes	3	1	-	3
3	15A04402	Analog Communication Systems	3	1	-	3
4	15A04502	Digital Communication Systems	3	1	-	3
5	15M04101	Minor Discipline Project	-	-	-	8
		Total	12	4	-	20

B. Tech I-I Sem. (ECE)

L T P (

(15A52101) FUNCTIONAL ENGLISH

(Common to All Branches)

Preamble:

English is an international language as well as a living and vibrant one. People have found that knowledge of English is a passport for better career, better pay, and advanced knowledge and for communication with the entire world. As it is a language of opportunities in this global age, English is bound to expand its domain of use everywhere. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

Objectives:

- To enable the students to communicate in English for academic and social purpose.
- To enable the students to acquire structure and written expressions required for their profession.
- To develop the listening skills of the students.
- To inculcate the habit of reading and critical thinking skills.
- To enhance the study skills of the students with emphasis on LSRW skills.

UNIT -I

Topics: Paragraph writing, writing letters, role play, reading graphs, prepositions, designing posters, tenses, making recommendations.

Text: ENVIRONMENTAL CONSCIOUSNESS' from MINDSCAPES

Climate Change - Green Cover - Pollution

UNIT -II

Topics: Compound nouns, imperatives, writing instructions, interpreting charts and pictures, note making, role play, prefixes, subject-verb agreement.

Text: EMERGING TECHNOLOGIES from MINDSCAPES

Solar Thermal Power - Cloud Computing - Nanotechnology

UNIT -III

Topics: Making conversations, homonyms and homophones, SMS and use of emotions, past participle for irregular verbs, group discussion, E - mail communication, antonyms, Preparing projects

Text: GLOBAL ISSUES from *MINDSCAPES*

Child Labour - Food Crisis - Genetic Modification - E-Waste - Assistive Technology

UNIT-IV

Topics: Group discussion, affixes, double consonants, debates, writing a book / film review, predicting and problem-solving-future tense, adverbs

Text: SPACE TREK from MINDSCAPES

Hubble Telescope - Chandrayan-2 - Anusat - Living Quarters - Space Tourism

UNIT-V

Topics: Compare and contrast, effective writing, group discussion, writing reports, writing advertisements, tweeting and blogging, types of interviews, framing questions.

Text: MEDIA MATTERS from *MINDSCAPES*

History of Media - Language and Media - Milestone in Media - Manipulation by Media - Entertainment Media - Interviews

Text Books:

 MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

References:

- A Practical Course in Effective English Speaking Skills by J.K.Gangal, PHI Publishers, New Delhi.2012
- Technical Communication, Meenakshi Raman, Oxford University Press, 2011.
- Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Th edition.
- Murphy's English Grammar with CD, Murphy, Cambridge University Press, 3 Rd edition.
- 5. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan, Frank Bros & CO,2008.

Outcomes:

- Have improved communication in listening, speaking, reading and writing skills in general.
- Have developed their oral communication and fluency in group discussions and interviews.
- Have improved awareness of English in science and technology context.
- Have achieved familiarity with a variety of technical reports.

B. Tech I-I Sem. (ECE)

L T P (

(15A54101) MATHEMATICS – I

(Common to All Branches)

Objectives:

- To train the students thoroughly in Mathematical concepts of ordinary differential equations and their applications.
- To prepare students for lifelong learning and successful careers using mathematical concepts of differential and Integral calculus, ordinary differential equations and vector calculus.
- To develop the skill pertinent to the practice of the mathematical concepts including the students abilities to formulate and modeling the problems, to think creatively and to synthesize information.

UNIT - I

Exact, linear and Bernoulli equations, Applications to first order equations; Orthogonal trajectories, Simple electric circuits.

Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type e^{ax} , sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x).

UNIT - II

Method of variation of parameters, linear equations with variable coefficients: Euler-Cauchy Equations, Legendre's linear equation. Applications of linear differential equations-Mechanical and Electrical oscillatory circuits and Deflection of Beams.

UNIT – III

Taylor's and Maclaurin's Series - Functions of several variables - Jacobian - Maxima and Minima of functions of two variables, Lagrange's method of undetermined Multipliers with three variables only. Radius of curvature.

UNIT - IV

Multiple integral – Double and triple integrals – Change of Variables – Change of order of integration. Applications to areas and volumes in Cartesian and polar coordinates using double and triple integral.

UNIT - V

Vector Calculus: Gradient – Divergence – Curl and their properties; Vector integration – Line integral - Potential function – Area – Surface and volume integrals. Vector integral theorems: Green's theorem – Stoke's and Gauss's Divergence Theorem (Without proof). Application of Green's, Stoke's and Gauss's Theorems.

Text Books:

- 1. Engineering Mathematics-I, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher
- 2. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.

References:

- 1. Engineering Mathematics Volume-I, by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S.Chand publication.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.
- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Outcomes:

- The students become familiar with the application of differential and integral calculus, ordinary differential equations and vector calculus to engineering problems.
- The students attain the abilities to use mathematical knowledge to analyze, formulate and solve problems in engineering applications.

B. Tech I-I Sem. (ECE)

LTPC

(15A05101) COMPUTER PROGRAMMING

(Common to All Branches)

Objectives:

- Understand problem solving techniques
- Understand representation of a solution to a problem
- Understand the syntax and semantics of C programming language
- Understand the significance of Control structures
- Learn the features of C language

UNIT - I

Overview of Computers and Programming - Electronic Computers Then and Now - Computer Hardware - Computer Software - Algorithm - Flowcharts - Software Development Method - Applying the Software Development Method.

Types, Operators and Expressions: Variable Names - Data Types and Sizes - Constants - Declarations - Arithmetic Operators - Relational and Logical Operators - Type Conversions - Increment and Decrement Operators - Bitwise Operators - Assignment Operators and Expressions - Conditional Expressions - Precedence and Order of Evaluation

UNIT - II

Selections Statements – Iteration Statements – Jump Statements - Expression Statements - Block Statements.

Single Dimensional Arrays – Generating a Pointer to an Array – Passing Single Dimension Arrays to Functions – Strings – Two Dimensional Arrays – Indexing Pointers – Array Initialization – Variable Length Arrays

UNIT - III

Pointer Variables – Pointer Operators - Pointer Expressions – Pointers And Arrays – Multiple Indirection – Initializing Pointers – Pointers to Functions – C's Dynamic Allocation Functions – Problems with Pointers.

Understanding the scope of Functions – Scope Rules – Type Qualifiers – Storage Class Specifiers- Functions Arguments – The Return Statement.

UNIT - IV

Command line arguments – Recursion – Function Prototypes – Declaring Variable Length Parameter Lists

Structures – Arrays of Structures – Passing Structures to Functions – Structure Pointers – Arrays and Structures within Structures – Unions – Bit Fields – Enumerations – typedef

UNIT - V

Reading and Writing Characters – Reading and Writing Strings – Formatted Console I/O – Printf - Scanf – Standard C Vs Unix File I/O – Streams and Files – File System Basics – Fread and Fwrite – Fseek and Random Access I/O – Fprintf () and Fscanf() – The Standard Streams – The Preprocessor Directives #define and #include.

Text Books:

- 1. "The Complete Reference C"- Fourth Edition- Herbert Schildt- McGrawHill Eduction.
- 2. "The C Programming Language" Second Edition- Brain W. Kernighan-Dennis M. Ritchie- Prentice Hall-India. (UNIT- I)

References:

- Programming in C, Second Edition Pradip Dey, Manas Ghosh, Oxford University Press.
- "C From Theory to Practice"- George S. Tselikis- Nikolaos D. Tselikas- CRC Press
- 3. "Programming with C"- R S Bichkar- University Press.
- 4. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education. (UNIT-I)
- 5. Computer Fundamentals and C Programming- Second Edition- P.Chenna Reddy- Available at Pothi.com (http://pothi.com/pothi/book/dr-p-chenna-reddy-computer-fundamentals-and-c-programming).

Outcomes:

- Apply problem solving techniques in designing the solutions for a wide-range of problems
- Choose appropriate control structure depending on the problem to be solved
- Modularize the problem and also solution

B. Tech I-I Sem. (ECE)

L T P (

(15A51101) ENGINEERING CHEMISTRY

(Common to ECE/EIE/ME/IT)

Objectives:

- The Engineering Chemistry course for undergraduate students is framed to strengthen the fundamentals of chemistry and then build an interface of theoretical concepts with their industrial/engineering applications.
- The course main aim is to impart in-depth knowledge of the subject and highlight the role of chemistry in the field of engineering.
- The lucid explanation of the topics will help students understand the fundamental concepts and apply them to design engineering materials and solve problems related to them. An attempt has been made to logically correlate the topic with its application.
- The extension of fundamentals of electrochemistry to energy storage devices such as commercial batteries and fuel cells is one such example.
- After the completion of the course, the student would understand the concepts of chemistry and apply to various materials for engineering applications.

UNIT – IWATER QUALITY AND TREATMENT

Impurities in water, Hardness of water and its Units, Disadvantages of hard water, Estimation of hardness by EDTA method, Numerical problems on hardness, Estimation of dissolved oxygen, Alkalinity, acidity and chlorides in water, Water treatment for domestic purpose (Chlorination, Bleaching powder, ozonisation)

Industrial Use of water:

For steam generation, troubles of Boilers: Scale & Sludge, Priming and Foaming, Caustic Embrittlement and Boiler Corrosion.

Treatment of Boiler Feed water:

Internal Treatment: Colloidal, Phosphate, Carbonate, Calgon and sodium aluminate treatment.

External Treatment: Ion-Exchange and Permutit processes.

UNIT – II POLYMERS

i)Introduction: Basic concepts of polymerisation, Types of polymerisation (Chain Growth (Addition), Step growth (Condensation)), Mechanism: cationic, anionic, free radical and coordination covalent.

Plastomers: Thermosetting and Thermoplatics, Preparation, properties and Engineering applications of PVC, Teflon, Bakelite and nylons.

Elastomers

Natural Rubber; Processsing of natural rubbers, Compounding of Rubber

Synthetic Rubber: Preparation, properties and engineering applications of Buna-S, Buna-N, Polyurethene, Polysulfide (Thiokol) rubbers

- ii) Conducting polymers: Mechanism, synthesis and applications of polyacetyline, polyaniline.
- iii) Inorganic Polymers: Basic Introduction, Silicones, Polyphospazins (-(R)2-P=N-) applications

UNIT – III ELECTROCHEMISTRY

- i) Galvanic cells, Nernest Equation, Numerical calculations, Batteries: Rechargeable batteries (Lead acid, Ni-Cd, Lithium Ion Batteries),Fuels cells: (Hydrogen-Oxygen and Methanol-Oxygen, Solid oxide)
- ii) Corrosion: Introduction, type of corrosion (Concentration cell corrosion, Galvanic corrosion), Chemical (Dry) and Electrochemical (Wet) Theory of corrosion. Galvanic series, factors affecting the corrosion (Metal and environment). Prevention: Cathodic protection (Sacrificial anode and impressed current), Inhibitors (Anodic and cathodic), electroplating (Copper, nickel and chromium) and electroless plating (Copper and nickel)

UNIT – IV FUELS AND COMBUSTION

Classifications of Fuels – Characteristics of Fuels- Calorific Value – Units, Numerical Problems.

Solid Fuels: Coal-Classification and Analysis (proximate and ultimate), Coke :Characteristics of metallurgical coke, Manufacture of Metallurgical Coke by Otto Hoffmann's by product oven processes.

Liquid Fuels:

Petroleum: Refining of Petroleum, Gasoline- Octane Number, Diesel -Cetane Number, Synthetic Petrol: Bergius Processes, Fischer Troph's synthesis

Power Alcohol: Manufacture, Advantages and Disadvantages of Power Alcohol

Gaseous Fuels: Natural gas, Producer gas, Water gas, Coal gas and Biogas. Determination calorific value of Gases fuels by Junker's calorimeter.

Combustion: Basic principles and numerical problems, Flue Gas analysis by Orsat's apparatus.

UNIT – V CHEMISTRY OF ENGINEERING MATERIALS

- i) Cement: Composition, Classification, preparation (Dry and Wet processes), Setting and Hardening (Hydration and Hydrolysis)
- ii) Refractories: Introduction, Classification, properties and applications
- iii) Lubricants: Introduction, classification (Solid, liquid, semi solid, emulsion and synthetic), Theory of lubrication (Thin film, Thick film & Extreme pressure), properties of lubricants and applications.
- iv) Carbon clusters: Fullerenes and Carbon Nano Tubes (CNT)

Text Books:

1. Engineering Chemistry, First Edition, Jayaveera KN, Subba Reddy GVand Ramachandraiah C, McGraw Hill Higher Education, New Delhi, 2013.

 A Text Book of Enigneering Chemistry, 15th Edition, Jain and Jain, Dhanapathi Rai Publications, New Delhi, 2013.

References:

- A Text book of Engineering Chemistry, 12th Edition, SS Dhara,Uma, S. Chand Publications. New Delhi. 2010.
- Engineering Chemistry, First edition, K.B. Chandra Sekhar, UN.Das and Sujatha Mishra, SCITECH Publications India Pvt Limited, 2010.
- 3. Engineering Chemistry, First edition, Seshamaheswaramma K and Mridula Chugh, Pearson Education, 2013.

Outcomes: The student is expected to:

- Differentiate between hard and soft water. Understand the disadvantages of using hard water domestically and industrially. Select and apply suitable treatments domestically and industrially.
- Understand the electrochemical sources of energy
- Understand industrially based polymers, various engineering materials.

B. Tech I-I Sem. (ECE)

L T P C

(15A01101) ENVIRONMENTAL STUDIES

(Common to ECE/EIE/ME/IT)

Objectives:

To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life to save earth from the inventions by the engineers.

UNIT - I

MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES: – Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT - II

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- Forest ecosystem.
- b. Grassland ecosystem

- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION: Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III

ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmed. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds — river, hill slopes, etc..

Text Books:

- 1. Text Book of Environmental Studies for Undergraduate Cources, Erach Bharucha, Universities Press Pvt Ltd, Hyderabad. 2nd Edition 2013.
- 2. Environmental Studies by Kaushik, New Age Pubilishers.

References:

- 1. Environmental Studies by Rajagopalan, Oxford Pubilishers.
- 2. Comprehensive Environmental studies by J.P.Sharma, Laxmi publications.
- 3. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Printice hall of India Private limited.

Outcomes:

- Students will get the sufficient information that will clarify modern environmental concepts like equitableuse of natural resources, more sustainable life styles etc.
- Students will realize the need to change their approach so as to perceive our own environmental issuescorrectly, using practical approach based on observation and self learning.
- Students become conversant with the fact that there is a need to create a concern for our environment that will trigger pro-environmental action; including simple activities we can do in our daily life to protect it.
- By studying environmental sciences, students is exposed to the environment that enables one to find out solution of various environmental problems encountered on and often.
- At the end of the course, it is expected that students will be able to identify and analyze environmental problems as well as the risks associated with these

problems and efforts to be taken to protect the environment from getting polluted. This will enable every human being to live in a more sustainable manner.

B. Tech I-I Sem. (ECE)

LTPC

(15A52102) ENGLISH LANGUAGE COMMUNICATION SKILLS (ELCS) LAB

(Common to All Branches)

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations and contexts.

Objectives:

- To enable students to learn better pronunciation through stress on word accent, intonation, and rhythm.
- To help the second language learners to acquire fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

UNIT - 1

- 1. Phonetics -importance
- 2. Introduction to Sounds of Speech
- 3. Vowels and consonants sounds
- 4. Phonetic Transcription

UNIT - II

- 5. Word Stress
- 6. Syllabification
- 7. Rules of word stress
- 8. Intonation

UNIT - III

- 9. Situational Dialogues
- 10. Role Plays
- 11. JAM
- 12. Describing people/objects/places

UNIT - IV

- 13. Debates
- 14. Group Discussions
- 15. Interview skills

UNIT - V

- 16. Video speech writing
- 17. Book reviews -oral and written

Minimum Requirements for ELCS Lab:

The English Language Lab shall have two parts:

- 1. Computer Assisted Language Learning (CALL) Lab: The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self- study by learners.
- The Communication Skills Lab with movable chairs and audio-visual aids with a P.A. system, Projector, a digital stereo-audio & video system and camcorder etc. System Requirement (Hardware component):

Computer network with LAN with minimum 60 multimedia systems with the following specifications:

- i) P IV Processor
 - a) Speed 2.8 GHZ
 - b) RAM 512 MB Minimum
 - c) Hard Disk 80 GB
- ii) Headphones of High quality

Suggested Software:

- 1. Clarity Pronunciation Power Part I (Sky Pronunciation)
- 2. Clarity Pronunciation Power part II
- 3. K-Van Advanced Communication Skills
- Walden InfoTech Software.

References:

- 1. A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian. (Macmillian),2012.
- A Course in Phonetics and Spoken English, Dhamija Sethi, Prentice-Hall of India Pvt.Ltd
- Speaking English Effectively, 2nd Edition Krishna Mohan & NP Singh, 2011. (Mcmillan).
- 4. A Hand book for English Laboratories, E.Suresh Kumar, P.Sreehari, Foundation Books, 2011
- Spring Board Succes, Sharada Kouhik, Bindu Bajwa, Orient Blackswan, Hyderbad, 2010.

Outcomes:

- Become active participants in the learning process and acquire proficiency in spoken English.
- Speak with clarity and confidence thereby enhance employability skills.

B. Tech I-I Sem. (ECE) L T P C 0 0 4 2

(15A51102) ENGINEERING CHEMISTRY LAB

(Common to ECE/EIE/ME/IT)

Objectives:

- Will learn practical understanding of the redox reaction
- Will learn the preparation and properties of synthetic polymers and other material that would provide sufficient impetus to engineer these to suit diverse applications
- Will also learn the hygiene aspects of water would be in a position to design methods to produce potable water using modern technology.

List of Experiments:

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of Copper by EDTA method.
- 3. Estimation of Dissolved Oxygen by Winkler's method
- 4. Estimation of iron (II) using diphenylamine indicator (Dichrometry Internal indicator method).
- 5. Determination of Alkalinity of Water
- 6. Determination of acidity of Water
- 7. Preparation of Phenol-Formaldehyde (Bakelite)
- 8. Determination of Viscosity of oils using Redwood Viscometer I
- 9. Determination of Viscosity of oils using Redwood Viscometer II
- 10. Determination of calorific value of gaseous fuels by Junker's Calorimeter
- 11. Conductometric estimation of strong acid using standard sodium hydroxide solution

- Determination of Corrosion rate and inhibition efficiency of an inhibitor for mild steel in hydrochloric acid medium.
- 13. Potentio metric determination of iron using standard potassium dichromate
- 14. Colorometric estimation of manganese.
- 15. pH meter calibration and measurement of pH of water and various other samples.

(Any 10 experiments from the above list)

References:

- Vogel's Text book of Quantitative Chemical Analysis, Sixth Edition Mendham J et al, Pearson Education, 2012.
- 2. Chemistry Practical— Lab Manual, First edition, Chandra Sekhar KB, Subba Reddy GV and Jayaveera KN, SM Enterprises, Hyderabad, 2014.

Outcomes:

- Would be confident in handling energy storage systems and would be able combat chemical corrosion
- Would have acquired the practical skill to handle the analytical methods with confidence.
- Would feel comfortable to think of design materials with the requisite properties
- Would be in a position to technically address the water related problems.

B. Tech I-I Sem. (ECE)

(15A05102) COMPUTER PROGRAMMING LAB

(Common to All branches)

Objectives:

- Learn C Programming language
- To make the student solve problems, implement algorithms using C language.

List of Experiments/Tasks

- 1. Practice DOS and LINUX Commands necessary for design of C Programs.
- Study of the Editors, Integrated development environments, and Compilers in chosen platform.
- 3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the programming environment.
- 4. Practice programs: Finding the sum of three numbers, exchange of two numbers, maximum of two numbers, To read and print variable values of all data types of C language, to find the size of all data types, to understand the priority and associativity of operators using expressions, to use different library functions of C language.
- 5. Write a program to find the roots of a Quadratic equation.
- 6. Write a program to compute the factorial of a given number.
- 7. Write a program to check whether the number is prime or not.
- 8. Write a program to find the series of prime numbers in the given range.
- 9. Write a program to generate Fibonacci numbers in the given range.
- 10. Write a program to find the maximum of a set of numbers.
- 11. Write a program to reverse the digits of a number.
- 12. Write a program to find the sum of the digits of a number.
- 13. Write a program to find the sum of positive and negative numbers in a given set of numbers.
- 14. Write a program to check for number palindrome.
- 15. Write a program to evaluate the sum of the following series up to 'n' terms $e^{x}=1+x+x^{2}/2!+x^{3}/3!+x^{4}/4!+\cdots$
- 16. Write a program to generate Pascal Triangle.
- Write a program to read two matrices and print their sum and product in the matrix form.
- 18. Write a program to read matrix and perform the following operations.
 - i. Find the sum of Diagonal Elements of a matrix.
 - ii. Print Transpose of a matrix.

- iii. Print sum of even and odd numbers in a given matrix.
- 19. Write a program to accept a line of characters and print the number of Vowels, Consonants, blank spaces, digits and special characters.
- 20. Write a program to insert a substring in to a given string and delete few characters from the string. Don't use library functions related to strings.
- Write a program to perform the operations addition, subtraction, multiplication of complex numbers.
- 22. Write a program to split a 'file' in to two files, say file1 and file2. Read lines into the 'file' from standard input. File1 should consist of odd numbered lines and file2 should consist of even numbered lines.
- 23. Write a program to merge two files.
- 24. Write a program to implement numerical methods Lagrange's interpolation, Trapezoidal rule.
- 25. Write a program to read a set of strings and sort them in alphabetical order.
- 26. Write a program to read two strings and perform the following operations without using built-in string Library functions and by using your own implementations of functions.
 - i. String length determination Strings

ii .Compare Two

iii. Concatenate them, if they are not equal

iv. String

reversing

- 27. Write programs using recursion for finding Factorial of a number, GCD, LCM, and solving Towers of Hanoi problem.
- 28. Write a program to exchange two numbers using pointers.
- 29. Write a program to read student records into a file. Record consists of rollno, name and marks of a student in six subjects and class. Class field is empty initially. Compute the class of a student. The calculation of the class is as per JNTUA rules. Write the first class, second class, third class and failed students lists separately to another file.
- 30. A file consists of information about employee salary with fields employeeid, name, Basic, HRA, DA, IT, other-deductions, Gross and Net salary. Initially only employeeid, name, and basic have valid values. HRA is taken as 10% of the basic, DA is taken as 80% of basic, IT is 20% of the basic, other deductions is user specified. Compute the Gross and Net salary of the employee and update the file.
- 31. Write a program to perform Base (decimal, octal, hexadecimal, etc) conversion.
- 32. Write a program to find the square root of a number without using built-in library function.
- 33. Write a program to convert from string to number.
- 34. Write a program to implement pseudo random generator.
- 35. Write a program to generate multiplication tables from 11 to 20.
- 36. Write a program to express a four digit number in words. For example 1546 should be written as one thousand five hundred and forty six.

- 37. Write a program to generate a telephone bill. The contents of it and the rate calculation etc should be as per BSNL rules. Student is expected to gather the required information through the BSNL website.
- 38. Write a program to find the execution time of a program.
- 39. Design a file format to store a person's name, address, and other information. Write a program to read this file and produce a set of mailing labels

Note:

- 1. Instructors are advised to conduct the lab in LINUX/UNIX environment also
- The above list consists of only sample programs. Instructors may choose other
 programs to illustrate certain concepts, wherever is necessary. Programs
 should be there on all the concepts studied in Theory. Instructors are advised
 to change atleast 25% of the programs every year until the next syllabus
 revision.

References:

- 1. "How to Solve it by Computer", R.G. Dromey, Pearson.
- "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, Pearson.
- 3. "Let us C", Yeswant Kanetkar, BPB publications
- 4. "Pointers in C", Yeswant Kanetkar, BPB publications.
- 5. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education.

Outcomes:

- Apply problem solving techniques to find solutions to problems
- Able to use C language features effectively and implement solutions using C language.
- Improve logical skills.

B. Tech I-II Sem. (ECE)

L T P C

(15A52201) ENGLISH FOR PROFESSIONAL COMMUNICATION

1. INTRODUCTION:

English is a global language and has international appeal and application. It is widely used in a variety of contexts and for varied purposes. The students would find it useful both for social and professional development. There is every need to help the students acquire skills useful to them in their career as well as workplace. They need to write a variety of documents and letters now extending into professional domain that cuts across business and research also. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

2. OBJECTIVES:

- To develop confidence in the students to use English in everyday situations.
- 2. To enable the students to read different discourses so that they appreciate English for science and technologies.
- 3. To improve familiarity with a variety of technical writings.
- 4. To enable the students to acquire structure and written expressions required for their profession.
- 5. To develop the listening skills of the students.

3. SYLLABUS:

UNIT -I

Topics: Group discussion, cause and effect, events and perspectives, debate, if conditional, essay writing.

Text: LESSONS FROM THE PAST from MINDSCAPES

Importance of History - Differing Perspectives - Modern Corporatism - Lessons From The Past

UNIT-II

Topics: Idioms, essay writing, power point presentation, modals, listening and rewriting, preparing summary, debate, group discussion, role play, writing a book review, conversation

Text: 'ENERGY' from MINDSCAPES

Renewable and Non-Renewable Sources - Alternative Sources - Conservation - Nuclear Energy

UNIT-III

Topics: Vocabulary, impromptu speech, creative writing, direct and indirect speech, fixed expressions, developing creative writing skills, accents, presentation skills, making posters, report writing

Text: 'ENGINEERING ETHICS' from MINDSCAPES

Challenger Disaster - Biotechnology - Genetic Engineering - Protection From Natural Calamities

UNIT-IV

Topics: Vocabulary, Conversation, Collocation, Group discussion, Notemaking, Clauses, Interpreting charts and tables , Report writing.

Text: 'TRAVEL AND TOURISM' from MINDSCAPES

Advantages and Disadvantages of Travel - Tourism - Atithi Devo Bhava - Tourism in India

UNIT-V

Topics: Vocabulary, phrasal verbs, writing a profile, connectives, discourse markers, problem-solving, telephone skills, application letters, curriculum vitae, interviews (telephone and personal)

Text: 'GETTING JOB-READY' from MINDSCAPES

SWOT Analysis - Companies And Ways Of Powering Growth - Preparing For Interviews

Prescribed Text

MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

REFERENCES:

- 1. **Effective Tech Communication,** Rizvi, Tata McGraw-Hill Education, 2007.
- 2. **Technical Communication,** Meenakshi Raman, Oxford University Press.
- 3. **English Conversations Prcatice,** Grant Taylor, Tata Mc GrawHill publications,2013.
- 4. Practical English Grammar. Thomson and Martinet, OUP, 2010.

Expected Outcomes:

At the end of the course, students would be expected to:

- 1. Have acquired ability to participate effectively in group discussions.
- 2. Have developed ability in writing in various contexts.
- 3. Have acquired a proper level of competence for employability.

B. Tech I-II Sem. (ECE)

LTPC

(15A54201) MATHEMATICS - II

(Common to All Branches)

<u>Objectives:</u> Our emphasis will be more on conceptual understanding and application of Fourier series, Fourier, Z and Laplace transforms and solution of partial differential equations.

UNIT - I

Laplace transform of standard functions – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function.

Differentiation and integration of transform – Application of Laplace transforms to ordinary differential equations of first and second order.

UNIT - II

Fourier Series: Determination of Fourier coefficients – Fourier series – Even and odd functions – Fourier series in an arbitrary interval – Even and odd periodic continuation – Half-range Fourier sine and cosine expansions- Parseval's formula- Complex form of Fourier series.

UNIT - III

Fourier integral theorem (only statement) – Fourier sine and cosine integrals. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

UNIT - IV

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Method of separation of variables – Solutions of one dimensional wave equation, heat equation and two-dimensional Laplace's equation under initial and boundary conditions.

UNIT - V

z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

TEXT BOOKS:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Engineering Mathematics, Volume II, E. Rukmangadachari Pearson Publisher.

REFERENCES:

- 1. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad S. Chand publication.
- 2. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.

<u>Outcomes:</u>The student gains the knowledge to tackle the engineering problems using the concepts of Fourier series, various transforms and partial differential equations.

B. Tech I-II Sem. (ECE)

L T P (

(15A04201) NETWORK ANANLYSIS

(Common to ECE & EIE)

Objective:

To help students develop an understanding on analyzing electrical circuits using various techniques. To make the student familiarize with the fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.

UNIT I

Circuit Analysis Techniques: Voltage and Current Laws, Basic Nodal and Mesh Analysis, ,Network Theorems- Linearity and Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Milliman's theorems. Source Transformation.

UNIT II

DC Transient Circuits : The Source free RL, RC & RLC Circuits. Natural & Forced Response of RL,RC & RLC Circuits. RC & RL Circuit responses to Pulse and Exponential signals.

Unit III

Sinusoidal steady state analysis: Characteristics of Sinusoids, Forced Response of Sinusoidal Functions, The Complex forcing Function, The Phasor, Phasor relationships for R,L, and C, Impedance, Admittance. Instantaneous Power, Average Power, Effective Values of Current and Voltage, Apparent Power, Power Factor, Complex Power.

UNIT IV

Resonance: Introduction, Definition of 'quality factor **Q**' of inductor and capacitor, Series resonance, Bandwidth of the series resonant circuits, Parallel resonance (or anti-resonance), Conditions for maximum impedance, Currents in parallel resonance, , Bandwidth of parallel

resonant circuits, General case of parallel resonance circuit. **Magnetically Coupled Circuits:** Mutual Inductance, Energy Considerations, The Linear Transformer, The Ideal Transformer

Unit V

Two Port Networks & Filters: Relationship of two port variables, Short circuit Admittance parameters, Open circuit Impedance parameters, Transmission Parameters, Hybrid Parameters, Relationship between parameter sets, Parallel connection of two port networks.

Filters: Introduction, the neper & decibel, Characteristic Impedance of symmetrical networks, Currents & voltage ratios as exponentials; the propagation constant, Hyperbolic trigonometry, Properties of symmetrical networks, Filter fundamentals; pass and stop bands,

Behavior of characteristic impedance, The constant – k low pass filter, the constant – k high pass filter, band Pass Filters ,band reject filters - illustrated problems.

Text Books:

- 1. W H Hayt, J E Kemmerly and S M Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, 7th edition, 2010.
- **2.** John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.

Reference Books:

 Van Valkenburg, "Network Analysis", PHI, 3rd Edition, 2011.
 N C Jagan & C Lakshminarayana "Network Analysis" BS Publications 3rd Edn.2014

B. Tech I-II Sem. (ECE)

L T P C

(15A56101) ENGINEERING PHYSICS

(Common to All Branches)

Objectives:

- To evoke interest on applications of superposition effects like interference and diffraction, the mechanisms of emission of light, achieving amplification of electromagnetic radiation through stimulated emission, study of propagation of light through transparent dielectric waveguides along with engineering applications.
- To enlighten the periodic arrangement of atoms in crystals, direction of Bragg planes, crystal structure determination by X-rays and non-destructive evaluation using ultrasonic techniques.
- To get an insight into the microscopic meaning of conductivity, classical and quantum free electron model, the effect of periodic potential on electron motion, evolution of band theory to distinguish materials and to understand electron transport mechanism in solids.
- To open new avenues of knowledge and understanding semiconductor based electronic devices, basic concepts and applications of semiconductors and magnetic materials have been introduced which find potential in the emerging micro device applications.
- To give an impetus on the subtle mechanism of superconductors in terms of conduction of electron pairs using BCS theory, different properties exhibited by them and their fascinating applications. Considering the significance of microminiaturization of electronic devices and significance of low dimensional materials, the basic concepts of nanomaterials, their synthesis, properties and applications in emerging technologies are elicited.

UNIT - I

PHYSICAL OPTICS, LASERS AND FIBRE OPTICS

Physical Optics: Interference (Review) – Interference in thin film by reflection –Newton's rings –Diffraction (Review) - Fraunhofer diffraction due to single slit, double slit and diffraction grating.

Lasers: Characteristics of laser – Spontaneous and stimulated emission of radiation – Einstein's coefficients — Population inversion – Excitation mechanism and optical resonator – Nd:YAG laser - He-Ne laser – Semiconductor Diode laser - Applications of lasers

Fiber optics: Introduction - construction and working principle of optical fiber -Numerical aperture and acceptance angle - Types of optical fibers - Attenuation and losses in Optical fibers -Block diagram of Optical fiber communication system - Applications of optical fibers

UNIT - II

CRYSTALLOGRAPHY AND ULTRASONICS

Crystallography: Introduction – Space lattice –Unit cell – Lattice parameters –Bravias lattice – Crystal systems – Packing fractions of SC, BCC and FCC - Directions and planes in crystals – Miller indices – Interplanar spacing in cubic crystals – X-ray diffraction - Bragg's law – Powder method.

Ultrasonics: Introduction – Production of ultrasonics by piezoelectric method – Properties and detection – Applications in non-destructive testing.

UNIT - III

QUANTUM MECHANICS AND ELECTRON THEORY

Quantum Mechanics: Matter waves – de'Broglie hypothesis and properties - Schrodinger's time dependent and independent wave

equations – Physical significance of wave function - Particle in one dimensional infinite potential well.

Electron theory: Classical free electron theory – Equation for electrical conductivity - Quantum free electron theory – Fermi-Dirac distribution – Source of electrical resistance – Kronig-Penny model (qualitative treatment) – Origin of bands in solids – Classification of solids into conductors, semiconductors and insulators.

UNIT - IV

SEMICONDUCTORS AND MAGNETIC MATERIALS

Semiconductors: Intrinsic and extrinsic semiconductors (Qualitative treatment) – Drift & diffusion currents and Einstein's equation – Hall effect - Direct and indirect band gap semiconductors – Formation of p-n junction.

Magnetic materials: Introduction and basic definitions – Origin of magnetic moments – Bohr magnetron – Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials (Qualitative treatment) – Hysteresis - Soft and hard magnetic materials, applications of magnetic materials.

UNIT - V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

Superconductivity: Introduction - Effect of magnetic field - Meissner effect - Type I and Type II superconductors - Flux quantization - Penetration depth - BCS theory (qualitative treatment) — Josephson effects - Applications of superconductors.

Physics of Nanomaterials: Introduction - Significance of nanoscale and types of nanomaterials - Physical properties: optical, thermal, mechanical and magnetic properties - Synthesis of nanomaterials by Top down and bottom up approaches: ball mill, chemical vapour deposition, and sol gel -Applications of nanomaterials.

Text Books:

- 1. Engineering Physics K.Thyagarajan, 5th Edition, MacGraw Hill Publishers, NewDelhi, 2014.
- 2. Physics for Engineers N.K Verma, 1st Edition, PHI Learning Private Limited, New Delhi, 2014.

References:

- Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, 10th Edition, S.Chand and Company, New Delhi, 2014.
- Engineering Physics D K Pandey, S. Chaturvedi, 2nd Edition, Cengage Learning, New Delhi, 2013.
- 3. Engineering Physics D.K Bhattacharya, Poonam Tandon, 1nd

Edition, Oxford University Press, New Delhi, 2015.

Outcomes:

- The different realms of physics and their applications in both scientific and technological systems are achieved through the study of physical optics, lasers and fibre optics.
- The important properties of crystals like the presence of longrange order and periodicity, structure determination using Xray diffraction are focused along with defects in crystals and ultrasonic non-destructive techniques.
- The discrepancies between the classical estimates and laboratory observations of physical properties exhibited by materials would be lifted through the understanding of quantum picture of subatomic world.
- The electronic and magnetic properties of materials were successfully explained by free electron theory and the bases for the band theory are focused.
- The properties and device applications of semiconducting and magnetic materials are illustrated.

The importance of superconducting materials and nanomaterials along with their engineering applications are well elucidated.

B. Tech I-II Sem. (ECE)

L T Drg C 0 0 6 3

(15A03101) ENGINEERING DRAWING

(Common to All Branches)

Objectives:

- To gain and understanding of the basics of geometrical constructions of various planes and solids, understanding system of graphical representation of various objects and various views to draft and read the products to be designed and eventually for manufacturing applications.
- To learn about various projections, to understand complete dimensions and details of object.
- Ultimately student must get imaginary skill to put an idea of object, circuit, assembly of parts in black & white, to design a product and to understand the composition, which can be understood universally.

UNIT I

Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance- Conventions in Drawing-Lettering – BIS Conventions. Curves used in Engineering Practice. a) Conic Sections including the Rectangular Hyperbola- General method only, b) Cycloid, Epicycloid and Hypocycloid

UNIT II

Scales: Plain, Diagonal and Vernier;

Projection of Points: Principles of orthographic projection – Convention – First angle projections, projections of points.

UNIT III

Projections of Lines: lines inclined to one or both planes, Problems on projections, Finding True lengths.

Projections of Planes: Projections of regular plane surfaces- plane surfaces inclined to both planes.

UNIT IV

Projections of Solids: Projections of Regular Solids with axis inclined to both planes.

Developments of Solids: Development of Surfaces of Right Regular Solids-Prism, Cylinder, Pyramid, Cone.

UNIT V

Isometric and Orthographic Projections: Principles of isometric projection- Isometric Scale- Isometric Views- Conventions- Isometric Views of lines, Planes, Simple solids (cube, cylinder and cone). Isometric projections of spherical parts. Conversion of isometric Views to Orthographic Views.

Text Books:

- 1. Engineering Drawing, N.D. Bhatt, Charotar Publishers
- 2. Engineering Drawing, K.L. Narayana& P. Kannaih, Scitech Publishers, Chennai

References:

- 1. Engineering Drawing, Johle, Tata McGraw-Hill Publishers
- 2. Engineering Drawing, Shah and Rana,2/e, Pearson Education
- 3. Engineering Drawing and Graphics, Venugopal/New age Publishers
- 4. Engineering Graphics, K.C. John, PHI,2013
- 5. Engineering Drawing, B.V.R. Guptha, J.K. Publishers

Outcomes:

- Drawing 2D and 3D diagrams of various objects.
- Learning conventions of Drawing, which is an Universal Language of Engineers.
- Drafting projections of points, planes and solids.

B. Tech I-II Sem. (ECE)

L T P C

(15A04202) NETWORK ANALYSIS LAB

(Common to ECE & EIE)

- 1. Verification of KCL & KVL for any network.
- 2. Verification of Superposition Theorem with analysis.
- 3. Verification of Thevenin's Theorem with analysis.
- 4. Verification of Maximum Power Transfer Theorem with analysis.
- 5. Analysis of RL & RC circuits for pulse excitation.
- 6. Frequency response of series resonance circuit with analysis and design.
- 7. Frequency response of parallel resonance circuit with analysis and design.
- 8. Design and frequency response of constant 'k' low pass & high pass filters.
- 9. Design and frequency response of Band pass filter.
- 10. Design and frequency response of Notch filter.
- Determination of phase of a sinusoidal signal when passed through RL or RC circuits.
- 12. Impedance transformation through transformer.

Note:- Ten experiments must be conducted in the semester.

Components & Equipment required:-

- 1. Bread boards, passive components, R, L, and C with different ratings.
- 2. Dual power supplies, function generators, CROs.

B. Tech I-II Sem. (ECE)

LTPC

(15A56102) ENGINEERING PHYSICS LABORATORY

(Common to All Branches)

Objectives:

- Will recognize the important of optical phenomenon like Interference and diffraction.
- Will understand the role of optical fiber parameters and signal losses in communication.
- Will recognize the importance of energy gap in the study of conductivity and hall effect in a semiconductor
- Will understand the applications of B H curve.
- Will acquire a practical knowledge of studying the crystal structure in terms of lattice constant.
- Will recognize the application of laser in finding the particle size and its role in diffraction studies.
- Will learn to synthesis of the nanomaterials and recognize its importance by knowing its nano particle size and its impact on its properties.

Any 10 of the following experiments has to be performed during the I year I semester

- 1. Determination of radius of curvature of a Plano-convex lens by forming Newton's rings.
- 3. Determination of wavelength of given source using diffraction grating in normal incidence method.
- 4. Determination of Numerical aperture, acceptance angle of an optical fiber.
- 5. Energy gap of a Semiconductor diode.
- 6. Hall effect Determination of mobility of charge carriers.
- 7. B-H curve Determination of hysteresis loss for a given magnetic material.
- 8. Determination of Crystallite size using X-ray pattern (powder) using debye-scheerer method.
- 9. Determination of particle size by using laser source.

- 10. Determination of dispersive power of a prism.
- 11. Determination of thickness of the thin wire using wedge Method.
- 12. Laser: Diffraction due to single slit
 - 13. Laser: Diffraction due to double slit
 - 14. Laser: Determination of wavelength using diffraction grating
 - 15. Magnetic field along the axis of a current carrying coil Stewart and Gee's method.
 - 16. Synthesis of nanomaterial by any suitable method.

References:

- Engineering Physics Practicals NU Age Publishing House, Hyderabad.
- 2. Engineering Practical physics Cengage Learning, Delhi.

Outcomes:

- Would recognize the important of optical phenomenon like Interference and diffraction.
- Would have acquired the practical application knowledge of optical fiber, semiconductor, dieclectric and magnetic materials, crystal structure and lasers by the study of their relative parameters.

Would recognize the significant importance of nanomaterials in various engineering fields.

B. Tech I-II Sem. (ECE)

(15A99201) ENGINEERING & I.T. WORKSHOP

ENGINEERING WORKSHOP

Course Objective:

The budding Engineer may turn out to be a technologist, scientist, entrepreneur, practitioner, consultant etc. There is a need to equip the engineer with the knowledge of common and newer engineering materials as well as shop practices to fabricate, manufacture or work with materials. Essentially he should know the labour involved, machinery or equipment necessary, time required to fabricate and also should be able to estimate the cost of the product or job work. Hence engineering work shop practice is included to introduce some common shop practices and on hand experience to appreciate the use of skill, tools, equipment and general practices to all the engineering students.

1. TRADES FOR EXERCISES:

- a. Carpentry shop- Two joints (exercises) involving tenon and mortising, groove and tongue: Making middle lap T joint, cross lap joint, mortise and tenon T joint, Bridle T joint from out of 300 x 40 x 25 mm soft wood stock
- b. Fitting shop- Two joints (exercises) from: square joint, V joint, half round joint or dove tail joint out of $100 \times 50 \times 5$ mm M.S. stock
- c. Sheet metal shop- Two jobs (exercises) from: Tray, cylinder, hopper or funnel from out of 22 or 20 guage G.I. sheet
- d. House-wiring- Two jobs (exercises) from: wiring for ceiling rose and two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp, wiring for a water pump with single phase starter.
- e. Foundry– Preparation of two moulds (exercises): for a single pattern and a double pattern.

f. Welding – Preparation of two welds (exercises): single V butt joint, lap joint, double V butt joint or T fillet joint.

2. TRADES FOR DEMONSTRATION:

- a. Plumbing
- b. Machine Shop
- c. Metal Cutting

Apart from the above the shop rooms should display charts, layouts, figures, circuits, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, Plastics, steels, meters, gauges, equipment, CD or DVD displays, First aid, shop safety etc. (though they may not be used for the exercises but they give valuable information to the student). In the class work or in the examination knowledge of all shop practices may be stressed upon rather than skill acquired in making the job.

References:

- Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt. Ltd., 2009
- 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.
- 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, 4/e Vikas
- 4. Dictionary of Mechanical Engineering, GHF Nayler, Jaico Publishing House.

I.T. WORKSHOP

Course Objective:

- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations
- To make the students know about the internal parts of a computer, assembling a computer from the parts, preparing a computer for use by installing the operating system
- To learn about Networking of computers and use Internet facility for Browsing and Searching.

Learning Outcome:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors
- Prepare Slide presentations using the presentation tool
- Interconnect two or more computers for information sharing
- Access the Internet and Browse it to obtain the required information
- Install single or dual operating systems on computer

Preparing your Computer (5 weeks)

Task 1: Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2: Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods available (eg: beeps). Students should record the process of assembling and trouble shooting a computer.

Task 3: Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4: Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet (4 weeks)

Task 5: Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc should be done by the student. The entire process has to be documented.

Task 6: Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc.

If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7: Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools (6 weeks)

Task 8: Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the color, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the

images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered.

Task 9: Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet application considered.

Task 10: Presentations: creating, opening, saving and running the presentations, Selecting the style for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show. Students should submit a user manual of the Presentation tool considered.

Optional Tasks:

Task 11: Laboratory Equipment: Students may submit a report on specifications of various equipment that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop computer
- Server computer
- Switch (computer science related)
- Microprocessor kit
- Micro controller kit
- Lathe machine
- Generators
- Construction material
- Air conditioner

- UPS and Inverter
- RO system
- Electrical Rectifier
- CRO
- Function Generator
- Microwave benches

Task 12: Software: Students may submit a report on specifications of various software that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. The software may be proprietary software or Free and Open source software. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop operating system
- Server operating system
- Antivirus software
- MATLAB
- CAD/CAM software
- AUTOCAD

References:

- 1. Introduction to Computers, Peter Norton, Mc Graw Hill
- 2. MOS study guide for word, Excel, Powerpoint & Outlook Exams", Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs", Bigelows, TMH

B. Tech II-I Sem. (ECE)

L T P C

(15A54301) MATHEMATICS-III

OBJECTIVES:

 This course aims at providing the student with the concepts of Matrices, Numerical Techniques and Curve fitting.

OUTCOMES:

 The student will be able to analyze engineering problems using the concepts of Matrices and Numerical methods

UNIT - I

Elementary row transformations-Rank – Echelon form, normal form – Consistency of System of Linear equations. Linear transformations. Hermitian, Skew-Hermitian and Unitary matrices and their properties. Eigen Values, Eigen vectors for both real and complex matrices. Cayley – Hamilton Theorem and its applications – Diagonolization of matrix. Calculation of powers of matrix and inverse of a matrix. Quadratic forms – Reduction of quadratic form to canonical form and their nature.

UNIT - II

Solution of Algebraic and Transcendental Equations: The Bisection Method – The Method of False Position– Newton-Raphson Method, Solution of linear simultaneous equation: Crout's triangularisation method, Gauss - Seidal iteration method.

UNIT - III

Interpolation: Newton's forward and backward interpolation formulae – Lagrange's formulae. Gauss forward and backward formula, Stirling's formula, Bessel's formula.

UNIT - IV

Curve fitting: Fitting of a straight line – Second degree curve – Exponentional curve-Power curve by method of least squares. Numerical Differentiation for Newton's interpolation formula. Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule.

UNIT - V

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Euler's Method-Runge-Kutta Methods. Numerical solutions of Laplace equation using finite difference approximation.

TEXT BOOKS:

- 3. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, PHI publisher.

REFERENCES:

- 2. Engineering Mathematics, Volume II, E. Rukmangadachari Pearson Publisher
- 3. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S. Chand publication.
- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.

B. Tech II-I Sem. (ECE)

L T P C 3 1 0 3

(15A04301) ELECTRONIC DEVICES AND CIRCUITS

Course Objectives:

To give understanding on semiconductor physics of the intrinsic, p and n materials, characteristics of the p-n junction diode, diode's application in electronic circuits, Characteristics of BJT,FET,MOSFET, characteristics of special purpose electronic devices. To familiarize students with dc biasing circuits of BJT, FET and analyzing basic transistor amplifier circuits.

Course Outcomes:

Upon completion of the course, students will:

- Analyze the operating principles of major electronic devices, its characteristics and applications.
- Design and analyze the DC bias circuitry of BJT and FET.
- Design and analyze basic transistor amplifier circuits using BJT and FET.

UNIT- I

Junction Diode Characteristics: Open circuited p-njunction, Biased p-n junction,p-n junction diode, current components in PN junction Diode, diode equation,V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Diodes: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, LCD, Photo diode, Varactor diode, Tunnel Diode, DIAC, TRIAC, SCR, UJT. Construction, operation and characteristics of all the diodes is required to be considered.

UNIT- II

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter, Capacitor filter, L- section filter, Π -section filter, Multiple L- section and Multiple Π section filter ,comparison of various filter circuits in terms of ripple factors.

UNIT- III

Transistor Characteristics:

BJT:Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collectorconfigurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET:FETtypes, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT- IV

Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE} , Ic, and β , Stability factors, (S, S', S'), Bias compensation, Thermal runaway, Thermal stability.

FET Biasing- methods and stabilization.

UNIT- V

Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

TEXT BOOKS:

- J. Millman, C. Halkias, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 4th Edition. 2010.
- 2. David A.Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2009.
- Salivahanan, Kumar, Vallavaraj, "Electronic Devices and Circuits", Tata Mc-Graw Hill, Second Edition

REFERENCES:

- Jacob Millman, C. Halkies, C.D.Parikh, "Integrated Electronics", Tata Mc-Graw Hill, 2009.
- 2. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", Pearson Publications, 9th Edition, 2006.
- BV Rao, KBR Murty, K Raja Rajeswari, PCR Pantulu, "Electronic Devices and Circuits", Pearson, 2nd edition.

B. Tech II-I Sem. (ECE)

L T P C 3 1 0 3

(15A04302) SWITCHING THEORY AND LOGIC DESIGN

Course Objectives:

 To provide fundamental concepts used in the design of digital systems and learn the methods for the design of digital circuits.

Course Outcomes:

- To introduce basic postulates of Boolean algebra and the methods for simplifying Boolean expressions
- To illustrate the concepts and study the procedures for the analysis and design of combinational circuits and sequential circuits
- To introduce the concepts of programmable logic devices.

UNIT I

Number System & Boolean Algebra:

Digital Systems, Binary Numbers, Number base conversions, Complements of numbers, Signed binary numbers, Binary codes.

Boolean Algebra-Basic definition, Basic theorems and properties, Boolean Functions, Canonical & Standard forms, other logic operations & Logic gates.

UNIT II

Gate Level Minimization:

The map method, four variable & Five variable K-map, POS & SOP Simplification, Don't care conditions, NAND & NOR Implementation, Other two level Implementation, Ex-or Function, Tabular Method- Simplification of Boolean function using tabulation Method.

UNIT III

Combinational Logic Circuits:

Combinational circuits, Analysis & Design procedure, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude comparator, Decoder, Encoders, Multiplexers.

UNIT IV

Sequential Logic Circuits:

Sequential Circuits, Latches, Flips-Flops - RS, JK, Master-Slave JK, D & T flip flops, Analysis of Clocked sequential circuits, State Reduction & Assignment, Design procedure, Registers & Counters – Registers, Shift Registers, Ripple Counters, Synchronous counters, asynchronous counters.

Asynchronous sequential circuits - Introduction, Analysis Procedure, Design Procedure, Reduction of State flow tables, Race-free State Assignment, Hazards.

UNIT V

Programmable Devices:

Memory organization, classification of semiconductor memories, ROM, PROM, DROM, EPROM, EEPROM, RAM, expansion of memory, CCD, Flash memories, content addressable memory, programmable logic devices, PROM at PLD, programmable logic array (PLA) programmable array logic (PAL), field programmable gate array (FPGA).

Text Books:

- 1. M.Morris Mano & Michel D. Ciletti, "Digital Design", 5th Edition Pearson.
- 2. Zvi Kohavi and Nirah K.Jha, "Switching theory and Finite Automata Theory", 3rd Edition Cambridge.

References:

- 1. Subratha Goshal, "Digital Electronics", Cambridge
- 2. Comer, "Digital & State Machine Design", Third Indian edition, OXFORD

B. Tech II-I Sem. (ECE) L T P C 3 1 0 3

(15A04303) SIGNALS AND SYSTEMS

Course objectives:

- To study about signals and systems.
- To do analysis of signals & systems (continuous and discrete) using time domain & frequency domain methods.
- To understand the stability of systems through the concept of ROC.
- To know various transform techniques in the analysis of signals and systems.

Learning Outcomes:

- For integro-differential equations, the students will have the knowledge to make use of Laplace transforms.
- For continuous time signals the students will make use of Fourier transform and Fourier series.
- For discrete time signals the students will make use of Z transforms.
- The concept of convolution is useful for analysis in the areas of linear systems and communication theory.

UNIT I

SIGNALS & SYSTEMS: Definition and classification of Signal and Systems (Continuous time and Discrete time), Elementary signals such as Dirac delta, unit step, ramp, sinusoidal and exponential and operations on signals. Analogy between vectors and signals-orthogonality-Mean Square error-Fourier series: Trigonometric & Exponential and concept of discrete spectrum

UNIT II

CONTINUOUS TIME FOURIER TRANSFORM: Definition, Computation and properties of Fourier Transform for different types of signals. Statement and proof of sampling theorem of low pass signals

UNIT III

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS: Linear system, impulse response, Response of a linear system, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, Relationship between bandwidth and rise time. Energy and Power Spectral Densities

UNIT IV

DISCRETE TIME FOURIER TRANSFORM: Definition, Computation and properties of Fourier Transform for different types of signals.

UNIT V

LAPLACE TRANSFORM: Definition-ROC-Properties-Inverse Laplace transformsthe S-plane and BIBO stability-Transfer functions-System Response to standard signals-Solution of differential equations with initial conditions.

The Z-TRANSFORM: Derivation and definition-ROC-Properties-Linearity, time shifting, change of scale, Z-domain differentiation, differencing, accumulation, convolution in discrete time, initial and final value theorems-Poles and Zeros in Z-plane-The inverse Z-Transform-System analysis-Transfer function-BIBO stability-System Response to standard signals-Solution of difference equations with initial conditions.

TEXT BOOKS:

- B. P. Lathi, "Linear Systems and Signals", Second Edition, Oxford University press,
- A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", Pearson, 2nd Edn.
- 3. A. Ramakrishna Rao, "Signals and Systems", 2008, TMH.

REFERENCES:

- 1. Simon Haykin and Van Veen, "Signals & Systems", Wiley, 2nd Edition.
- 2. B.P. Lathi, "Signals, Systems & Communications", 2009, BS Publications.
- 3. Michel J. Robert, "Fundamentals of Signals and Systems", MGH International Edition, 2008.
- 4. C. L. Philips, J. M. Parr and Eve A. Riskin, "Signals, Systems and Transforms", Pearson education.3rd

B. Tech II-I Sem. (ECE)

L T P C

(15A04304) PROBABILITY THEORY & STOCHASTIC PROCESSES

Course Objectives:

- To understand the concepts of a Random Variable and operations that may be performed on a single Random variable.
- To understand the concepts of Multiple Random Variables and operations that may be performed on Multiple Random variables.
- To understand the concepts of Random Process and Temporal & Spectral characteristics of Random Processes.

Learning Outcomes:

 A student will able to determine the temporal and spectral characteristics of random signal response of a given linear system.

UNIT-I

Probability: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, Bays' Theorem, Independent Events:

The Random Variable : Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete and Continuous, Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Raleigh, Conditional Distribution, Methods of defining Conditioning Event, Conditional Density, Properties.

UNIT-II

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions.

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables. Linear Transformations of Gaussian Random Variables.

UNIT-III

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Processes.

UNIT-IV

Random Processes – **Spectral Characteristics:**The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, the Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function.

UNIT-V

Linear Systems with Random Inputs:Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties.

Text Books:

- Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", TMH, 4th Edition, 2001.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", PHI, 4th Edition, 2002.

References:

- R.P. Singh and S.D. Sapre, "Communication Systems Analog & Digital", TMH, 1995.
- Henry Stark and John W. Woods, "Probability and Random Processes with Application to Signal Processing", Pearson Education, 3rd Edition.
- 3. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis", Oxford, 3rd Edition, 1999.
- S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 5. B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 2003.

B. Tech II-I Sem. (ECE)

L T P C

(15A02306) ELECTRICAL TECHNOLOGY

Objective:

Electrical Technology contains Single phase transformers, Induction motors, Synchronous Machines, DC generators and motors. The objective is to study their performance aspects.

UNIT- I DC GENERATORS

D.C. Generators – Principle of Operation – Constructional Features – E. M.F Equation–Numerical Problems – Methods of Excitation – Separately Excited and Self Excited Generators – Build-Up of E.M.F - Critical Field Resistance and Critical Speed - Load Characteristics of Shunt, Series and Compound Generators- Applications

UNIT – II D.C. MOTORS

D.C Motors – Principle of Operation – Back E.M.F. –Torque Equation – Characteristics and Application of Shunt, Series and Compound Motors-Speed Control of D.C. Motors: Armature Voltage and Field Flux Control Methods. Three Point Starter-Losses – Constant & Variable Losses – Calculation of Efficiency - Swinburne's Test.

UNIT-III SINGLE PHASE TRANSFORMERS

Single Phase Transformers - Constructional Details- Emf Equation - Operation on No Load and on Load - Phasor Diagrams-Equivalent Circuit - Losses and Efficiency-Regulation-OC and SC Tests - Sumpner's Test - Predetermination of Efficiency and Regulation.

UNIT-IV 3-PHASE INDUCTION MOTORS

Polyphase Induction Motors-Construction Details of Cage and Wound Rotor Machines-- Principle of Operation – Slip- Rotor Emf and Rotor Frequency - Torque Equation-Torque Slip Characteristics.

UNIT – V SYNCHRONOUS MACHINES

Principle And Constructional Features of Salient Pole and Round Rotor Machines – E.M.F Equation- Voltage Regulation by Synchronous Impedance Method- Theory of Operation of Synchronous Motor.

OUTCOME:

After going through this course the student acquires knowledge on basics of DC generators and motors, Transformers, Induction motors and Synchronous Machines.

TEXT BOOKS:

- 1. Basic Electrical Engineering, V. N. Mittle and Arvind Mittle, Mc Graw Hill (India) Pvt. Ltd., 2nd Edition, 2005.
- 2. Basic Electrical Engineering, T.K.Nagsarkar and M.S. Sukhija, Oxford University Press, 2nd Edition, 2011.

REFERENCES:

- 1. Basic Electrical Engineering, M.S.Naidu and S. Kamakshiah, Tata Mc Graw Hill, 3rd Edition, 2009.
- 2. Electrical and Electronic Technology, Hughes, Pearson Education.

B. Tech II-I Sem. (ECE)

(15A04305) ELECTRONIC DEVICES AND CIRCUITS LABORATORY

Objectives:

• This Lab provides the students to get an electrical model for various semiconductor devices. Students can find and plot V_I characteristics of all semiconductor devices. Student learns the practical applications of the devices. They can learn and implement the concept of the feedback and frequency response of the small signal amplifier

Outcomes:

 Students able to learn electrical model for various semiconductor devices and learns the practical applications of the semiconductor devices

PART A: Electronic Workshop Practice

- Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- Identification, Specifications and Testing of active devices, Diodes,
 BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO.

PART B: List of Experiments

(For Laboratory Examination-Minimum of Ten Experiments)

1. P-N Junction Diode Characteristics

Part A: Germanium Diode (Forward bias & Reverse bias)

Part B: Silicon Diode (Forward bias only)

2. Zener Diode Characteristics

Part A: V-I Characteristics

Part B: Zener Diode act as a Voltage Regulator

3. Rectifiers (without and with c-filter)

Part A: Half-wave Rectifier

Part B: Full-wave Rectifier

4. BJT Characteristics(CE Configuration)

Part A: Input Characteristics

Part B: Output Characteristics

5. FET Characteristics(CS Configuration)

Part A: Drain (Output) Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

PART C:Equipment required for Laboratory

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components
- Bread Boards
- 11. Connecting Wires
- CRO Probes etc.

B. Tech II-I Sem. (ECE)

L T P C

(15A02307) ELECTRICAL TECHNOLOGY AND BASIC SIMULATION LABORATORY

PART-A

- Magnetization Characteristics of D.C.Shunt Generator. Determination of Critical Field Resistance.
- 2. Swinburne's Test on DC Shunt Machine (Predetermination of Efficiency of a Given DC Shunt Machine Working as Motor and Generator).
- Brake Test on DC Shunt Motor. Determination of Performance Characteristics.
- 4. OC & SC Tests on Single-Phase Transformer (Predetermination of Efficiency and Regulation at Given Power Factors and Determination of Equivalent Circuit).
- 5. Load Test on Single Phase Transformer.

PART-B List of Experiments:

- Generation of Various signals and Sequences (Periodic and Aperiodic), Such as Unit Impulse, Unit Step, Square, Saw Tooth, Triangular, Sinusoidal, Ramp, Sinc.
- 2. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Convolution between Signals and Sequences.
- 4. Autocorrelation and Cross correlation between Signals and Sequences.
- 5. Verification of Linearity and Time Invariance Properties of a Given Continuous / Discrete System.
- Finding the Fourier Transform of a given Signal and plotting its Magnitude and Phase Spectrum.
- 7. Waveform Synthesis using Laplace Transform.
- 8. Generation of Gaussian Noise (Real and Complex), Computation of its Mean, M.S.Values and its Skew, Kurtosis, and PSD, Probability Distribution Function.
- 9. Sampling Theorem Verification.
- Removal of Noise by Auto Correlation / Cross correlation in a given signal corrupted by noise.

- 11. Impulse response of a raised cosine filter.
- 12. Checking a Random Process for Stationary in Wide Sense.

Note: All five (5) Experiments from part-A and any Eight (8) Experiments from Part-B are to be conducted.

B. Tech II-II Sem. (ECE)

L T P C

(15A54402) MATHEMATICS -IV

(Common to ECE, EEE)

OBJECTIVES:

To enable the students to understand the mathematical concepts of special functions & complex variables and their applications in science and engineering.

OUTCOMES:

The student achieves the knowledge to analyse the problems using the methods of special functions and complex variables

UNIT - I:

Special Functions: Gamma and Beta Functions – their properties – Evaluation of improper integrals. Series Solutions of ordinary differential equations (Power series and Frobenius Method).

UNIT - II:

Bessel functions – Properties – Recurrence relations – Orthogonality. Legendre polynomials – Properties – Rodrigue's formula – Recurrence relations – Orthogonality.

UNIT - III

Functions of a complex variable – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions – Milne – Thomson method. Conformal mapping: Transformation of ez, Inz, z2, Sin z, cos z, Bilinear transformation - Translation, rotation, magnification and inversion – Fixed point – Cross ratio – Determination of bilinear transformation.

UNIT - IV

Complex integration: Line integral — Evaluation along a path and by indefinite integration — Cauchy's integral theorem — Cauchy's integral formula — Generalized integral formula. Complex power series: Radius of convergence — Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point — Isolated singular point — Pole of order m — Essential singularity.

UNIT - V

Residue – Evaluation of residue by formula and by Laurent's series – Residue theorem. Evaluation of integrals of the type

(a) Improper real integrals $\int_{-\infty}^{\infty} f(x)dx$ (b) $\int_{-\infty}^{\infty} f(x)dx$ (c)

TEXT BOOKS:

- 1. Higher Engineering Mathematics, B.S. Grewal, Khanna publishers.
- 2.Engineering Mathematics, Volume III, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher

REFERENCES:

- 1. Mathematics III by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S.Chand publications.
- 2. Advanced Engineering Mathematics, Peter V.O'Neil, CENGAGE publisher.
- 3. Advanced Engineering Mathematics by M.C. Potter, J.L. Goldberg, Edward F.Aboufadel, Oxford.

B. Tech II-II Sem. (ECE)

L T P C

(15A04401) ELECTRONIC CIRCUIT ANALYSIS

Course Objectives:

The aim of this course is to familiarize the student with the analysis and design of multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers. To study and analyze the frequency response of amplifier circuits.

Course Outcomes:

Upon completion of this course, student will be able to:

- Analyze the frequency response of the BJT amplifiers at low and high frequencies.
- Analyze and design multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers.

UNIT -I

Feedback Amplifiers : Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of Analysis of Feedback Amplifiers.

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wein bridge oscillators with BJT and FET with the relevant analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators with BJT and FET with relevant analysis, Crystal oscillators, Frequency and amplitude stability of oscillators.

UNIT- II

Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at High Frequencies, Hybrid- π Common Emitter transistor model, Hybrid π conductances, Hybrid π capacitances, Validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters , CE short circuit current gain, Current gain with resistive load, Cut-off frequencies, Frequency Response and Gain Bandwidth product.

FET: Analysis of Common Source and Common Drain Amplifier circuits at High frequencies.

UNIT - III

Multistage Amplifiers: Classification ofamplifiers, Methods of coupling, Cascaded transistor amplifier and its analysis, Analysis of two stage RC coupled amplifier, High input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Analysis of multi stage amplifiers using FET, Differential amplifier using BJT.

UNIT-IV

Power Amplifiers: Class A large signal Amplifiers, Second harmonic Distortions, Higher order harmonic Distortion, Transformer Coupled Audio power amplifier, Efficiency, Push-pull amplifiers, Class B Amplifiers, Class AB operation, Efficiency of Class B Amplifier, Complementary Symmetry push pull amplifier, Class D amplifier, Class S amplifier, MOSFET power amplifier, Thermal stability and Heat sink.

UNIT-V

Tuned Amplifiers: Introduction, Q-Factor, Small Signal Tuned Amplifier – Capacitance single tuned amplifier, Double Tuned Amplifiers, Effect of Cascading Single tuned amplifiers on Band width, Effect of Cascading Double tuned amplifiers on Band width, Staggered tuned amplifiers, Stability of tuned amplifiers

Text Books:

- 1. J. Millman and C.C. Halkias, "Integrated Electronics", McGraw-Hill, 1972.
- 2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill.
- Salivahanan, N.Suressh Kumar, A. Vallavaraj, "Electronic Devices and Circuits", Tata McGraw Hill, Second Edition.

References:

- Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th Edition
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.
- 3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

B. Tech II-II Sem. (ECE)

L T P C

(15A04402) ANALOG COMMUNICATION SYSTEMS

Course Objectives:

- To study the fundamental concept of the analog communication systems.
- To analyze various analog modulation and demodulation techniques.
- To know the working of various transmitters and receivers.
- To understand the influence of noise on the performance of analog communication systems, and to acquire the knowledge about information and capacity.

Learning Outcomes:

This course provides the foundational education in Analog Communication systems, and applications. The students are provided the learning experience through class room teaching and solving assignment & tutorial problems. At the end of course, students should be able to:

- Acquire knowledge on the basic concepts of Analog Communication Systems.
- Analyze the analog modulated and demodulated systems.
- Verify the effect of noise on the performance of communication systems.
- Know the fundamental concepts of information and capacity.

UNIT- I

Introduction: Elements of communication systems, Information, Messages and Signals, Modulation, Modulation Methods, Modulation Benefits and Applications.

Amplitude Modulation & Demodulation: Baseband and carrier communication, Amplitude Modulation (AM), Rectifier detector, Envelope detector, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Switching modulators, Ring modulator, Balanced modulator, Frequency mixer, sideband and carrier power of AM, Generation of AM signals, Quadrature amplitude modulation (QAM), Single sideband (SSB) transmission, Time domain representation of SSB signals & their demodulation schemes (with carrier, and suppressed carrier), Generation of SSB signals, Vestigial sideband (VSB) modulator & demodulator, Illustrative Problems.

UNIT- II

Angle Modulation & Demodulation: Concept of instantaneous frequency, Generalized concept of angle modulation, Bandwidth of angle modulated waves – Narrow band frequency modulation (NBFM); and Wide band FM (WBFM), Phase modulation, Verification of Frequency modulation bandwidth relationship, Features of angle modulation, Generation of FM waves – Indirect method, Direct generation; Demodulation of FM, Bandpass limiter, Practical frequency demodulators, Small error analysis, Pre-emphasis, & De-emphasis filters, FM receiver, FM Capture Effect,. Carrier Acquisition- phased locked loop (PLL), Costas loop, Frequency division

multiplexing (FDM), and Super-heterodyne AM receiver, Illustrative Problems.

UNIT- III

Noise in Communication Systems: Types of noise, Time domain representation of narrowband noise, Filtered white noise, Quadrature representation of narrowband noise, Envelope of narrowband noise plus sine wave, Signal to noise ratio & probability of error, Noise equivalent bandwidth, Effective noise temperature, and Noise figure, Baseband systems with channel noise, Performance analysis (i.e. finding SNR expression) of AM, DSB-SC, SSB-SC, FM, PM in the presence of noise, Illustrative Problems.

UNIT-IV

Analog pulse modulation schemes: Pulse amplitude modulation – Natural sampling, flat top sampling and Pulse amplitude modulation (PAM) & demodulation, Pulse-Time Modulation – Pulse Duration and Pulse Position modulations, and demodulation schemes, PPM spectral analysis, Illustrative Problems.

Radio Receiver measurements: Sensitivity, Selectivity, and fidelity.

UNIT- V

Information & Channel Capacity: Introduction, Information content of message, Entropy, Entropy of symbols in long independent and dependent sequences, Entropy and information rate of Markoff sources, Shannon's encoding algorithm, Discrete communication channels, Rate of information over a discrete channel, Capacity of discrete memoryless channels, Discrete channels with memory, Shannon – Hartley theorem and its implications, Illustrative problems.

Text books:

- B. P. Lathi, "Modern Digital and Analog Communication Systems," Oxford Univ. press, 3rd Edition, 2006.
- Sham Shanmugam, "Digital and Analog Communication Systems", Wiley-India edition, 2006.
- A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010.

References:

- Simon Haykin, "Communication Systems", Wiley-India edition, 3rd edition, 2010.
- Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 3. R.E. Ziemer& W.H. Tranter, "Principles of Communication-Systems Modulation & Noise", Jaico Publishing House, 2001.
- 4. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH, 2004.

B. Tech II-II Sem. (ECE)

L T P C

(15A04403) ELECTROMAGNETIC THEORY & TRANSMISSION LINES

LEARNING OUTCOMES:

This course provides the foundational education in static electromagnetic fields, and time varying electromagnetic waves. Through lecture, and out-of-class assignments, students are provided learning experiences that enable them to:

- a. Analyze and solve the problems of electric and magnetic fields that vary with three dimensional spatial co-ordinates as well as with time.
- b. Become proficient with analytical skills for understanding propagation of electromagnetic waves in different media.
- c. Understand the concept of transmission lines & their applications.
- d. Develop technical & writing skills important for effective communication.
- e. Acquire team-work skills for working effectively in groups.

UNIT-I

Electrostatics: Review of Vector algebra, Co-ordinate systems & transformation, Vector calculus, Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Electric dipole, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT-II

Magnetostatics: Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, Inductances and Magnetic Energy, Illustrative Problems.

UNIT-III

Maxwell's Equations (for Time Varying Fields): Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems.

UNIT-IV

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

UNIT-V

Transmission Lines: Types, Transmission line parameters (Primary and Secondary), Transmission line equations, Input impedance, Standing wave ratio & power, Smith chart & its applications, Applications of transmission lines of various lengths, Microstrip transmission lines – input impedance, Illustrative Problems.

TEXT BOOKS:

- Matthew N.O. Sadiku, "Elements of Electromagnetics," Oxford Univ. Press, 4th ed., 2008.
- William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics," TMH, 7th ed., 2006.

REFERENCES:

- Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Ed., 2000.
- 2. Electromagnetics John D. Krauss, McGraw-Hill publications, 3rd ed., 1988.
- John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.
- 4. Schaum's out lines, "Electromagnetics," Second Edition, Tata McGraw-Hill publications, 2006.
- G. S. N. Raju, "Electromagnetic Field Theory and Transmission Lines," Pearson Education, 2013
- N. NarayanaRao, "Fundamentals of Electromagnetics for Engineering," Pearson Edu. 2009.

B. Tech II-II Sem. (ECE)

L T P C 3 1 0 3

(15A05201) DATA STRUCTURES

Objectives:

Understand different Data Structures Understand Searching and Sorting techniques

Unit-1

Introduction and overview: Asymptotic Notations, One Dimensional array- Multi Dimensional array- pointer arrays.

Linked lists: Definition- Single linked list- Circular linked list- Double linked list- Circular Double linked list- Application of linked lists.

Unit-2

Stacks: Introduction-Definition-Representation of Stack-Operations on Stacks-Applications of Stacks.

Queues: Introduction, Definition- Representations of Queues- Various Queue Structures- Applications of Queues. Tables: Hash tables.

Unit-3

Trees: Basic Terminologies- Definition and Concepts- Representations of Binary Tree-Operation on a Binary Tree- Types of Binary Trees-Binary Search Tree, Heap Trees, Height Balanced Trees, B. Trees, Red Black Trees.

Graphs: Introduction- Graph terminologies- Representation of graphs- Operations on Graphs- Application of Graph Structures: Shortest path problem- topological sorting.

Unit-4

Sorting: Sorting Techniques- Sorting by Insertion: Straight Insertion sort- List insertion sort- Binary insertion sort- Sorting by selection: Straight selection sort- Heap Sort-Sorting by Exchange- Bubble Sort- Shell Sort-Quick Sort-External Sorts: Merging Order Files-Merging Unorder Files- Sorting Process.

Unit-5

Searching: List Searches- Sequential Search- Variations on Sequential Searches- Binary Search- Analyzing Search Algorithm- Hashed List Searches- Basic Concepts- Hashing Methods- Collision Resolutions- Open Addressing- Linked List Collision Resolution-Bucket Hashing.

Text Books:

- 1. "Classic Data Structures", Second Edition by Debasis Samanta, PHI.
- 2. "Data Structures A Pseudo code Approach with C", Second Edition by

Richard F. Gilberg, Behrouz A. Forouzan, Cengage Learning.

Reference Books:

- Fundamentals of Data Structures in C Horowitz, Sahni, Anderson-Freed, Universities Press, Second Edition.
- 2. Schaum' Outlines Data Structures Seymour Lipschutz McGrawHill-Revised First Edition.
- 3. Data structures and Algorithms using C++, Ananda Rao Akepogu and Radhika Raju Palagiri, Pearson Education.

B. Tech II-II Sem. (ECE)

L T P (

(15A02303) CONTROL SYSTEMS ENGINEERING

OBJECTIVES:

To make the students learn about:

- Merits and demerits of open loop and closed loop systems; the effects of feedback
- The use of block diagram algebra and Mason's gain formula to find the effective transfer function between two nodes
- Transient and steady state responses, time domain specifications
- The concept of Root loci
- Frequency domain specifications, Bode diagrams and Nyquist plots
- The fundamental aspects of modern control

UNIT - I INTRODUCTION

Open Loop and closed loop control systems and their differences- Examples of control systems- Classification of control systems, Feedback Characteristics, Effects of positive and negative feedback. Mathematical models – Differential equations of Translational and Rotational mechanical systems, and Electrical Systems, Block diagram reduction methods – Signal flow graph - Reduction using Mason's gain formula. Transfer Function of DC Servo motor - AC Servo motor - Synchro transmitter and Receiver

UNIT-II TIME RESPONSE ANALYSIS

Step Response - Impulse Response - Time response of first order systems - Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications - Steady state response - Steady state errors and error constants

UNIT - III STABILITY

The concept of stability – Routh's stability criterion – Stability and conditional stability – limitations of Routh's stability. The root locus concept - construction of root locieffects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT – IV FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Stability Analysis from Bode Plots. Polar Plots-Nyquist Plots- Phase margin and Gain margin-Stability Analysis.

Compensation techniques – Lag, Lead, Lag-Lead Compensator design in frequency Domain.

UNIT – V STATE SPACE ANALYSIS

Concepts of state, state variables and state model, derivation of state models from differential equations. Transfer function models. Block diagrams. Diagonalization. Solving the Time invariant state Equations- State Transition Matrix and it's Properties. System response through State Space models. The concepts of controllability and observability.

OUTCOMES:

After completing the course, the student should be able to do the following:

- Evaluate the effective transfer function of a system from input to output using
 - (i) block diagram reduction techniques (ii) Mason's gain formula
- Compute the steady state errors and transient response characteristics for a given system and excitation
- Determine the absolute stability and relative stability of a system
- Draw root loci
- Design a compensator to accomplish desired performance
- Derive state space model of a given physical system and solve the state equation

TEXT BOOKS:

- 1. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.
- Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers, 5th edition, 2007, Reprint 2012.

REFERENCE BOOKS:

- Automatic Control Systems, Farid Golnaraghi and Benjamin. C. Kuo, WILEY, 9th Edition, 2010.
- 2. Control Systems, Dhanesh N. Manik, CENGAGE Learning, 2012.
- 3. John J D'Azzo and C. H. Houpis , "Linear Control System Analysis and Design: Conventional and Modern", McGraw Hill Book Company, 1988.

B. Tech II-II Sem. (ECE) L T P C 0 0 4 2

(15A04404) ELECTRONIC CIRCUIT ANALYSIS LABORATORY

Note: The students are required to design the electronic circuit and they have to perform the analysis through simulator using Multisim/Pspice/Equivalent Licensed simulation software tool. Further they are required to verify the result using necessary hardware in the hardware laboratory.

Objectives

- Help students make transition from analysis of electronic circuits to design of electronic circuits.
- To understand the Analysis of transistor at high frequencies.
- To understand the concept of designing of tuned amplifier.
- The student will construct and analyze voltage regulator circuits.
- To understand the circuit configuration and the principle operation of converters, including diode rectifiers, controlled AC-DC converters and DC choppers

Outcomes:

- The ability to analyze and design single and multistage amplifiers at low, mid and high frequencies.
- Designing and analyzing the transistor at high frequencies.
- Determine the efficiencies of power amplifiers.
- Determine Frequency response and design of tuned amplifiers.
- Able to Analyze all the circuits using simulation software and Hardware.

PART A: List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Determination of f_T of a given transistor.
- 2. Voltage-Series Feedback Amplifier
- Current-Shunt Feedback Amplifier
- 4. RC Phase Shift/Wien Bridge Oscillator
- 5. Hartley/Colpitt's Oscillator
- 6. Two Stage RC Coupled Amplifier
- Darlington Pair Amplifier
- 8. Bootstrapped Emitter Follower

- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A Power Amplifier
- 11. Class B Push-Pull Power Amplifier
- 12. Complementary Symmetry Class B Push-Pull Power Amplifier
- 13. Single Tuned Voltage Amplifier
- 14. Double Tuned Voltage Amplifier

PART B: Equipment required for Laboratory

Software:

- i. Multisim/ Pspice/Equivalent Licensed simulation software tool
- ii. Computer Systems with required specifications

Hardware:

- 13. Regulated Power supplies
- 14. Analog/Digital Storage Oscilloscopes
- 15. Analog/Digital Function Generators
- 16. Digital Multimeters
- 17. Decade Résistance Boxes/Rheostats
- 18. Decade Capacitance Boxes
- 19. Ammeters (Analog or Digital)
- 20. Voltmeters (Analog or Digital)
- 21. Active & Passive Electronic Components
- 22. Bread Boards
- 23. Connecting Wires
- 24. CRO Probes etc.

B. Tech II-II Sem. (ECE)

L T P C

(15A04405) ANALOG COMMUNICATION SYSTEMS LABORATORY

Course Outcomes:

After completion of the course the students will be able

- To experience real time behavior of different analog modulation schemes
- Technically visualize spectra of different analog modulation schemes
- Analyze practical behavior of different elements available in analog communication system such as filters, amplifiers etc.
- Measure characteristics of radio receiver and antenna measurements.

List of Experiments: (All Experiments are to be conducted)

- 1. Amplitude modulation and demodulation.
- 2. Frequency modulation and demodulation.
- 3. a. Characteristics of Mixer.
 - b. Pre-emphasis & de-emphasis.
- 4. Pulse amplitude modulation & demodulation.
- 5. Pulse width modulation & demodulation
- 6. Pulse position modulation & demodulation.
- 7. Radio receiver measurements sensitivity selectivity and fidelity.
- Measurement of half power beam width (HPBW) and gain of a half wave dipole antenna.
- 9. Measurement of radiation pattern of a loop antenna in principal planes.

Equipment required for the Laboratory:

10. Dipole antennas (2 Nos.)

11. Loop antenna (1 no.)

1.	Regulated Power Supply equipments	0 - 30 V	
2.	CROs	0 - 20 M Hz.	
3.	Function Generators	0-3 M Hz	
4.	RF Signal Generators	0 - 1000 M Hz	
5.	Multimeters		
6.	Required electronic components (active experiments from 1 - 7	ve and passive) for the design of	
7.	Radio Receiver Demo kits or Trainers.		
8.	RF power meter	frequency range $0-10$	000
	MHz		
9.	Spectrum Analyzer		

850 MHz – 1GHz

850 MHz - 1GHz

B. Tech III-I Sem. (ECE) L T P C 3 1 0 3

15A04511 COMPUTER ORGANIZATION

Course Objectives:

- To understand the structure, function, characteristics and performance issues of computer systems.
- To understand I/O transfer mechanism, design of I/O circuit interfaces and example bus standards (like PCI, SCSI, USB)
- To understand the basic processing unit and how they are connected and how it generates control signals (using hardwired and micro programmed approaches)

Course Outcomes:

- Identify functional units, bus structure and addressing modes
- Design the hardwired and micro-programmed control units.
- Understand pipelined execution and instruction scheduling

UNIT-I

Computer types, Functional units, basic operational concepts, Bus structures, Data types, Software: Languages and Translators, Loaders, Linkers, Operating systems.

Memory locations – addresses and encoding of information – main memory operations – Instruction formats and instruction sequences – Addressing modes and instructions – Simple input programming – pushdown stacks – subroutines.

UNIT-II

Register transfer Language, Register transfer, Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro operations, shift Micro operations, Arithmetic Logic Shift Unit.

Stack organization, instruction formats, Addressing modes, Data transfer and manipulation, Execution of a complete instruction, Sequencing of control signals, Program Control.

UNIT-III

Control Memory, address Sequencing, Micro Program Example, Design of Control Unit.

Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating Point Arithmetic Operations, Decimal Arithmetic Unit, Decimal Arithmetic Operations.

UNIT-IV

Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor (IOP), Serial Communication.

Memory hierarchy, main memory, auxiliary memory, Associative memory, Cache memory, Virtual memory, Memory management hardware.

UNIT-V

Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors.

Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration, Inter-processor Communication and Synchronization, Cache Coherence.

Text Books:

- M. Morris Mano, "Computer system Architecture", Prentice Hall of India (PHI), Third edition.
- 2. William Stallings, "Computer organization and programming", Prentice Hall of India(PHI) Seventh Edition, Pearson Education(PE) Third edition, 2006.

Reference Books:

- Carl Hamacher, ZvonksVranesic, SafwatZaky, "Computer Organization" 5th Edition, McGraw Hill, 2002.
- 2. Andrew S.Tanenbaum, "Structured Computer Organization", 4th Edition PHI/Pearson
- 3. John L.Hennessy and David A.Patterson, "Computer Architecture a quantitative approach", Fourth Edition Elsevier
- 4. josephD.Dumas II, "Computer Architecture: Fundamentals and Principals of ComputerDesign", BS Publication.

B. Tech III-ISem. (ECE)

15A04501 ANTENNAS & WAVE PROPAGATION

Course Objectives:

- Fundamentals of electromagnetic radiation: Maxwell's equations, potential functions, wave equation, retarded potential, short current element, near and far fields, Poynting's theorem.
- Design of antenna arrays: principle of pattern multiplication, broadside and end fire arrays, array synthesis, coupling effects and mutual impedance, parasitic elements, Yagi-Uda antenna.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Approximate parametric equations for the calculation in the farfield region.
- Write parametric integral expressions for a given current source.
- Calculate electromagnetic fields for a given vector potential.
- Discover pattern multiplication principle for array antennas.

UNIT - I

Antenna Basics & Dipole antennas:Introduction, Basic antenna parameters- patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective height, Fields from oscillating dipole, Field Zones, Shape-Impedance considerations, Polarization – Linear, Elliptical, & Circular polarizations, Antenna temperature, Antenna impedance, Front—to-back ratio, Antenna theorems, Radiation – Basic Maxwell's equations, Retarded potential-Helmholtz Theorem, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field Components, Radiated power, Radiation Resistance, Beam width, Natural current distributions, far fields and patterns of Thin Linear Center-fed Antennas of different lengths, Illustrative problems.

UNIT- II

VHF, UHF and Microwave Antennas - I:Loop Antennas - Introduction, Small Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements - Yagi - Uda Arrays, Folded Dipoles & their characteristics. Helical Antennas-

Helical Geometry, Helix modes, Practical Design considerations for Monofilar Helical Antenna in Axial and Normal Modes. Horn Antennas- Types, Fermat's Principle, Optimum Horns, Design considerations of Pyramidal Horns, Illustrative Problems.

UNIT - III

VHF, UHF and Microwave Antennas - II: Micro strip Antennas - Introduction, features, advantages and limitations, Rectangular patch antennas - Geometry and parameters, characteristics of Micro strip antennas, Impact of different parameters on characteristics, reflector antennas - Introduction, Flat sheet and corner reflectors, parabola reflectors - geometry, pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications, Illustrative Problems.

UNIT- IV

Antenna Arrays: Point sources - Definition, Patterns, arrays of 2 Isotropic sources-Different cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, BSA with Non-uniform Amplitude Distributions - General considerations and Bionomial Arrays, Illustrative problems.

Antenna Measurements: Introduction, Concepts- Reciprocity, Near and Far Fields, Coordination system, sources of errors, Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by comparison, Absolute and 3-Antenna Methods).

IJNIT - V

Wave Propagation: Introduction, Definitions, Characterizations and general classifications, different modes of wave propagation, Ray/Mode concepts, Ground wave propagation (Qualitative treatment) - Introduction, Plane earth reflections, Space and surface waves, wave tilt, curved earth reflections, Space wave propagation - Introduction, field strength variation with distance and height, effect of earth's curvature, absorption, Super refraction, M-curves and duct propagation, scattering phenomena, tropospheric propagation, fading and path loss calculations, Sky wave propagation - Introduction, structure of lonosphere, refraction and reflection of sky waves by lonosphere, Ray path, Critical frequency, MUF, LUF, OF, Virtual height and Skip distance, Relation between MUF and Skip distance, Multi-HOP propagation, Energy loss in lonosphere, Summary of Wave Characteristics in different frequency ranges, Illustrative problems.

TEXT BOOKS:

- 1. John D. Kraus and Ronald J. Marhefka and Ahmad S.Khan, "Antennas and wave propagation," TMH, New Delhi, 4th Ed., (special Indian Edition), 2010.
- 2. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems," PHI, 2ndEdn, 2000.

REFERENCES:

- 1. C.A. Balanis, "Antenna Theory- Analysis and Design," John Wiley & Sons, 2ndEdn., 2001.
- 2. K.D. Prasad, SatyaPrakashan, "Antennas and Wave Propagation," Tech. India Publications, New Delhi, 2001.

B. Tech III-ISem. (ECE)

15A04502 **DIGITAL COMMUNICATION SYSTEMS**

Course Objectives:

- The students to be able to understand, analyze, and design fundamental digital communication systems.
- The course focuses on developing a thorough understanding of digital communication systems by using a series of specific examples and problems.

Course Outcomes:

After the completion of the course, student will be able to:

- Understand the elements of DCS & the fundamentals concepts of sampling theorem along with different coding and modulation techniques
- Understand the basic principles of baseband and passband digital modulation schemes
- Analyze probability of error performance of digital systems and are able to design digital communication systems

UNIT – I

Source Coding Systems: Introduction, sampling process, quantization, quantization noise, conditions for optimality of quantizer, encoding, Pulse-Code Modulation (PCM), Line codes, Differential encoding, Regeneration, Decoding & Filtering, Noise considerations in PCM systems, Time-Division Multiplexing (TDM), Synchronization, Delta modulation (DM), Differential PCM (DPCM), Processing gain, Adaptive DPCM (ADPCM), Comparison of the above systems.

UNIT - II

Baseband Pulse Transmission: Introduction, Matched filter, Properties of Matched filter, Matched filter for rectangular pulse, Error rate due to noise, Inter-symbol Interference (ISI), Nyquist's criterion for distortion less baseband binary transmission, ideal Nyquist channel, Raised cosine filter & its spectrum, Correlative coding – Duo binary & Modified duo binary signaling schemes, Partial response signaling, Baseband M-array PAM transmission, Eye diagrams.

UNIT – III

Signal Space Analysis: Introduction, Geometric representation of signals, Gram-Schmidt orthogonalization procedure, Conversion of the Continuous AWGN channel into a vector channel, Coherent detection of signals in noise, Correlation receiver, Equivalence of correlation and Matched filter receivers, Probability of error, Signal constellation diagram.

UNIT - IV

Passband Data Transmission: Introduction, Passband transmission model, Coherent phase-shift keying – binary phase shift keying (BPSK), Quadrature shift keying (QPSK), Binary Frequency shift keying (BFSK), Error probabilities of BPSK, QPSK, BFSK, Generation and detection of Coherent BPSK, QPSK, & BFSK, Power spectra of above mentioned modulated signals,M-array PSK, M-array quadrature amplitude modulation (M-array QAM), Non-coherent orthogonal modulation schemes -Differential PSK, Binary FSK, Generation and detection of non-coherent BFSK, DPSK, Comparison of power bandwidth requirements for all the above schemes.

UNIT - V

Channel Coding: Error Detection & Correction - Repetition & Parity Check Codes, Interleaving, Code Vectors and Hamming Distance, Forward Error Correction (FEC) Systems, Automatic Retransmission Query (ARQ) Systems, Linear Block Codes - Matrix Representation of Block Codes, Convolutional Codes - Convolutional Encoding, Decoding Methods.

TEXT BOOKS:

- 1. Simon Hakin, "Communication Systems," Wiley India Edition, 4th Edition, 2011.
- 2. B.P. Lathi, &Zhi Ding, "Modern Digital & Analog Communication Systems", Oxford University Press, International 4th edition, 2010.

REFERENCES:

- Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley, 2005.
- A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010
- 3. Bernard Sklar, "Digital Communications", Prentice-Hall PTR, 2nd edition, 2001.
- Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 5. J. G. Proakis, M Salehi, Gerhard Bauch, "Modern Communication Systems Using MATLAB," CENGAGE, 3rd Edition, 2013.

B. Tech III-ISem. (ECE)

L T P C 3 1 0 3

15A04503 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

Course Objectives:

- Design of OPAMPS, Classification of OPAMPs.
- To study and design various linear applications of OPAMPs.
- To study and design various non linear applications of OPAMPs

Course Outcomes:

- Understand the basic building blocks of linear integrated circuits and its characteristics.
- Analyze the linear, non-linear and specialized applications of operational amplifiers.
- Understand the theory of ADC and DAC.
- Realize the importance of Operational Amplifier.

UNIT - I

Differential Amplifiers: Differential amplifier configurations, Balanced and unbalanced output differential amplifiers, current mirror, level Translator.

Operational amplifiers: Introduction, Block diagram, Ideal op-amp, Equivalent Circuit, Voltage Transfer curve, open loop op-amp configurations. Introduction to dual OP-AMP TL082 as a general purpose JFET-input Operational Amplifier.

UNIT-II

Introduction, feedback configurations, voltage series feedback, voltage shunt feedback and differential amplifiers, properties of Practical op-amp.

Frequency response: Introduction, compensating networks, frequency response of internally compensated op-amps and non compensated op-amps, High frequency op-amp equivalent circuit, open loop gain Vs frequency, closed loop frequency response, circuit stability, slew rate.

UNIT-III

DC and AC amplifiers, peaking amplifier, summing, scaling and averaging amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, integrator, differentiator, active filters, First, Second and Third order Butterworth filter and its frequency response, Tow-Thomas biquad filter.

UNIT-IV

Oscillators, Phase shift and wein bridge oscillators, Square, triangular and sawtooth wave generators, Comparators, zero crossing detector, Schmitt trigger, characteristics and limitations.

Specialized applications: 555 timer IC (monostable&astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications, analog multiplier and phase detection, Wide bandwidth precision analog multiplier MPY634 and its applications.

UNIT V

Analog and Digital Data Conversions, D/A converter – specifications – weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R - 2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications – Flash type – Successive Approximation type – Single Slope type – Dual Slope type – A/D Converter using Voltage-to-Time Conversion – Over-sampling A/D Converters,

TEXT BOOKS:

- D. Roy Chowdhury, "Linear Integrated Circuits", New Age International (p) Ltd, 2nd Edition, 2003.
- K.LalKishore, "Operational Amplifiers and Linear Integrated Circuits", Pearson Education. 2007.

REFERENCES:

- 1. Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", PHI, 4th edition, 1987.
- 2. R.F.Coughlin& Fredrick Driscoll, "Operational Amplifiers & Linear Integrated Circuits", 6th Edition, PHI.
- David A. Bell, "Operational Amplifiers & Linear ICs", Oxford University Press, 2nd edition, 2010.

B. Tech III-ISem. (ECE)

L T P (

15A04504 DIGITAL SYSTEM DESIGN

Course Objectives:

- To be able to use computer-aided design tools for development of complex digital logic circuits
- To be able to model, simulate, verify, analyze, and synthesize with hardware description languages
- To be able to design and prototype with standard cell technology and programmable logic
- To be able to design tests for digital logic circuits, and design for testability

Course Outcomes:

- Capable of using Computer-aided design tools to model, simulate, verify, analyze, and synthesize complex digital logic circuits.
- Efficient designing of any Digital System using basic structure ICs.
- Able to design and prototype with standard cell technology and programmable logic.
- Apply design test for digital logic circuits, and design for testability.

UNIT-I

CMOS LOGIC: Introduction to logic families, CMOS logic, CMOS logic families;BIPOLAR LOGIC AND INTERFACING: Bipolar logic, Transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic, Comparison of logic families, Familiarity with standard 74-series and CMOS 40- series-ICs – Specifications.

UNIT-II

HARDWARE DESCRIPTION LANGUAGES: HDL Based Digital Design, The VHDL Hardware Description Language–Program Structure, Types, Constants and Arrays, Functions and procedures, Libraries and Packages, Structural design elements, Dataflow design elements, Behavioral design elements, The Time Dimension, Simulation, Test Benches, VHDL Features for Sequential Logic Design, Synthesis

UNIT-III

COMBINATIONAL LOGIC DESIGN PRACTICES: Description of basic structures like Decoders, Encoders, Comparators, Multiplexers (74 –series MSI); Design of complex Combinational circuits using the basic structures; Designing Using combinational PLDs like PLAs, PALs ,PROMs CMOS PLDs; Adders & sub tractors, ALUs, Combinational multipliers; VHDL models for the above standard building block ICs.

UNIT-IV

SEQUENTIAL MACHINE DESIGN PRACTICES: Review of design of State machines; Standard building block ICs for Shift registers, parallel / serial conversion, shift register counters, Ring counters; Johnson counters, LFSR counter; VHDL models for the above standard building block ICs.Synchronous Design example using standard ICs

UNIT -V

Design Examples (using VHDL): Barrel shifter, comparators, floating-point encoder, and dual parity encoder.

Sequential logic Design: Latches & flip flops, PLDs, counters, shift register and their VHDL models.

Text Books:

- John F.Wakerly ,"Digital Design Principles and Practices" 4th edition, Pearson Education. 2009
- 2. Charles H.Roth, Jr., "Fundamentals of Logic Design" 5th edition, CENGAGE Learning 2012.

References:

- 1. M.Morris Mano and Michael D. Cilleti., "Digital Logic Design" 4th edition Pearson Education., 2013
- 2. Stephen Brown and ZvonkoVranesic, "Fundamentals of digital logic with VHDL design" 2nd edition McGraw Hill Higher Education.
- 3. J. Bhasker, "A VHDL PRIMER" 3rd edition Eastern Economy Edition, PHI Learning, 2010.

B. Tech III-I Sem. (ECE)

L T P (

15A04505 LINUX PROGRAMMING & SCRIPTING (MOOCS-I)

Course Objectives:

- The goal of the course is the study of scripting languages such as PERL, TCL/TK, Python and BASH
- Creation of programs in the Linux environment
- The study of the principles of scripting languages
- The study of usage of scripting languages in IC design flow

Learning Outcomes:

- Ability to create and run scripts using Perl / TCL / Python in IC design flow
- Ability to use Linux environment and write programs for automation of scripts in VLSI tool design flow

UNIT I

LINUX BASICS: Introduction to Linux , File System of the Linux, General usage of Linux kernel & basic commands, Linux users and group , Permissions for file , directory and users, Searching a file & directory, zipping and unzipping concepts

UNIT II

LINUX NETWORKING: Introduction to Networking in Linux, Network basics & tools, File transfer protocol in Linux, Network file system, Domain Naming Services, Dynamic hosting configuration Protocol & Network information Services.

UNIT III

PERL SCRIPTING: Introduction to Perl Scripting ,Working with Simple Values, Lists and Hashes, Loops and Decisions, Regular Expressions, Files and Data in Perl Scripting ,References &Subroutines , Running and Debugging Perl, Modules, Object-Oriented Perl.

UNIT IV

TCL/ TK SCRIPTING: TCL Fundamentals, String and Pattern Matching, TCL Data Structures ,Control Flow Commands, Procedures and Scope , EVEL, Working With UNIX, Reflection and Debugging, Script Libraries, TK Fundamentals ,TK by Examples, The Pack Geometry Manager, Binding Commands to X Events, Buttons and Menus, Simple TK Widgets, Entry and List box Widgets Focus, Grabs and Dialogs

UNIT V

PYTHON SCRIPTING: Introduction to Python, Using the Python Interpreter, More Control Flow Tools, Data Structures, Modules, Input and Output, Errors and Exceptions, Classes, Brief Tour of the Standard Library.

Text Books:

- 1. Instructor reference material
- 2. Python Tutorial by Guido van Rossum, and Fred L. Drake, Jr., editor, Release 2.6.4
- 3. Practical Programming in Tcl and Tk by Brent Welch , Updated for Tcl 7.4 and Tk 4.0
- 4. Teach Yourself Perl 5 in 21 days by David Till.

Red Hat Enterprise Linux 4: System Administration Guide Copyright © 2005 Red Hat, Inc

B. Tech III-ISem. (ECE)

L T P (

15A04506 MEMS & MICRO SYSTEMS (MOOCS-I)

UNIT I

Introduction:Introduction to MEMS & Microsystems, Introduction to Microsensors, Evaluation of MEMS, Microsensors, Market Survey, Application of MEMS, MEMS Materials, MEMS Materials Properties. MEMS Materials Properties.

UNIT II

Microelectronic Technology for MEMS:Microelectronic Technology for MEMS,Micromachining Technology for MEMS, Micromachining Process, Etch Stop Techniques and Microstructure, Surface and Quartz Micromachining, Fabrication of Micromachined Microstructure, Microstereolithography,

UNIT III

Micro Sensors: MEMS Microsensors, ThermalMicrosensors, Mechanical MicromachinedMicrosensors, MEMS Pressure Sensor, MEMS Flow Sensor, Micromachined Flow Sensors, MEMS Inertial Sensors, MEMS Gyro Sensor

UNIT IV

MEMS Accelerometers: Micromachined Micro accelerometers for MEMS, MEMS Accelerometers for Avionics, Temperature Drift and Damping Analysis, Piezoresistive Accelerometer Technology, MEMS Capacitive Accelerometer, MEMS Capacitive Accelerometer Process, MEMS for Space Application.

UNIT V

MEMS Applications: Polymer MEMS & Carbon Nano Tubes CNT, Wafer Bonding & Packaging of MEMS, Interface Electronics for MEMS, Introduction to BioMEMS and Micro Fluidics, Introduction to Bio Nano Technology, Bio Sensors, Fluidics, MEMS for Biomedical Applications (Bio-MEMS)

Text Books:

- NadimMalufKirt Williams "An Introduction to Microelectromechanical Systems Engineering", Second Edition, Artech House, Inc. Boston London, International Standard Book Number: 1-58053-590-9.
- 2. Varadan, V KandVaradan "Microsensors, actuators, MEMS, and electronics for smart structures" Rai-Choudhury P (ed.) Handbook of Microlithography, Micromachining, and Microfabrication, SPIE OpticalEngineeringPress

B. Tech III-ISem. (ECE)

LTP

15A04507 IC APPLICATIONS LABORATORY

All experiments are based upon 741 / TL 082/ASLK Kits.

1. Study the characteristics of negative feedback amplifier

Aim: Design the following amplifiers:

- a) A unity gain amplifier
- b) A non-inverting amplifier with a gain of 'A'
- c) An inverting amplifier with a gain of 'A'

Apply a square wave of fixed amplitude and study the effect of slew rate on the three type of amplifiers.

Applications:

- Amplifying bioelectric potentials (ECG, EEG, EMG, EOG) and piezoelectric with high output impedance.
- Amplifying sensor output signals (temperature sensors, humidity sensors, pressure sensors etc.)

Sample questions

Explain the need for two stages in any instrumentation amplifier.

Why CMRR is high for instrumentation amplifiers?

Give some examples for low voltage, low frequency and higher output impedance signals.

How does the tolerances of resistors affect the gain of the instrumentation amplifier?

2. Design of an instrumentation amplifier

Aim:Design an instrumentation amplifier of a differential mode gain of 'A' using three amplifiers.

Applications:

- Used in measuring instruments designed for achieving high accuracy and high stability.
- Used for amplifying low voltage, low frequency and higher output impedance signals.

Sample questions

Explain the need for two stages in any instrumentation amplifier.

Why CMRR is high for instrumentation amplifiers?

Give some examples for low voltage, low frequency and higher output impedance signals.

How does the tolerances of resistors affect the gain of the instrumentation amplifier?

3. Study the characteristics of regenerative feedback system with extension to design an astablemultivibrator

Aim:Design and test an astablemultivibrator for a given frequency.

Applications

- It can be used in signal generators and generation of timing signals.
- It can be used in code generators and trigger circuits.

Sample question

Discuss the difference between a stable and bi-stable multivibrator.

Discuss the frequency limitation of astablemultivibrator.

Discuss the various applications of bi-stable multivibrator.

4. Study the characteristics of integrator circuit

Aim:Design and test the integrator for a given time constant.

Applications

- Used in function generators, PI/PID controllers.
- Used in analog computers, analog-to-digital converters and wave-shaping circuits.
- Used as a charge amplifier.

Sample questions

Compare the output with that of ideal integrator.

How will you design a differentiator and mention its drawback.

Discuss the limitation of the output voltage of the integrator.

How will you obtain drift compensation in an inverting integrator?

5. Design of Analog filters - I

Aim:Design a second order butterworth band-pass filter for the given higher and lower cut-off frequencies.

Applications:

- Used in signal conditioning circuits for processing audio signals.
- Used in measuring instruments.
- Used in radio receivers.

Sample questions

Discuss the effect of order of the filter on frequency response.

How will you vary Q factor of the frequency response.

Discuss the need for going to Sallen Key circuit.

Compare the performance of Butterworth filter with that of Chebyshev filter.

C Design of Angles filters

Design of Analog filters – II

Aim:Design and test a notch filter to eliminate the 50Hz power line frequency.

Applications

- Used for removing power supply interference.
- Used for removing spur in RF signals.

Sample questions

Explain the effect of supply frequency interference while amplifying sensor signals.

Suggest a method for adjusting the Q factor of the frequency response of notch filter.

What is the purpose of going for Twin T notch filter circuit?

Design of a self-tuned Filter

Aim: Design and test a high-Q Band pass self-tuned filter for a given center frequency. **Applications:**

• Used in spectrum analyzers

Sample Question:

Discuss the effect of the harmonics when a square wave is applied to the filter Determine the lock range of the self-tuned filter

8. Design of a function generator

Aim: Design and test a function generator that can generate square wave and triangular wave output for a given frequency.

Applications:

- Used in testing, measuring instruments and radio receivers.
- Used for obtaining frequency response of devices and circuits.
- Used for testing and servicing of Electronic equipments.
- Used in Electronic musical instruments.
- Used for obtaining audiograms (Threshold of audibility Vs frequency)

Sample questions

Discuss typical specifications of a general purpose function generator.

How can you obtain reasonably accurate sine wave from triangular wave.

Discuss the reason for higher distortion in sine wave produced by function generators. What do you mean by Duty cycle and how can you vary the same in a function generator?

9. Design of a Voltage Controlled Oscillator

Aim:Design and test voltage controlled oscillator for a given specification (voltage range and frequency range).

Applications:

- Used in Phase Lock Loop (PLL) circuits.
- Used in frequency modulation circuits.
- Used in Function generators
- Used in frequency Synthesizers of Communication equipments.

Sample Questions

Discuss the following characteristics of a voltage controlled Oscillator.

- Tuning range
- ii) Tuning gain and
- iii) Phase noise

Compare the performances VCO based Harmonic Oscillators and Relaxation Oscillators

What are the various methods adopted in controlling the frequency of oscillation in VCOs

Discuss any one method of obtaining FM demodulation using a VCO.

10. Design of a Phase Locked Loop(PLL)

Aim:Design and test a PLL to get locked to a given frequency 'f'. Measure the locking range of the system and also measure the change in phase of the output signal as input frequency is varied with in the lock range.

Applications:

- Used in tracking Band pass filter for Angle Modulated signals.
- Used in frequency divider and frequency multiplier circuits.
- Used as Amplifiers for Angle Modulated signals.
- Used in AM and FM Demodulators
- Used in Suppressed Carrier Recovery Circuits

Sample Questions:

Draw the block diagram of a PLL based divider and multiplier and explain the functions performed by each block.

Distinguish between Lock range and Capture Range, Explain the method of estimating the same for a given PLL circuit.

Discuss the differences between Analog Phase Lock Loop and Digital Phase Lock Loop.

11. Automatic Gain Control (AGC) Automatic Volume Control (AVC)

Aim:Design and test an AGC system for a given peak amplitude of sine-wave output.

Applications

- Used in AM Receivers
- Used as Voice Operated Gain Adjusting Device (VOGAD) in Radio Transmitters
- Used in Telephone speech Recorders
- Used in Radar Systems

Sample Questions

Explain clearly the need for AGC in AM Receivers.

Draw the block diagram of feedback and feed forward AGC systems and explain the functions of each block.

Discuss any one gain control mechanism present in biological systems.

How can you use AGC in a Received Signal Strength Indicator (RSSI)

12. Design of a low drop out regulator

Aim:Design and test a Low Dropout regulator using op-amps for a given voltage regulation characteristic and compare the characteristics with TPS7250 IC

Applications:

- Used in Power Supply of all Electronic Instruments and Equipment's
- Used as Reference Power Supply in Comparators
- Used in Emergency Power Supplies
- Used in Current Sources

Sample Questions

Distinguish between Load Regulation and Line Regulation.

Mention some of the other important parameters in selecting a LDO.

What is power supply rejection ratio (PSRR)?

13. DC-DC Converter

Aim: Design of a switched mode power supply that can provide a regulated output voltage for a given input range using the TPS40200 IC

Applications:

- Used is DSL/Cable Modems
- Used in Distributed Power Systems

Sample Questions

Discuss the effect of varying the input voltage for a fixed regulated output voltage over the duty cycle of PWM.

References:

- TL082: Data Sheet: http://www.ti.com/lit/ds/symlink/tl082.pdf
 Application Note: http://www.ti.com/lit/ds/symlink/tl082.pdf
- 2. MPY634: Data Sheet: http://www.ti.com/lit/ds/symlink/mpy634.pdf
 Application Note: http://www.ti.com/lit/ds/symlink/mpy634.pdf
- 3. ASLK Pro Manual: ASLK Manual

B. Tech III-ISem. (ECE)

LTPC

15A04508

DIGITAL COMMUNICATIONS SYSTEMS LABORATORY

Course Outcomes:

 After completion of the course the students will be able to experience real time behavior of different digital modulation schemes and technically visualize spectra of different digital modulation schemes

Minimum of Ten experiments to be conducted (Five from each Part-A&B) HARDWARE EXPERIMENTS (PART – A)

- 1. Time division multiplexing.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Differential phase shift keying.
- 7. QPSK modulation and demodulation.

SOFTWARE EXPERIMENTS (PART-B)

Modeling of Digital Communications using MATLAB

- 1. Sampling Theorem verification.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Frequency shift keying.
- 5. Phase shift keying.
- 6. Differential phase shift keying.
- 7. QPSK modulation and demodulation.

Equipment required for Laboratories:

- 1. RPS 0 30 V
- 2. CROs 0 20 M Hz.
- 3. Function Generators 0 1 M Hz 4. RF Generators (3 Nos.) 0 – 1000 M Hz.
- Multimeters
- Lab Experimental kit for Pulse Code Modulation (Experiment No.3 of part A)
- 7. Required Electronic Components (Active and Passive) which include required ICs

- Arbitrary Wave form generators/ PNS generators 2 Nos. (to generate 8. digital data at required data rates)
 Licensed MATLAB software for 30 users with required tool boxes.
- 9.

B. Tech III-ISem. (ECE)

L T P C 2 0 2 0

15A99501 SOCIAL VALUES & ETHICS (AUDIT COURSE)

(Common to all Branches)

UNIT - I

Introduction and Basic Concepts of Society: Family and Society: Concept of family, community, PRIs and other community based organizations and society, growing up in the family – dynamics and impact, Human values, Gender Justice.

Channels of Youth Moments for National Building:NSS & NCC: History, philosophy, aims & objectives; Emblems, flags, mottos, songs, badge etc.; Organizational structure, roles and responsibilities of various NSS functionaries. Nehru Yuva Kendra (NYK): Activities – Socio Cultural and Sports.

UNIT - II

Activities of NSS, NCC, NYK:

Citizenship: Basic Features Constitution of India, Fundamental Rights and Fundamental Duties, Human Rights, Consumer awareness and the legal rights of the consumer, RTI.

Youth and Crime: Sociological and psychological Factors influencing youth crime, Peer Mentoring in preventing crimes, Awareness about Anti-Ragging, Cyber Crime and its prevention, Juvenile Justice

Social Harmony and National Integration: Indian history and culture, Role of youth in peace-building and conflict resolution, Role of youth in Nation building.

UNIT – III

Environment Issues: Environment conservation, enrichment and Sustainability, Climate change, Waste management, Natural resource management (Rain water harvesting, energy conservation, waste land development, soil conservations and afforestation).

Health, Hygiene & Sanitation: Definition, needs and scope of health education, Food and Nutrition, Safe drinking water, Sanitation, Swachh Bharat Abhiyan.

Disaster Management: Introduction to Disaster Management, classification of disasters, Role of youth in Disaster Management. Home Nursing, First Aid.

Civil/ Self Defense: Civil defense services, aims and objectives of civil defense, Need for self defense training – Teakwondo, Judo, karate etc.,

UNIT - IV

Gender Sensitization: Understanding Gender – Gender inequality – Role of Family, Society and State; Challenges – Declining Sex Ratio – Sexual Harassment – Domestic

Violence; Gender Equality – Initiatives of Government – Schemes, Law; Initiates of NGOs – Awareness, Movements;

UNIT - V

Physical Education: Games & Sports: Health and Recreation – Biolagical basis of Physical activity – benefiets of exercise – Physical, Psychological, Social; Physiology of Musucular Activity, Respiration, Blood Circulation.

Yoga: Basics of Yoga – Yoga Protocol, Postures, Asanas, Pranayama: Introduction of Kriyas, Bandhas and Mudras.

TEXT BOOKS:

- 1. NSS MANUAL
- SOCIETY AND ENVIRONMENT: A.S.Chauha, Jain Brothers Publications, 6th Edition, 2006
- 3. INDIAN SOCIAL PROBLEM: G.R.Madan, Asian Publisher House
- 4. INDIAN SOCIAL PROBLEM: Ram Ahuja, Rawat Publications
- 5. HUMAN SOCIETY: Kingsley Davis, Macmillan
- 6. SOCIETY: Mac Iver D Page, Macmillan
- 7. SOCIOLOGY THEMES AND PERSPECTIVES: Michael Honalambos, Oxford University Press
- 8. CONSTITUTION OF INDIA: D.D.Basu, Lexis Nexis Butterworth Publishers
- 9. National Youth Policy 2014 (available on www.yas.nic.in)
- 10. TOWARS A WORLD OF EQUALS: A.Suneetha, Uma Bhrugudanda, DuggiralaVasantha, Rama Melkote, VasudhaNagraj, Asma Rasheed, GoguShyamala, Deepa Streenivas and Susie Tharu
- 10. LIGHT ON YOGA :B.K.S.Iyengar, Penguin Random House Publishers

www.un.org

www.india.gov.in

www.yas.nic.in

http://www.who.int/countries/ind/en/

http://www.ndma.gov.in

http://ayush.gov.in/event/common-yoga-protocol-2016-0

B. Tech III-IISem. (ECE)

LTPC

15A52301 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

<u>Course Objectives:</u> The objective of this course is to equip the student with the basic inputs of Managerial Economics and Economic Environment of business and to impart analytical skills in helping them take sound financial decisions for achieving higher organizational productivity.

Unit I

INTRODUCTION TO MANAGERIAL ECONOMICS

Managerial Economics – Definition- Nature- Scope - Contemporary importance of Managerial Economics - Relationship of Managerial Economics with Financial Accounting and Management. **Demand Analysis**: Concept of Demand-Demand Function - Law of Demand - Elasticity of Demand- Significance - Types of Elasticity - Measurement of elasticity of demand - Demand Forecasting- factors governing demand forecasting- methods of demand forecasting.

UNIT II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function- Least cost combination- Short-run and Long- run production function- Isoquants and Isocosts, MRTS - Cobb-Douglas production function - Laws of returns - Internal and External economies of scale - **Cost Analysis**: Cost concepts and cost behavior- Break-Even Analysis (BEA) -Determination of Break Even Point (Simple Problems)-Managerial significance and limitations of Break- Even Point.

UNIT III

INTRODUCTION TO MARKETS AND NEW ECONOMIC ENVIRONMENT

Market structures: Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition- Monopoly-Monopolistic Competition-Oligopoly-Price-Output Determination - Pricing Methods and Strategies-Forms of Business Organizations- Sole Proprietorship- Partnership - Joint Stock Companies - Public Sector Enterprises - New Economic Environment- Economic Liberalization - Privatization - Globalization.

UNIT IV

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Financial Accounting – Concept - Emerging need and Importance - Double-Entry Book Keeping- Journal - Ledger – Trial Balance - Financial Statements - Trading Account – Profit & Loss Account – Balance Sheet (with simple adjustments). Financial Analysis – Ratios – Liquidity, Leverage, Profitability, and Activity Ratios (simple problems).

UNIT V CAPITAL AND CAPITAL BUDGETING

Concept of Capital - Over and Undercapitalization - Remedial Measures - Sources of Shot term and Long term Capital - Estimating Working Capital Requirements - Capital Budgeting - Features of Capital Budgeting Proposals - Methods and Evaluation of Capital Budgeting Projects - Pay Back Method - Accounting Rate of Return (ARR) - Net Present Value (NPV) - Internal Rate Return (IRR) Method (simple problems)

<u>Learning Outcome</u>: After completion of this course, the student will able to understand various aspects of Managerial Economics and analysis of financial statements and inputs therein will help them to make sound and effective decisions under different economic environment and market situations.

TEXT BOOKS:

- 1. Managerial Economics 3/e, Ahuja H.L, S.Chand, 2013.
- 2. Financial Management, I.M.Pandey, Vikas Publications, 2013.

REFERENCES

- 1. Managerial Economics and Financial Analysis, 1/e, Aryasri, TMH, 2013.
- 2. Managerial Economics and Financial Analysis, S.A. Siddiqui and A.S. Siddiqui, New Age International, 2013.
- **3.** Accounting and Financial Management, T.S.Reddy& Y. Hariprasad Reddy, Margham Publishers.

B. Tech III-IISem. (ECE)

L T P C 3 1 0 3

15A04601 MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

- To understand the architecture of 8086 MICROPROCESSOR.
- To learn various 8086 Instruction set and Assembler Directives.
- To learn 8051 assembly Language programming

Course Outcomes:

After completion of this subject the students will be able to:

- 1. Do programming with 8086 microprocessors
- 2. Understand concepts of Intel x86 series of processors
- 3. Program MSP 430 for designing any basic Embedded System
- Design and implement some specific real time applications Using MSP 430 low power microcontroller.

UNIT I

Introduction-8086 Architecture-Block Diagram, Register Organization, Flag Register, Pin Diagram, Timing and Control Signals, System Timing Diagrams, Memory Segmentation, Interrupt structure of 8086 and Interrupt Vector Table. Memory organization and memory banks accessing.

UNIT II

Instruction Formats -Addressing Modes-Instruction Set of 8086, Assembler Directives-Macros and Procedures.- Sorting, Multiplication, Division and multi byte arithmetic code conversion. String Manipulation instructions-Simple ALPs.

UNIT III

Low power RISC MSP430 – block diagram, features and architecture, Variants of the MSP430 family viz. MSP430x2x, MSP430x4x, MSP430x5x and their targeted applications, MSP430x5x series block diagram, Addressing modes, Instruction set Memory address space, on-chip peripherals (analog and digital), and Register sets. Sample embedded system on MSP430 microcontroller.

UNIT-IV

I/O ports pull up/down resistors concepts, Interrupts and interrupt programming. Watchdog timer. System clocks. Low Power aspects of MSP430: low power modes, Active vs Standby current consumption, FRAM vs Flash for low power & reliability.

Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA.

UNIT-V:

Serial communication basics, Synchronous/Asynchronous interfaces (like UART, USB, SPI, and I2C). UART protocol, I2C protocol, SPI protocol. Implementing and programming UART, I2C, SPI interface using MSP430, Interfacing external devices. Implementing Embedded Wi-Fi using CC3100

Text Books:

- "Microprocessor and Microcontrollers", N. Senthil Kumar, M. Saravanan, S. Jeevanathan,
 - Oxford Publishers. 1 st Edition, 2010
- "The X86 Microprocessors , Architecture, Programming and Inerfacing" , Lyla B. Das, Pearson Publications. 2010
- 3. MSP430 microcontroller basics. John H. Davies, Newnes Publication, I st Edition, 2008

References:

http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode http://processors.wiki.ti.com/index.php/MSP430_16-Bit_Ultra-Low_Power_MCU_Training

B. Tech III-IISem. (ECE)

LTPO

15A04602 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Objectives:

- Studies on various analyzers and signal generators and can analyze the frequency component of a wave generated and its distortion levels.
- Studies on the difference between the various parameters which are to be measured that are getting out from the different sensors.

Course Outcomes:

After the completion of the course the students will be able to

- Understand basic principles involved in the meters for measuring voltage, current, resistance, frequency and so on.
- Employ CRO for measuring voltage, current, resistance, frequency and so on.
- Understand principles of measurements associated with different bridges.
- Get complete knowledge regarding working of advanced instruments such as logic analyzers and spectrum analyzers.

UNIT-I

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters-multirange, range extension/solid state and differential voltmeters, AC voltmeters –multirange, range extension. Thermocouple type RF ammeter, ohm meters, series type, shunt type, multimeter for voltage, current and resistance measurements

UNIT-II

Oscilloscopes: Standard specifications of CRO,CRT features, derivation of deflection sensitivity, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive, and attenuator type, triggered sweep CRO, and Delayed sweep, dual trace/beam CRO, Measurement of amplitude, frequency and phase (Lissajous method). Principles of sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

UNIT-III

Signal generators-fixed and variable, AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach). Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

UNIT-IV

Review of DC Bridges: Wheatstone bridge, Wein Bridge, errors and precautions in using bridges, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance- SchearingBridge.Kelvin Bridge, Q-meter, EMI and EMC, Interference and noise reduction techniques.

UNIT-V

Sensors and Transducers - Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples, and thermistors), Velocity, Acceleration, Vibration, pH measurement Signal Conditioning Circuits.

TEXT BOOKS:

- 1. A.D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 5th Edition, 2002.
- H.S.Kalsi, "Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- 3. K. Lal Kishore, "Electronic Measurements & Instrumentations", Pearson Education, 2009.

REFERENCES:

- H.S.Kalsi, "Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- 2. Ernest O Doebelin and Dhanesh N Manik, "Measurement Systems Application and Design", TMH, 5th Edition, 2009.
- 3. Oliver and Cage, "Electronic Measurement and Instrumentation", TMH.
- 4. Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", Pearson Education, 2nd Ed., 2004.
- David A. Bell, "Electronic Instrumentation & Measurements", PHI, 2nd Edition, 2003.

B. Tech III-IISem. (ECE)

LTPC

15A04603 DIGITAL SIGNAL PROCESSING

Course Objectives:

- Program a DSP chip to filter signals using either assembly language or a C compiler for the chip.
- Use Z transforms and discrete time Fourier transforms to analyze a digital system.

Course Outcomes:

At the end of the course, the student should be able to:

- Formulate engineering problems in terms of DSP tasks.
- Apply engineering problems solving strategies to DSP problems.
- Design and test DSP algorithms.
- Analyze digital and analog signals and systems.
- Analyze and compare different signal processing strategies.

UNIT-I

Review of discrete-time signals and systems – Time domain analysis of discrete-time signals & systems, Frequency domain analysis of discrete-time signals and systems. **Discrete Fourier Transform:** Frequency-domain sampling and reconstruction of discrete-time signals, Discrete Fourier Transform (DFT), The DFT as a linear transformation, Relationship of the DFT to other transforms, Properties of DFT, Linear filtering methods based on DFT, Frequency analysis of signals using the DFT.

UNIT-II

Efficient computation of the DFT – Direct computation of DFT, Divide and conquer approach to computation of DFT, Radix-2, Radix-4, and Split radix FFT algorithms, Implementation of FFT algorithms, Applications of FFT algorithms – Efficient computation of the DFT of two real sequences, 2N point real sequences, Use of the FFT algorithm in linear filtering and correlation, A linear filtering approach to computation of the DFT- the Goertzel, and the Chirp-z transform algorithms, Quantization errors in the computation of DFT.

UNIT-III

Structures for the realization of discrete-time systems, Structures for FIR systems - Direct form, Cascade form, Frequency sampling, and Lattice structures, Structures for IIR systems - Direct form, Signal flow graphs & Transposed, Cascade form, Parallel form and Lattice structures, Conversion from Lattice structure to direct form, lattice - Ladder structure.

UNIT-IV

General considerations – Causality and its implications, Characteristics of practical Frequency Selective Filters, Design of Finite Impulse Response (FIR) filters – Symmetric and asymmetric FIR filters, Design of linear phase FIR filters using windows, Design of linear phase FIR filters by the frequency sampling method, Design of optimum equi-ripple linear phase FIR filters, Comparison of design methods for linear phase FIR filters, Design of Impulse Invariance Response (IIR) filters from analog filters – IIR filter design by approximation of derivatives, by Impulse invariance, and by bilinear transformation methods, Characteristics of commonly used analog filters, Design examples of both FIR and IIR filters, Frequency transformation in the analog and digital domains, Illustrative problems.

UNIT-V

Introduction, Decimation, and interpolation, Sampling rate conversion by a rational factor, Implementation of sampling rate conversion, Multistage implementation of sampling rate conversion, Sampling rate conversion of bandpass signals, Sampling rate conversion by arbitrary factor, Applications of multirate signal processing.

TEXT BOOKS:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4th ed., 2007.
- 2. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3rd edition, 2009.

REFERENCES:

- A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd ed., Pearson Education, 2012.
- 2. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press. 2011.
- 3. Li Tan, Jean Jiang, "Digital Signal Processing, Fundamentals and Applications," Academic Press, Second Edition, 2013.

B. Tech III-IISem. (ECE)

L T P (

15A04604 VLSI DESIGN

Course Objectives:

- To understand VLSI circuit design processes.
- To understand basic circuit concepts and designing Arithmetic Building Blocks.
- To have an overview of Low power VLSI.

Course Outcomes:

- Complete Knowledge about Fabrication process of ICs
- Able to design VLSIcircuits as per specifications given.
- Capable of optimizingthe design of Arithmetic / logic building Blocks at all levels of Design/Fabrication.
- Can implement circuit through various design styles (semi- Custom, Full Custom)

UNIT-I

Introduction: Basic steps of IC fabrication, PMOS, NMOS, CMOS &BiCMOS, and SOI process technologies, MOS transistors - MOS transistor switches - Basic gate using switches, working polartransistor Resistors and Capacitors.

Basic Electrical Properties of MOS and BiCMOS Circuits: Working of MOS transistors – threshold voltage; MOS design equations: I_{ds} – V_{ds} relationships, Threshold Voltage, Body effect, Channel length modulation , g_m , g_{ds} , figure of merit ω_0 ; Pass transistor, NMOS Inverter, CMOS Inverter analysis and design, Various pull ups loads, Bi-CMOS Inverters.

UNIT-II

Basic Circuit Concepts: Capacitance, resistance estimations- Sheet Resistance R_s, MOSDivice Capacitances, routing Capacitance, Analytic Inverter Delays, Driving large Capacitive Loads, Fan-in and fan-out.

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT-III

Gate level Design: Logic gates and other complex gates, Switch logic, Alternate gate circuits.

Physical Design: Floor-Planning, Placement, routing, Power delay estimation, Clock and Power routing

UNIT-IV

Subsystem Design: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High Density Memory Elements.

VLSI Design styles: Full-custom, Standard Cells, Gate-arrays, FPGAs, CPLDs and Design Approach for Full-custom and Semi-custom devices.

UNIT-V

VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation, Layout, Design capture tools, Design Verification Tools.

Test and Testability: Fault-modeling and simulation, test generation, design for testability, Built-in-self-test.

TEXT BOOKS:

- 1. Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, "Essentials of VLSI circuits and systems", PHI, 2013 Edition.
- 2. K.Lal Kishore and V.S.V. Prabhakar, "VLSI Design", IK Publishers

REFERENCES:

- Weste and Eshraghian, "Principles of CMOS VLSI Design", Pearson Education, 1999.
- 2. Wayne Wolf, "Modern VLSI Design", Pearson Education, 3rd Edition, 1997.
- 3. John P. Uyemura, "Chip Design for Submicron VLSI: CMOS layout and Simulation", Thomson Learning.
- 4. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John wiley, 2003.
- 5. John M. Rabaey, "Digital Integrated Circuits", PHI, EEE, 1997.

B. Tech III-IISem. (ECE)

L T P C 3 1 0 3

15A04605 MATLAB PROGRAMMING (CBCC-I)

Objectives:

- Understand the MATLAB Desktop, Command window and the Graph Window
- Be able to do simple and complex calculation using MATLAB
- Be able to carry out numerical computations and analyses
- Understand the mathematical concepts upon which numerical methods rely
- Ensure you can competently use the MATLAB programming environment
- Understand the tools that are essential in solving engineering problems

1. UNIT-I:Introduction to MATLAB

MATLAB Interactive Sessions, Menus and the toolbar, computing with MATLAB, Script files and the Editor Debugger, MATLAB Help System, Programming in MATLAB.

2. UNIT-II:Arrays

Arrays, Multidimensional Arrays, Element by Element Operations, Polynomial Operations Using Arrays, Cell Arrays, Structure Arrays.

3. UNIT-III:Functions & Files

Elementary Mathematical Functions, User Defined Functions, Advanced Function Programming, Working with Data Files.

4. UNIT-IV:Programming Techniques

Program Design and Development, Relational Operators and Logical Variables, Logical Operators and Functions, Conditional Statements, Loops, the Switch Structure, Debugging Mat Lab Programs.

Plotting :XY- plotting functions, Subplots and Overlay plots, Special Plot types, Interactive plotting, Function Discovery, Regression, 3-D plots.

5. UNIT-V:Linear Algebraic Equations

Elementary Solution Methods, Matrix Methods for (Linear Equations), Cramer's Method, Undet- ermined Systems, Order Systems.

TEXT BOOKS:

- 1. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed., Johns Hopkins University Press, 1996.
- 2. B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, 1994 (out of print) 3. L. Elden, Matrix Methods in Data Mining and Pattern Recognition, SIAM Press, 2007

Misc. Useful Information:

- NA-digest, http://www.netlib.org/na-digest-html
- Society for Industrial and Applied Mathematics (SIAM), see http://www.siam.org
- Google "MATLAB Primer" or "MATLAB Tutorial" and you should be able to access lots of free MATLAB.

B. Tech III-IISem. (ECE)

L T P (

15A04606 INDUSTRIAL ELECTRONICS (CBCC-I)

Course Outcome:

After completion of the course the students will be able to

- Get an overview of semi-conductor devices (such as PN junction diode & Transistor) and their switching characteristics.
- Understand the characteristics of AC to DC converters.
- Understand about the practical applications Electronics in industries.

UNIT I

Scope of industrial Electronics, Semiconductors, Merits of semiconductors, crystalline structure, Intrinsic semiconductors, Extrinsic semiconductors, current flow in semiconductor, Open-circuited p-n junction, Diode resistance, Zener diode, Photoconductors and junction photo diodes, Photo voltaic effect, Light emitting diodes (LED)

UNIT II

Introduction, The junction transistor, Conventions for polarities of voltages and currents, Open circuited transistor, Transistor biased in the active region, Current components in transistors, Currents in a transistor, Emitter efficiency, Transport factor and transistor- α , Dynamic emitter resistance, Transistor as an amplifier, Transistor construction, Letter symbols for semiconductor Devices, Characteristic curves of junction transistor in common configuration, static characteristic curves of PNP junction transistor in common emitter configuration. The transistor in common collector Configuration.

UNIT III

AC to DC converters- Introduction, Classification of Rectifiers, Half wave Rectifiers, Full wave Rectifiers, Comparison of Half wave and full wave rectifiers, Bridge Rectifiers, Bridge Rectifier meter, Voltage multiplying Rectifier circuits, Capacitor filter, LC Filter, Metal Rectifiers, Regulated Power Supplies, Classification of Voltage Regulators, Short period Accuracy of Regulators, Long period .Accuracy of Voltage Regulator, Principle of automatic voltage Regulator, Simple D.C. Voltage stabilizer using Zener diode, D.C. Voltage Regulators, Series Voltage Regulators, Complete series voltage regulator circuit, Simple series voltage regulator.

UNIT IV

Resistance welding controls: Introduction, Resistance welding process, Basic Circuit for A.C. resistance welding, Types of Resistance welding, Electronic welding control used in Resistance welding, Energy storage welding. **Induction heating:** Principle of induction heating, Theory of Induction heating merits of induction heating, Application of induction heating, High frequency power source of induction heating. **Dielectric heating:** Principle of dielectric heating, theory of dielectric heating, dielectric properties of typical materials, electrodes used in dielectric heating, method of coupling of electrodes to the R.F. generator, Thermal losses in Dielectric heating, Applications.

UNIT V:

Ultrasonics: Introduction, Generation of Ultrasonic waves, Application of Ultrasonic waves, Ultrasonic stroboscope, ultrasonic as means of communication, ultrasonic flaw detection, Optical image on non-homogeneities, ultrasonic study of structure of matter, Dispersive study of structure of matter, Dispersive and colloidal effect of Ultrasonic, Coagulating action of Ultrasonic, separation of mixtures by ultrasoni8c waves, cutting and machining of hard materials by ultrasonic vibrations, Degassing of liquids by ultrasonic waves, Physico-chemical effects of ultrasonics, chemical effects of ultrasonics, Thermal effects of Ultrasonics, soldering and welding by ultrasonics, Ultrasonic Drying

Text Books:

- 1. G. K. Mithal, "Industrial Electronics", Khanna Publishers, Delhi, 2000.
- 2. J.Gnanavadivel, R.Dhanasekaran, P.Maruthupandi, "Industrial Electronics", Anuradha Publications, 2011.

Reference Books:

- 1. F. D. Petruzulla, "Industrial Electronics", McGraw Hill, Singapore, 1996.
- 2. M. H. Rashid, "power Electronics Circuits, Devices and Application", PHI, 3rd edition, 2004.
- G. M. Chute and R. D. Chute, "Electronics in Industry", McGraw Hill Ltd, Tokyo, 1995.

B. Tech III-IISem. (ECE)

L T P (

15A02605 NEURAL NETWORKS & FUZZY LOGIC (CBCC-I)

Course Objectives:

- To analyze basic neural computational models.
- To get in detail knowledge regarding different algorithms related to neural learning
- To study about different issues related probability and fuzziness and different types of fuzzy associative memories.

Course Outcomes:

After completion of the course the students will be able to

- Get an overview of different types of neural network models.
- Understand the functioning of single; multi-layer feed forward neural networks, associative memories and their rules and algorithms.
- Understand about fundamentals of fuzzy logic, their rules and applications.

UNIT

Introduction to Neural Networks: Biological neuron, McCulloh-pitts neuron model, Neuron Modelling for Artificial Neural Systems, Models of Artificial Neural Networks-feedforward and feedback networks, Neural Processing, Learning as approximation, Supervised and unsupervised learning, Neural Network Learning rules- Hebbian, Perceptron, Delta, Widrow-Hoff, Correlation, Winner-Take-All learning rules.

UNIT II

Single-Layer Neural Networks: Classification Model, Features and Decision Regions, Discriminant Functions, Linear Machine and Minimum Distance Classification, Training and Classification using Discrete Perceptron, Single-Layer Continuous Perceptron Networks, Multicategory Single-Layer Perceptron Networks, Hopfield Network – Discrete-time, Gradient type.

Multi-Layer Neural Networks: Linearly Nonseparable Pattern Classification, Delta Learning Rule for Multiperceptron Layer, Generalized Delta Learning Rule, Feed forward Recall and Error Back-propagation training, Learning Factors.

UNIT III

Associative Memories: Basic concepts, Linear Associator, Recurrent Auto associate Memory, Performance Analysis of Recurrent Auto associate Memory, Bidirectional Associate Memory(BAM): Memory Architecture, Association Encoding and Decoding, Stability Considerations, Memory Example and Performance Evaluation, Improved coding of memories, Multidirectional Associative Memory, Associative Memory of Spatial-Temporal Patterns.

UNIT IV

Fuzzy Set– Introduction: Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion.

UNIT V

Fuzzy Logic - Fuzzy Membership, Rules: Membership functions, interference in fuzzy logic, fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzyfications&Defuzzificataions, Fuzzy Controller, Industrial applications.

Text Books:

- JacekM.Zurada," Introdution to Artificial Neural Systems", West Publishing Company
- 2. Timothy J.Ross, "Euzzy Logic with Engineering Applications", Wiley Indian 3rd Edition

Reference Books:

- 1. George J.Klir/Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and apllications", Prentice-Hall Edition
- 2. S.N.Sivanandam, S.Sumathi, S.N.Deepa, "Introduction to Neural Networks using MATLAB 6.0", TMH, 2006.
- S.N.Sivanandam, S.Sumathi, S.N.Deepa, "Introduction to Fuzzy Logic using MATLAB 6.0", TMH, 2006
- 4. Simon Haykins, "Neural Networks", Pearson Education.

B. Tech III-IISem. (ECE)

L T P (

15A01608 INTELLECTUAL PROPERTY RIGHTS (CBCC – I)

COURSE OBJECTIVE:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations.

UNIT - I

Introduction To Intellectual Property: Introduction, Types Of Intellectual Property, International Organizations, Agencies And Treaties, Importance Of Intellectual Property Rights.

UNIT - II

Trade Marks: Purpose And Function Of Trade Marks, Acquisition Of Trade Mark Rights, Protectable Matter, Selecting And Evaluating Trade Mark, Trade Mark Registration Processes.

UNIT - III

Law Of Copy Rights: Fundamental Of Copy Right Law, Originality Of Material, Rights Of Reproduction, Rights To Perform The Work Publicly, Copy Right Ownership Issues, Copy Right Registration, Notice Of Copy Right, International Copy Right Law.

Law Of Patents: Foundation Of Patent Law, Patent Searching Process, Ownership Rights And Transfer

UNIT - IV

Trade Secrets: Trade Secrete Law, Determination Of Trade Secrete Status, Liability For Misappropriations Of Trade Secrets, Protection For Submission, Trade Secrete Litigation.

Unfair Competition: Misappropriation Right Of Publicity, False Advertising.

UNIT - V

New Developments Of Intellectual Property: New Developments In Trade Mark Law; Copy Right Law, Patent Law, Intellectual Property Audits.

International Overview On Intellectual Property, International – Trade Mark Law, Copy Right Law, International Patent Law, International Development In Trade Secrets Law.

TEXT BOOKS & REFERENCES:

- 1. Intellectual Property Rights, Deborah. E. Bouchoux, Cengage Learing.
- 2. Intellectual Property Rights— UnleashmyThe Knowledge Economy, PrabuddhaGanguli, Tate Mc Graw Hill Publishing Company Ltd.,

Course Outcomes:

On completion of this course, the student will have an understanding of the following:

- a) Intellectual Property Rights and what they mean
- b) Trade Marks and Patents and how to register them
- c) Laws Protecting the Trade Marks and Patents
- d) Copy Right and laws related to it.

B. Tech III-IISem. (ECE)

LTPC

15A04607 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Part A: 8086 Microprocessor Programs using NASM/8086 microprocessor kit.

- 1. Introduction to MASM Programming.
- 2. Programs using arithmetic and logical operations
- Programs using string operations and Instruction prefix: Move Block, Reverse string, Sorting, String comparison
- 4. Programs for code conversion
- 5. Multiplication and Division programs
- 6. Sorting and multi byte arithmetic
- 7. Programs using CALL and RET instructions

Part B Embedded C Experiments using MSP430 Microcontroller

- 1. Interfacing and programming GPIO ports in C using MSP430 (blinking LEDs, push buttons)
- 2. Usage of Low Power Modes: (Use MSPEXP430FR5969 as hardware platform and demonstrate the low power modes and measure the active mode and standby mode current)
- 3. Interrupt programming examples through GPIOs
- 4. PWM generation using Timer on MSP430 GPIO
- 5. Interfacing potentiometer with MSP430
- 6. PWM based Speed Control of Motor controlled by potentiometer connected to MSP430 GPIO
- 7. Using ULP advisor in Code Composer Studio on MSP430
- 8. Low Power modes and Energy trace++:
 - a. Enable Energy Trace and Energy Trace ++ modes in CCS
 - b. Compute Total Energy, and Estimated lifetime of an AA battery.

Note : Any six experiment from Part A and Six experiments from Part B are to be conducted

B. Tech III-IISem. (ECE)

LTPC

15A04608 DIGITAL SIGNAL PROCESSING LABORATORY

Course Outcomes:

- Able to design real time DSP systems and real world applications.
- Able to implement DSP algorithms using both fixed and floating point processors.

List of Experiments: (Minimum of 5 experiments are to be conducted from each part)Software Experiments (PART – A)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- Design of FIR filter using windowing technique and verify the frequency response of the filter.
- Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Using DSP Processor kits (Floating point) and Code Composure Studio (CCS) (PART – B)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- 6. Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Equipment/Software Required:

- 1. Licensed MATLAB software with required tool boxes for 30 users.
- 2. DSP floating Processor Kits with Code Composure Studio (8 nos.)
- 3. Function generators
- 4. CROs
- 5. Regulated Power Supplies.

B. Tech III-IISem. (ECE)

LTPC

15A52602 ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS (AELCS) LAB (Audit Course)

1. INTRODUCTION

With increased globalization and rapidly changing industry expectations, employers are looking for the wide cluster of skills to cater to the changing demand. The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information and to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

UNIT-I: COMMUNICATION SKILLS

- 1. Reading Comprehension
- 2. Listening comprehension
- 3. Vocabulary Development
- Common Errors

UNIT-II: WRITING SKILLS

- Report writing
- 2. Resume Preparation
- 3. E-mail Writing

UNIT-III: PRESENTATION SKILLS

- 1. Oral presentation
- 2. Power point presentation
- 3. Poster presentation

UNIT-IV: GETTING READY FOR JOB

- Debates
- 2. Group discussions
- Job Interviews

UNIT-V: INTERPERSONAL SKILLS

- 1. Time Management
- 2. Problem Solving & Decision Making
- 3. Etiquettes

4. LEARNING OUTCOMES:

- Accomplishment of sound vocabulary and its proper use contextually
- Flair in Writing and felicity in written expression.
- Enhanced job prospects.
- Effective Speaking Abilities

5. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infra-structural facilities to accommodate at least 60 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed – 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

6. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and G

- 1. Walden Infotech: Advanced English Communication Skills Lab
- 2. K-VAN SOLUTIONS-Advanced English Language Communication Skills lab
- 3. DELTA's key to the Next Generation TOEFL Test: Advanced Skills Practice.
- 4. TOEFL & GRE(KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- 5. Train2success.com

7. BOOKS RECOMMENDED:

- Objective English for Competitive Exams, Hari Mohana Prasad, 4th edition, Tata Mc Graw Hill.
- Technical Communication by Meenakshi Raman & Sangeeta Sharma, O U Press 3rdEdn. 2015.
- 3. Essay Writing for Exams, AudroneRaskauskiene, Irena Ragaisience&RamuteZemaitience,OUP, 2016
- 4. **Soft Skills for Everyone,** Butterfield Jeff, Cengage Publications, 2011.
- 5. **Management Shapers Series** by Universities Press (India) Pvt Ltd., Himayatnagar, Hyderabad 2008.
- **6. Campus to Corporate,** Gangadhar Joshi, Sage Publications, 2015
- Communicative English, E Suresh Kumar & P. Sreehari, Orient Blackswan, 2009.
- 8. English for Success in Competitive Exams, Philip Sunil Solomon OUP, 2015

B. Tech IV-ISem. (ECE)

15A04701 OPTICAL FIBRE COMMUNICATION

Course Objectives:

- The course gives an account of optical Communication starting with the basic of fiberoptics.
- To give clear understanding of various components such as Optical fibers, Photo detectors, connectors, coupling devices and optical amplifiers Knowledge of various components used in optical networks.
- Knowledge about Various topologies used to construct an optical networks.

Course Outcomes:

- Analyze the performance of both digital and analog optical fiber systems
- Calculate the system bandwidth, noise, probability of error and maximum usable bit rate of a digital fiber system
- Calculate the system link loss, distortion and dynamic range of an RF photonic link
- To perform characteristics of fiber sources and detectors, design as well as conduct experiment in software and hardware, and analyze the results to provide valid conclusions.

UNIT-I

Introduction to Optical Fibers: Evolution of fiber optic system- Element of an Optical Fiber Transmission link- Ray Optics-Optical Fiber Modes and Configurations –Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes –Single Mode Fibers-Graded Index fiber structure.

UNIT-II

Signal Degradation Optical Fibers: Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides - Information Capacity determination –Group Delay- Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling –Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT-III

Fiber Optical Sources and Coupling: Direct and indirect Band gap materials-LED structures –Light source materials –Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition –Rate equations –External Quantum efficiency –Resonant frequencies –Temperature effects, Introduction to Quantum laser, source-to-fiber Power Launching, Lensing schemes, Fiber –to- Fiber joints, Fiber splicing.

UNIT-IV

Fiber Optical Receivers : PIN and APD diodes –Photo detector noise, SNR, Detector Response time, Avalanche Multiplication Noise –Comparison of Photo detectors – Fundamental Receiver Operation – preamplifiers, Error Sources –Receiver Configuration –Probability of Error – Quantum Limit.

UNIT-V

System Designand Applications: Design of Analog Systems: system specification, power budget, bandwidth budget.

Design of Digital Systems: system specification, rise time budget, power budget, Receiver sensitivity.

Text Books:

- Gerd Keiser, "Optical Fiber Communication" McGraw –Hill International, Singapore, 3rd ed., 2000.
- J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 1994.

References:

- Max Ming-Kang Liu, "Principles and Applications of Optical Communications", TMH, 2010.
- S.C.Gupta, "Text book on optical fiber communication and its applications", PHI, 2005.
- 3. Satish Kumar, "Fundamentals of Optical Fiber communications", PHI, 2009.

B. Tech IV-ISem. (ECE) 3 1 0 3

15A04702 EMBEDDED SYSTEMS

Course Objectives:

- To understand the fundamental concepts of Embedded systems.
- To learn the kernel of RTOS, architecture of ARM processor.

Course Outcomes:

After completion the students will be able to

- Design of embedded systems leading to 32-bit application development.
- Understand hardware-interfacing concepts to connect digital as well as analog sensors while ensuring low power considerations.
- Review and implement the protocols used by microcontroller to communicate with external sensors and actuators in real world.
- Understand Embedded Networking and IoT concepts based upon connected MCUs

UNIT-I

Introduction to Embedded Systems

Embedded system introduction, host and target concept, embedded applications, features and architecture considerations for embedded systems- ROM, RAM, timers; data and address bus concept, Embedded Processor and their types, Memory types, overview of design process of embedded systems, programming languages and tools for embedded design

UNIT-II

Embedded processor architecture

CISC Vs RISC design philosophy, Von-Neumann Vs Harvard architecture. Introduction to ARM architecture and Cortex – M series, Introduction to the TM4C family viz. TM4C123x & TM4C129x and its targeted applications. TM4C block diagram, address space, on-chip peripherals (analog and digital) Register sets, Addressing modes and instruction set basics.

UNIT- III

Overview of Microcontroller and Embedded Systems

Embedded hardware and various building blocks, Processor Selection for an Embedded System , Interfacing Processor, Memories and I/O Devices, I/O Devices and

I/O interfacing concepts, Timer and Counting Devices, Serial Communication and Advanced I/O, Buses between the Networked Multiple Devices. Embedded System Design and Co-design Issues in System Development Process, Design Cycle in the Development Phase for an Embedded System, Uses of Target System or its Emulator and In-Circuit Emulator (ICE), Use of Software Tools for Development of an Embedded System Design metrics of embedded systems - low power, high performance, engineering cost, time-to-market.

UNIT-IV

Microcontroller fundamentals for basic programming

I/O pin multiplexing, pull up/down registers, GPIO control, Memory Mapped Peripherals, programming System registers, Watchdog Timer, need of low power for embedded systems, System Clocks and control, Hibernation Module on TM4C, Active vs Standby current consumption. Introduction to Interrupts, Interrupt vector table, interrupt programming. Basic Timer, Real Time Clock (RTC), Motion Control Peripherals: PWM Module & Quadrature Encoder Interface (QEI).

Unit-V

Embedded communications protocols and Internet of things

Synchronous/Asynchronous interfaces (like UART, SPI, I2C, USB), serial communication basics, baud rate concepts, Interfacing digital and analog external device, Implementing and programming UART, SPI and I2C, SPI interface using TM4C.Case Study: Tiva based embedded system application using the interface protocols for communication with external devices "Sensor Hub BoosterPack" Embedded Networking fundamentals, IoT overview and architecture, Overview of wireless sensor networks and design examples. Adding Wi-Fi capability to the Microcontroller, Embedded Wi-Fi, User APIs for Wireless and Networking applications Building IoT applications using CC3100 user API.

Case Study: Tiva based Embedded Networking Application: "Smart Plug with Remote Disconnect and Wi-Fi Connectivity"

Text Books:

- 1. Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers, 2014, Create space publications ISBN: 978-1463590154.
- 2. Embedded Systems: Introduction to ARM Cortex M Microcontrollers, 5th edition
 - Jonathan W Valvano, Createspace publications ISBN-13: 978-1477508992
- 3. Embedded Systems 2E Raj Kamal, Tata McGraw-Hill Education, 2011 ISBN-
- 4. 0070667640, 9780070667648

References:

- 1. http://processors.wiki.ti.com/index.php/HandsOn_Training_for_TI_Embedded Processors
- 2. http://processors.wiki.ti.com/index.php/MCU_Day_Internet_of_Things_2013_Workshop
- 3. http://www.ti.com/ww/en/simplelink_embedded_wi-fi/home.html
- CC3100/CC3200 SimpleLink[™] Wi-Fi® Internet-on-a-Chip User Guide Texas Instruments Literature Number: SWRU368A April 2014–Revised August 2015.

B. Tech IV-ISem. (ECE) 3 1 0 3

15A04703 MICROWAVE ENGINEERING

Course objectives:

The Objectives of the course are:

- TO develop the knowledge on transmission lines for microwaves, cavity resonators and wave guide components and applications.
- To understand the scattering matrix parameters and its use.
- To introduce the student the microwave test bench for measure different parameters like attenuation, VSWR, etc.,

Course Outcomes:

- Ability to analyze micro-wave circuits incorporating hollow, dielectric and planar waveguides, transmission lines, filters and other passive components, active devices.
- Ability to Use S-parameter terminology to describe circuits and to explain how microwave devices and circuits are characterized in terms of their "S"-Parameters.
- Ability to understanding of microwave transmission lines and how to Use microwave components such as isolators, Couplers, Circulators, Tees, Gyrators etc.

UNIT-I

MICROWAVE TRANSMISSION LINES:Introduction, Microwave spectrum and bands, applications of Microwaves.Rectangular Waveguides-Solution of Wave Equation in Rectangular Coordinates, TE/TM mode analysis, Expressions for fields, Characteristic equation and cutoff frequencies, filter characteristics, dominant and degenerate modes, sketches of TE and TM mode fields in the cross-section.Mode characteristics- Phase and Group velocities, wavelengths and impedance relations,IllustrativeProblems.

Rectangular Waveguides– Power Transmission and Power Losses, Impossibility of TEM Modes, Micro strip lines-introduction, Z_0 relations, effective dielectric constant, losses, Q-factor, Cavity resonators-introduction, Rectangular and cylindrical cavities, dominant modes and resonant frequencies, Q-factor and coupling coefficients. Illustrative Problems.

UNIT-II

WAVEGUIDE COMPONENTS AND APPLICATIONS: Coupling mechanisms- probe, loop, aperture types. Wave guide discontinuities-waveguide Windows, tuning screws and posts, matched loads. Waveguide attenuators-resistive card, rotary vane Attenuators; waveguide phase shifters-dielectric, rotary vane phase shifters. Wave guide multiport junctions-E plane and H plane Tees, Magic Tee, Directional couplers-2 hole, Bothe hole types, Illustrative Problems.

Ferrites-composition and characteristics, Faraday rotation; Ferrite components-Gyrator, Isolator, Circulator.

UNIT-III

MICROWAVE TUBES:Limitations and losses of conventional tubes at microwave frequencies. Microwave tubes-O type and M type classifications. O type tubes: 2 cavity klystrons-structure, Reentrant cavities, velocity modulation process and Applegate diagram, bunching process and small signal theory-Expressions for O/P power and efficiency. Reflex Klystrons-structure, Velocity Modulation, Applegate diagram, mathematical theory of bunching, power output, efficiency, oscillating modes and O/P characteristics, Effect of Repeller Voltage on Power O/P.IllustrativeProblems.

HELIX TWTS: Significance, types and characteristics of slow wave structures; structure of TWT and amplification process (qualitative treatment), suppression of oscillations, gain considerations.

UNIT-IV

M-TYPE TUBES: Introduction, cross field effects, Magnetrons-different types, cylindrical travelling wave magnetron-Hull cutoff and Hartree conditions, modes of resonance and PI-mode operation, separation of PI-mode, O/P characteristics,IllustrativeProblems.

MICROWAVE SOLID STATE DEVICES: Introduction, classification, applications, Transfer Electronic Devices, Gunn diode-principles, RWH theory, characteristics, basic modes of operation - Gunn oscillation modes. LSA Mode, Varactor Diode, Parametric Amplifier, Introduction to Avalanche Transit time devices (brief treatment only).

UNIT-V

MICROWAVE MEASUREMENTS:

Scattering Matrix-Significance, Formulation and properties. S Matrix calculations for 2-port junction, E plane and H plane Tees, Magic Tee, Directional coupler, circulator and Isolator, Illustrative Problems

Description of Microwave bench-different blocks and their features, errors and precautions; Microwave power measurement-Bolometers, Measurement of attenuation, frequency standing wave measurements –measurement of low and high VSWR, cavity-Q, impedance measurements.

TEXT BOOKS:

- 1. Microwave devices and circuits-Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Microwave principles-Herbert J.Reich, J.G.Skalnik, P.F.Ordung and H.L.Krauss, CBS publishers and distributors, New Delhi, 2004.

REFERENCES:

- Foundations for microwave engineering-R.E.Collin, IEEE press, John Wiley, 2ndedition, 2002.
- Microwave circuits and passive devices-M.L.Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New age International publishers Ltd., 1995.
- 3. Microwave engineering passive circuits-Peter A.Rizzi, PHI, 1999.
- 4. Electronic and Radio Engineering-F.E.Terman, McGraw-Hill, 4th Edition, 1995.
- 5. Microwave Engineering A. Das, TMH, 2nd ed., 2009.

B. Tech IV-ISem. (ECE)

LTPC

15A04704 DATA COMMUNICATIONS & NETWORKING

UNIT-I

Introduction to Networks & Data Communications

The Internet, Protocols & Standards, Layered Tasks, OSI Model, TCP / IP, Addressing, Line Coding Review, Transmission Media: Guided and unquided Media Review.

UNIT-II

Switching

Datagram Networks, Virtual Circuit Networks, Structure of a switch ,Ethernet Physical Layer, Data Link Layer: Error detection and Correction Data Link Control: Framing, Flow and Error Control Protocols, Noiseless Channel and Noisy Channel Protocol, HDLC. Point-to-Point Protocol.

UNIT-III

Multiple Access

RANDOH, CDMA, CSMA/CD, CSMA/CA, Controlled Access, Channelization, Wired LANs: IEEE Standards, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, Wireless LAN, IEEE 802.11, Bluetooth IEEE 802.16.

UNIT-IV

Network Layer

Design Issues, Routing Algorithms, Congestion control, Algorithms.IPV4 Addresses, Connecting Devices, Virtual LAN IPV6 Addresses, Internet Protocol, Hardware Addressing versus IP Addressing, IP Data Gram.

UNIT-V

Transport Laver Protocol

UDP and TCP, ATM, Cryptography, Network Security

Text Books:

1. B. A. Forouzan, "Data Communications and Networking", MGH, 4th ed. 2007.

Reference Books:

- 1. A. S. Tanenbaum, "Computer Networks", PHI.
- 2. W. Stallings, "Data and Computer Communication", PHI.

B. Tech IV-ISem. (ECE)

L T P (

15A04705 RADAR SYSTEMS (CBCC-II)

Course Objectives:

The objectives of course are:

- Radar fundamentals and analysis of radar signals.
- To understand various technologies involved in the design of radar transmitters and receivers.
- To learn various like MTI, Doppler and tracking radar and their comparison.

Course Outcomes:

After completion of the course, the student will be able to:

- Understand radar fundamentals and analysis of the radar signals.
- Understand various radar transmitters and receivers.
- Understand various radar like MTI, Doppler and tracking radar and their comparison.

UNIT I

BASICS OF RADAR: Introduction, Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation, Illustrative Problems.

RADAR EQUATION: SNR, Envelope Detector, False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

UNIT II

CW AND FREQUENCY MODULATED RADAR: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.

UNIT III

MTI AND PULSE DOPPLER RADAR: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers - Filter Characteristics, Blind Speeds, Double Cancellation, And Staggered PRFs. Range

Gated Doppler Filters, MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler radar.

UNIT IV

TRACKING RADAR: Tracking with Radar, Sequential Lobing, Conical Scan, Monopulse Tracking Radar – Amplitude Comparison Monopulse (one- and two-coordinates), Phase Comparison Monopulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT V

DETECTION OF RADAR SIGNALS IN NOISE: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise.

RADAR RECEIVERS: Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus Parallel Feeds, Applications, Advantages and Limitations.

TEXT BOOKS:

 Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2ndEdition, 2007.

REFERENCES:

- Introduction to Radar Systems Merrill I. Skolnik, 3rd Edition, Tata McGraw-Hill, 2001.
- Radar Principals, Technology, Applications Byron Edde, Pearson Education, 2004.
- 3. Radar Principles Peebles, Jr., P.Z.Wiley, NweYork, 1998.

B. Tech IV-ISem. (ECE)

L T P (

15A04706 ADAPTIVE SIGNAL PROCESSING (CBCC-II)

Course Objective:

- To study in detail about adaptive Systems.
- To study about various Linear optimum filtering techniques.
- To study about various techniques related Linear and Non Linear adaptive filtering.

Course outcome:

- After the course students is expected to be able to:
- Get complete knowledge regarding adaptive systems
- Design various linear optimum filters by employing different techniques associated withthem
- Understand various techniques related to with linear and nonlinear adaptive filtering and their design considerations

UNIT I:

Introduction to Adaptive Systems: Eigen Analysis - Eigen Value problem, Properties of eigen values and eigen vectors, Eigen filters, Eigen value computations, Adaptive Systems - Definitions, Characteristics, Applications and Examples of Adaptive systems, The adaptive linear combiner – Description, weight vectors, Desired response performance function, Gradient and Mean square error(MSE).

UNIT II:

Linear Optimum Filtering: Wiener Filters – Linear optimum filtering, Principle of Orthogonality, Wiener-Hopf equations, Error performance surface, Channel Equalization, Linearly constrained minimum variance filter, Linear Prediction – Forward and Backward linear prediction, Levinson-Durbin Algorithm, Properties of prediction error filters, AR modeling of stationary stochastic process, Lattice predictors, Joint process estimation, Kalman Filters - Recursive mean square estimation for scalar random variables, Kalman filtering problem, The innovations process, Estimation of the state using innovations process, Filtering, Initial conditions, Variants of the Kalman filter, Extended Kalman filter, Problem Solving.

UNIT III:

Linear Adaptive Filtering-I: Method of Steepest descent algorithm and its stability, Least Means Square (LMS) algorithm – Structure & operation of LMS algorithm, Examples, Stability & performance analysis of the LMS algorithm, Simulations of Adaptive equalization using LMS algorithm, Convergence aspects, Method of Least Squares (LS) - Statement, Data windowing, Minimum sum of error squares, Normal equations and linear least squares filters, Properties.

UNIT IV:

Linear Adaptive Filtering-II Recursive Least Squares (RLS) Algorithm – Matrix inversion lemma, The exponentially weighted RLS algorithm, Update recursion for the sum of weighted error squares, Example, Convergence Analysis, Simulation of adaptive equalization using RLS algorithm, Order Recursive Adaptive Filters – Adaptive forward and backward linear prediction, Least squares Lattice predictor, QR-Decomposition based Least squares Lattice filters & their properties, Simulation of Adaptive equalization using Lattice Filter.

UNIT V:

Nonlinear Adaptive Filtering: Blind deconvolution – Theoretical and practical considerations, Bussgang algorithm for blind equalization for real base band channels, Special cases of Bussgang algorithm, Simulation studies of Bussgang algorithms, SVD, Problem solving.

Text Books:

- 1. Simon Haykin, "Adaptive Filter Theory," Prentice Hall, 4th Edition, 2002.
- 2. Bernard Widrow, Samuel D. Streams, "Adaptive Signal Processing," Prentice Hall, 2005.

References:

- 1. Paulo S.R. Diniz, Adaptive Filtering Algorithms and Practical Implementation, Third Edition, Springer, Kluwer Academic Publishers.
- 2. Alexander D Poularikas, Zayed M Ramadan, Adaptive Filtering Primer with MATLAB, CRC Press Taylor & Francis Group, 2008 Indian Edition.
- Ali H. Sayed, Adaptive filters, IEEE Press, Wiley-Interscience, A john Wiley & Sons. INC..Publication.
- S. Thomas Alexander, "Adaptive Signal Processing-Theory & Applications," Springer – Verlag, 1986

B. Tech IV-ISem. (ECE)

L T P (

15A04707 FPGA DESIGN (CBCC-II)

UNIT-I

Introduction to Field-programmable Gate Arrays

Programmability and DSP. A Short History of the Microchip, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering

UNIT-II

Arithmetic Basics

Number Systems, Fixed-point and Floating-point, Arithmetic Operations, Fixed-point versus Floating-point, Technology Review: Introduction, Architecture and Programmability, DSP Functionality Characteristics .Processor Classification, Microprocessors, DSP processors.

UNIT-III

Current FPGA Technologies

Introduction, Toward FPGA, Altera FPGATechnologies, Xilinx FPGA Technologies, Detailed FPGA Implementation Issues: Introduction, Various Forms of the LUT, Memory Availability, Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier, Rapid DSP System Design Tools and Processes for FPGA: Introduction, Design Methodology Requirements for FPGA DSP, IP Core Generation Tools for FPGA, System level Design Tools for FPGA.

UNIT-IV

The IRIS Behavioral Synthesis

Introduction of Behavioral Synthesis Tools, Hierarchical Design Methodology, Hardware Sharing Implementation (Scheduling Algorithm) for IRIS.DECISION ANALYSIS AND SUPPORT: Decision Making., Modeling throughout System Development, Modeling for Decision.

UNIT-V

Complex DSP Core Design for FPGA

Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores. Model-based Design for Heterogeneous FPGA: Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, Rapid Synthesis and Optimization of Embedded Software from DFGs, System-level Modeling for Heterogeneous Embedded

DSP Systems, System level Design and Exploration of Dedicated Hardware Network, Adaptive Beam former Example, Low Power FPGA Implementation.

TEXT BOOKS:

- 1. Roger Woods, John McAllister, Gaye Light body, Ying Yi, FPGA-based Implementation of Signal Processing Systems, Wiley, 2008.
- John V. Old Field, Richrad C. Dorf, Field Programmable Gate Arrays, Wiley, 2008.
- 3. Michel John Sebastian Smith, Application Specific Integrated Circuits, Addison Wesley Professional, 2008.
- 4. Stephen D. Brown, Robert J. Francis, Jonathan Rose, Zvonko G. Vranesic, Field Programmable Gate Arrays, 2nd Edition, Springer, 1992.

B. Tech IV-ISem. (ECE)

L T P (

15A04708 DIGITAL IMAGE PROCESSING (CBCC-III)

OBJECTIVES:

- To know the fundamentals of Image Processing
- To know about various techniques of image enhancement, reconstruction and image compression.

Course Outcomes:

- Able to apply the Image processing concept for various fields of engineering and real lifeto process as per needs &specifications.
- Get the skills to Heuristically develop new techniques to process images of any context
- Can experiment, analyze & interpret imagedata /processing data.

UNIT_I

Introduction to Digital Image processing – Example fields of its usage- Image sensing and Acquisition – image Modeling - Sampling, Quantization and Digital Image representation - Basic relationships between pixels, - Mathematical tools/ operations applied on images - imaging geometry.

UNIT-II

2D Orthogonal and Unitary Transforms and their properties - Fast Algorithms - Discrete Fourier Transform - Discrete Cosine Transforms- Walsh- Hadamard Transforms- Hoteling Transforms, Comparison of properties of the above.

UNIT-III

Background enhancement by point processing Histogram processing, Spatial filtering, Enhancement in frequency Domain, Image smoothing, Image sharpening, Colour image Enhancement

UNIT-IV

Degradation model, Algebraic approach to restoration – Inverse filtering – Least Mean Square filters, Constrained Least square restoration, Blind Deconvolution.

Image segmentation:Edge detection -,Edge linking , Threshold based segmentation methods – Region based Approaches - Template matching –use of motion in segmentation

UNIT-V

Redundancies in Images - Compression models, Information theoretic perspective-Fundamental coding theorem. Huffman Coding, Arithmetic coding, Bit plane coding, Run length coding, Transform coding, Image Formats and compression standards.

Text Books:

- 1. R.C .Gonzalez & R.E. Woods, "Digital Image Processing", Addison Wesley/Pearson education, 3rd Edition, 2010.
- 2. A .K. Jain, "Fundamentals of Digital Image processing", PHI.

References:

- Rafael C. Gonzalez, Richard E woods and Steven L.Eddins, "Digital Image processing using MATLAB", Tata McGraw Hill, 2010.
- 2. S jayaraman, S Esakkirajan, T Veerakumar, "Digital Image processing",Tata McGraw Hill
- 3. William K. Pratt, "Digital Image Processing", John Wilely, 3rd Edition, 2004.

B. Tech IV-ISem. (ECE)

15A04709 CELLULAR & MOBILE COMMUNICATION (CBCC-III)

OBJECTIVES:

- To enable the student to synthesis and analyze wireless and mobile cellular communication systems over a stochastic fading channel.
- To provide the student with an understanding of advanced multiple access techniques.
- To provide the student with an understanding of diversity reception techniques. To give the student an understanding of digital cellular systems (GSM, CDMA One, GPRS, CDMA 2000, and W-CDMA).

Course Outcomes:

By the end of this course, the student will be able to analyze and design wireless and mobile cellular systems.

- The student will be able to understand impairments due to multipath fading channel.
- Understand the fundamental techniques to overcome the different fading effects.
- To understand Co-channel and Non Co-channel interferences.
- Able to familiar with cell coverage for signal and traffic, diversity techniques and mobile antennas.
- Understanding of frequency management, channel assignment and types of handoff.

UNIT I

CELLULAR MOBILE RADIO SYSTEMS:Introduction to Cellular Mobile system, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, Hexagonal shaped cells, Analog and Digital Cellular systems.

ELEMENTS OF CELLULAR RADIO SYSTEM DESIGN: General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in a Omni directional Antenna system, Cell splitting, consideration of the components of cellular system.

UNIT II

INTERFERENCE: Introduction to Co-channel interference, real time co-channel interference, Co-channel measurement, design of Antenna system, Antenna parameters and their effects, diversity receiver, non-co-channel interference-different types.

UNIT III

CELL COVERAGE FOR SIGNAL AND TRAFFIC: Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of a point to point model.

UNIT IV

CELL SITE AND MOBILE ANTENNAS:Sum and difference patterns and their synthesis, Omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gainantennas.

FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non-fixed channel assignment.

UNIT V

HANDOFF:Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation. **DIGITAL CELLULAR NETWORKS:** GSM architecture, GSM channels, multiplex

access scheme, TDMA, CDMA.

TEXT BOOKS:

- Mobile cellular telecommunications-W .C. Y. Lee, Tata Mc-Graw Hill, 2nd Edition, 2006.
- 2. Wireless communications-Theodore. S. Rapport, Pearson Education, 2nd Edn., 2002.

REFERENCES:

- Principles of Mobile communications-Gordon L. Stuber, Springer International 2nd Edition, 2007.
- 2. Wireless and Mobile Communications-Lee McGraw Hills, 3rd Edition, 2006.
- Wireless communications and Networking-Jon W.Mark and WeihuaZhqung, PHI, 2005.
- 4. Wireless communication Technology-R.Blake, Thompson Asia Pvt.Ltd., 2004.

B. Tech IV-ISem. (ECE)

L T P (

15A04710 REAL TIME SYSTEMS (CBCC-III)

Course Outcomes

After completion of the course students able to

- Know about the basic concepts of embedded systems
- Understand the different architectural features of embedded systems
- Understand the goal embedded systems in real time design applications

UNIT-I

Introduction to Real Time System

Introduction to Real time Embedded System, need for a real-time system, different kinds (reactive, time driven, deadline driven, etc.,) Embedded system Design cycle, Types of Real Time systems, Real Time Applications and features, Issues in real time computing, aspects of real-time systems (timeliness, responsiveness, concurrency, predictability, correctness, robustness, fault tolerance and safety, resource limitations, RTOS necessity), real-time requirement specifications, modelling/verifying design tools (UML, state charts, etc.,).

UNIT-II

Embedded Hardware for Real Time System

Selection criteria for Real time system - Hardware and Software perspective, need for partitioning, criteria for partitioning (performance, criticality, development ease, robustness, fault tolerance and safety, resource limitations, etc.,), System Considerations, Basic development environment-host vs target concept, CPU features, Architecture, I/O Ports, on-chip peripherals, Memory, Real time implementation considerations, bus architecture, Introduction to Interrupts, Interrupt vector table, interrupt programming, Pipeline and Parallelism concepts.

Case study of C2000 architecture, Real time applications by interfacing C2000 with sensors and actuators (example: Motor Control, Digital Power, and Power Line Communication)

UNIT III

Embedded Hardware - On chip Peripherals and Communication protocols -

Role of peripherals for Real time systems, On-Chip peripherals & hardware accelerators, Peripherals [Direct Memory Access, Timers, Analog to Digital Conversion (ADC), DAC, Comparator, Pulse Width Modulation (PWM)],Need of real time

Communication, Communication Requirements, Timeliness, Dependability, Design Issues, Overview of Real time communication, Real time Communication Peripherals – I2C, SPI & UART

Case study - Illustration of configuring and interfacing the peripherals (timers, ADC, DAC, and PWM) and Real time communication protocols (I2C, SPI & UART) using C2000 platforms

UNIT IV

Embedded Software and RTOS

Software Architecture of real time System, Introduction to RTOS, role of RTOS, foreground Back ground system, pros and cons, Real time kernel, qualities of good RTOS, Functionalities of RTOS – Task Management, I/O management, Memory management, Inter Task Communication, Tasks, Task states, Task control block, attributes of TCB, Context switching, Interrupts handling, Multiprocessing and multitasking

Case study examples for demonstrating task management functionalities (ex: Task switching, task deleting, task suspending and resuming, managing priority and etc.,) using TI RTOS on C2000 platforms.

UNIT-V

Scheduling, Synchronization and Inter task communication in Real Time Systems Basic Concepts for Real-Time Task Scheduling, Scheduling criteria, Overview of Scheduling policies, Task Synchronization – Need of synchronization, shared data problems and its ways of handling, Role of Semaphore, types of semaphores, semaphore functions, Inter task communication – Need of communication, Message Mailbox and Message Queues, RTOS problems - Priority inversion phenomenon, Deadlock phenomenon and steps to handle them.

Case study examples to demonstrate concepts of task synchronization (Semaphore) and Inter task communication (Mailbox and Message queues), using TI RTOS for C2000 platforms

TEXT BOOKS

- Real-Time Systems by Jane W. S. Liu Prentice Hall; 1 edition ISBN: 978-0130996510
- 2. Krishna .C.M "Real Time Systems" Mc-Graw Hill Publication.
- Hamid A. Toliyat and Steven G. Campbell, "DSP based Electromechanical Motion Control" CRC Press, 2003, ISBN 9780849319181.
- 4. Jean J Labrosse, "Embedded System Design blocks", CMP books, Second Edition, ISBN 0-87930-604-1

 John H Davies, "MSP430 Microcontroller Basics" Newnes, 2nd edition, ISBN-13: 978-0750682763

REFERENCES

- TMS320C28x CPU and Instruction Set Reference Guide, TI Literature Number: SPRU 430E, Revised January 2009
- TMS320x28xx, 28xxx DSP Peripheral Reference Guide, TI Literature Number: SPRU566J, Revised April 2011
- 3. C2000 Teaching CD ROM from Texas Instruments
- 4. Intro to the TI-RTOS Kernel Workshop Lab Manual, by Texas Instruments, Rev 2.3 December 2014
- 5. http://processors.wiki.ti.com/index.php/C2000_32-bit_Real-Time_MCU_Training

B. Tech IV-ISem. (ECE)

L T P C 0 1 4 2

15A04711 MICROWAVE & OPTICAL COMMUNICATIONS LABORATORY

Course Outcomes:

- Capable of Applying microwave Concepts/ Microwave components and test them.
- Able to design and analyse an optical fiber communications link

Microwave Lab (PART – A) --- Any Seven (7) Experiments

- Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- Directional Coupler Characteristics.
- VSWR Measurement.
- 6. Impedance Measurement.
- 7. Frequency and Wavelength measurements using slotted section.
- 8. Impedance Matching and Tuning
- 9. Scattering parameters of Magic Tee.
- 10. Radiation Pattern Measurement of horn Antennas (at least two antennas).

Optical Fiber Lab (PART - B) --- Any five (5) Experiments

- 1. Characterization of LED.
- Characterization of Laser Diode.
- 3. Intensity modulation of Laser output through an optical fiber.
- 4. Measurement of Data rate for Digital Optical link.
- 5. Measurement of Numerical Aperture of the given fiber.
- 6. Measurement of losses for Analog Optical link.

Equipment required for Laboratories:

- 1. Regulated Klystron Power Supply 6 nos.
- VSWR Meter 6 nos.
- 3. Milli/Micro Ammeters 10 nos.
- Multi meters
 10 nos.
- CROs 8 nos.
- 6. GUNN Power Supply, Pin Moderator4 nos.
- 7. Relevant Microwave components
- 8. Fiber Optic Analog Trainer based LED3 nos.
- 9. Fiber Optic Analog Trainer based laser2nos.
- 10. Fiber Optic Digital Trainer 1 no.
- 11. Fiber cables (Plastic, Glass)

Page 159

B. Tech IV-ISem. (ECE)

15A04712 VLSI & EMBEDDED SYSTEMS LABORATORY

Note: The students are required to perform any **Six** Experiments from each Part of the following.

Part-A: VLSI Lab Course Objective:

- To design and draw the internal structure of the various digital integrated circuits
- To develop VHDL/Verilog HDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- To verify the logical operations of the digital ICs (Hardware) in the laboratory.

Course Outcome:

After completion of the course the students will be able to

- Design and draw the internal structure of the various digital integrated circuits
- Develop VHDL/Verilog HDL source code, perform simulation using relevant simulator andanalyze the obtained simulation results using necessary synthesizer.
- Verify the logical operations of the digital IC"s (Hardware) in the laboratory

Note: For the following list of experiments students are required to do the following.

- Target Device Specifications
- Simulation
- Synthesize the design
- Generate RTL Schematic.
- Generate Technology Map.
- Generate Synthesis report.
- Design Summary.

List of Experiments:

Note: Use VHDL/ Verilog HDL

- 1. Realization of Logic Gates.
- 2. 3- to 8Decoder- 74138.
- 3. 8 x 1 Multiplexer-74151 and 2 x 4 De-multiplexer-74155.
- 4. 4-Bit Comparator-7485.

- 5. D Flip-Flop-7474.
- 6. Decade counter-7490.
- 7. Shift registers-7495.
- 8. ALU Design.

Part B: Embedded C Experiments using TM4C processor:

1. Learn and understand how to configure EK-TM4C123GXL Launchpad digital I/O pins. Write a C program for configuration of GPIO ports for Input and output operation (blinking LEDs, push buttons interface).

Exercises:

- Modify the code to make the red LED of EK-TM4C123GXL Launchpad blink.
- b) Modify the code to make the green and red LEDs blink:
 - I. Together
 - II. Alternately
- c) Alter the code to turn the LED ON when the button is pressed and OFF when it is released.
- d) Modify the delay with which the LED blinks.
- e) Alter the code to make the green LED stay ON for around 1 second every time the button is pressed.
- f) Alter the code to turn the red LED ON when the button is pressed and the green LED ON when the button is released.
- 2. Learn and understand Timer based interrupt programming. Write a C program for EK-TM4C123GXL Launchpad and associated Timer ISR to toggle onboard LED using interrupt programming technique.

Exercises:

- a) Modify the code for a different timer toggling frequency.
- b) Write the code to turn on interrupt globally.
- 3. Configure hibernation module of the TM4C123GH6PM microcontroller to place the device in low power state and then to wake up the device on RTC (Real-Time Clock) interrupt.

Exercises:

- Write a program to configure hibernation mode and wake up the EK-TM4C123GXL Launchpad when onboard switch SW2 is pressed.
- Configure in-build ADC of TM4C123GH6PM microcontroller and interface potentiometer with EK-TM4C123GXL Launchpad to observe corresponding 12- bit digital value.

Exercises:

 Tabulate ten different position of the Potentiometer and note down the Digital value and calculate the equivalent analog value.

- Use the ADC to obtain the analog value from the internal temperature sensor.
- c) Configure Dual ADC modules to read from 2 analog input (could be from 2 potentiometers)
- d) What are the trigger control mechanism for this ADC?
- e) What does the resolution refer on ADC Specification?
- f) The current sampling method is single ended sampling. This ADC could also be configured to do differential sampling. What is the difference between the two methods of sampling?
- Learn and understand the generation of Pulse Width Module (PWM) signal by configuring and programming the in-build PWM module of TM4C123GH6PM microcontroller.

Exercises:

- a) Change the software to output a set Duty Cycle, which can be user programmed.
- b) Change the frequency of the PWM Output from 6.25 KHz to 10 KHz and do the tabulation again.
- Generate Complementary signals, route it to two pins, and observe the waveforms.
- d) What is dead band generation mean and where is it applied?
- e) Is it possible to construct a DAC from a PWM? Identify the additional components and connection diagram for the same.
- f) Sketch the gate control sequence of 3 phase Inverter Bridge and how many PWM generator blocks are required? Can we generate this from TIVA Launchpad?
- Configure the PWM and ADC modules of TM4C123GH6PM microcontroller to control the speed of a DC motor with a PWM signal based on the potentiometer output.

Exercises:

- a) With the same ADC input configure 2 PWM generator modules with 2 different frequencies.
- b) Read the Internal temperature sensor and control a DC Motor that could be deployed in fan Controller by observing the unit or ambient temperature.
- c) What is the resolution of the PWM in this experiment?
- d) What would be the maximum frequency that can be generated from the PWM generator?
- e) Briefly explain an integrated application of ADC and PWM based control.
- Learn and understand to connect EK-TM4C123GXL Launchpad to PC terminal and send an echo of the data input back to the PC using UART. Exercises:

- a) Change the baud rate to 19200 and repeat the experiment.
- b) What is the maximum baud rate that can be set in the UART peripheral of TIVA?
- c) Modify the software to display "Switch pressed" by pressing a user input switch on the Launchpad.
- 8. Learn and understand interfacing of accelerometer in Sensor Hub Booster pack with EK-TM4C123GXL Launchpad using I2C.

Exercises:

- a) Make a LED ON when the acceleration value in the x axis crosses a certain limit, say +5.
- b) What is the precaution taken in this experiment in order to avoid the overflow of UART buffer?
- c) Change the value of PRINT_SKIP_COUNT to 100 and see the difference in the output.
- d) Change MPU9150_ACCEL_CONFIG_AFS_SEL_2G to MPU9150_ACCEL_CONFIG_AFS_SEL_4G on line 461 of the same source file and Observe the difference.
- 9. USB bulk transfer mode:

Learn and understand to transfer data using bulk transfer mode with the USB2.0 peripheral of the TM4C123GH6PM device.

Exercises:

- a) What are the different modes offered by USB 2.0?
- b) What are the typical devices that use Bulk transfer mode?
- 10. Learn and understand to find the angle and hypotenuse of a right angle triangle using IQmath library of TivaWare.

Exercises:

- a) Change the base and adjacent values in the program to other values, build the program and observe the values in the watch window.
- b) Open IQmathLib.h and browse through the available functions. What function is to be used if the IQ number used in the program is to be converted to a string?
- Learn and understand interfacing of CC3100 WiFi module with EK-TM4C123GXL Launchpad and configuration of static IP address for CC3100 booster pack.

Exercises:

- a) Try pinging the same IP address before connecting to the Access Point (AP) and note down the observation.
- b) What is the difference between static IP address and dynamic IP address?
- Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad as a Wireless Local Area Network (WLAN) Station to send Email over SMTP.

Exercises:

- a) In the terminal output window, we have received a debug message "Pinging...!". Search in the code and change the message to "Pinging the website". Repeat the experiment to observe this change in the Serial Window.
- b) In line no:62 of main. C replace www.ti.com with any non-existing web address and repeat the experiment and observe what happens
- c) In line no: 62 of main. C replace again with www.ti.com and repeat the experiment.
- Identify the code that helps in establishing connection over SMTP.
 Modify the code to trigger E-mail application based upon external analog input.
- e) How to configure the AP WLAN parameters and network parameters (IP addresses and DHCP parameters) using CC3100 API.
- 13. Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad as a HTTP server.

Exercises:

- a) Where are the webpages stored in the CC3100?
- b) What happens if we try to access a webpage, which is not there inside the CC3100?
- c) List 3 applications with a 3 to 4-line brief description that you think can be performed with this experimental setup.

B. Tech IV-IISem. (ECE)

LTPC

15A04801 ADVANCED DIGITAL SIGNAL PROCESSING-MULTIRATE & WAVELET (MOOCS-II)

Course Objectives:

- To study about the digital signal processing algorithms and multi rate signal processing
- To study about the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- The study about the effects of finite word length in fixed-point dsp systems.

Course Outcomes:

After completion of the course students will be able to

- Get complete knowledge regarding various algorithms associated with Digital signal processing and multi rate signal processing.
- Verify the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- Understand the effects of finite word length in fixed-point DSP systems by using ADC and FFT algorithms

UNIT - I

A Beginning with some practical situations, which call for multi-resolution/ multi-scale analysis - and how time-frequency analysis and wavelets arise from them. Examples: Image Compression, Wideband Correlation Processing, Magnetic Resonance Imaging, Digital CommunicationPiecewise constant approximation - the Haar wavelet, Building up the concept of dyadic Multi-resolution Analysis (MRA), Relating dyadic MRA to filter banks.

UNIT - II

A review of discrete signal processing, Elements of multi-rate systems and two-band filter bank design for dyadic wavelets. Families of wavelets: Orthogonal and bi-orthogonal wavelets, Daubechies' family of wavelets in detail, Vanishing moments and

regularity, Conjugate Quadrature Filter Banks (CQF) and their design, Dyadic MRA more formally, Data compression - fingerprint compression standards, JPEG-2000 standards.

UNIT - III

The Uncertainty Principle: and its implications: the fundamental issue in this subject the problem and the challenge that Nature imposes. Theimportances of the Gaussian function: the Gabor Transform and its generalization; time, frequency and scale - their interplay, The Continuous Wavelet Transform (CWT), Condition of admissibility and its implications. Application of the CWT in wideband correlation processing.

UNIT - IV

Journey from the CWT to the DWT: Discretization in steps, Discretization of scale - generalized filter bank, Discretization of translation - generalized output sampling, Discretization of time/ space (independent variable) - sampled inputs, Going from piecewise linear to piecewise polynomial, The class of spline wavelets - a case for infinite impulse response (IIR) filter banks, Variants of the wavelet transform and its implementation structures, the wave packet transform, Computational efficiency in realizing filter banks - Polyphase components, The lattice structure, The lifting scheme.

UNIT - V

An exploration of applications (this will be a joint effort between the instructor and the class). Examples: Transient analysis; singularity detection; Biomedical signal processing applications; Geophysical signal analysis applications; Efficient signal design and realization: wavelet based modulation and demodulation; Applications in mathematical approximation; Applications to the solution of some differential equations; Applications in computer graphics and computer vision; Relation to the ideas of fractals and fractal phenomena.

Textbooks:

- 1. Howard L. Resnikoff, Raymond O.Wells, "Wavelet Analysis: The scalable Structure Information," Springer, 1998 available in India edition.
- K. P. Soman, K. I. Ramachandran, "Insight Into Wavelets From Theory to Practice", Prentice Hall of India, Eastern Economy Edition, Prentice Hall of India Private Limited, M-97, Connaught Circus, New Delhi - 110 001, Copyright 2004, ISBN Number 81-203-2650-4.
- 3. Michael W. Frazier, "An Introduction to Wavelets through Linear Algebra", Springer, ISBN 3-540-780-75-0, c 1999.

4. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson Education, Low Price Edition, ISBN 81 – 7758 – 942 – 3.

B. Tech IV-IISem. (ECE)

L T P (

15A04802 LOW POWER VLSI CIRCUITS AND SYSTEMS (MOOCS-II)

Course Outcomes:

After completion of this subject, students will be able to

- Under stand the concepts of velocity saturation, Impact Ionization and Hot Electron Effect
- Implement Low power design approaches for system level and circuit level measures.
- Design low power adders, multipliers and memories for efficient design of systems.

UNIT I

<u>Introduction</u>, Historical background, why low power, sources of power dissipations, low-power design methodologies.

MOS Transistors: introduction, the structure of MOS Transistor, the Fluid model, Modes of operation of MOS Transistor, Electrical characteristics of MOS Transistors, MOS Transistors as a switch.

UNIT II

MOS Inverters: introduction, inverter and its characteristics, configurations, inverter ratio in different situations, switching characteristics, delay parameters, driving parameters, driving large capacitive loads.

MOS Combinational Circuits: introduction, Pass-Transistor logic, Gate logic, MOS Dynamic Circuits.

UNIT III

Sources of Power Dissipation: introduction, short-circuit power dissipation, switching power dissipation, glitching power dissipation, leakage power dissipation.

Supply voltage scaling for low power: introduction, device features size scaling, architecture-level approaches, voltage scaling, multilevel voltage scaling, challenges, dynamic voltage and frequency scaling, adaptive voltage scaling.

UNIT IV

Minimizing Switched Capacitance:introduction, system-level approaches, transmeta's Crusoe processor, bus encoding, clock gating, gated-clock FSMs, FSM state encoding, FSM Partitioning, operand isolation, precomputation, logic styles for low power.

UNIT V

<u>Minimizing Leakage Power:</u> introduction, fabrication of multiple threshold voltages, approaches for minimizing leakage power, Adiabatic Logic Circuits, Battery-Driven System, CAD Tools for Low Power VLSI Circuits.

TEXT BOOKS

- 1. Ajit. Pal, Low power VLSI Circuits and systems, springer
- Sung Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag Hill.
- 3. Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- 4. A. Bellamour, and M. I. Elmasri, Low Power VLSI CMOS Circuit Design, Kluwer Academic Press, 1995.
- 5. Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995.

REFERENCES

1. Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000.

B. Tech IV-IISem. (ECE)

LTP

15A04803 PATTERN RECOGNITION & APPLICATIONS (MOOCS-III)

UNIT - I

Introduction: Feature extraction and Pattern Representation Concept of Supervised and Unsupervised classification Introduction to Application Areas.

UNIT - II

Statistical Pattern Recognition

Bayes Decision Theory, Minimum Error and Minimum Risk Classifiers, Discriminant Function and Decision Boundary Normal Density, Discriminant Function for Discrete Features. Parameter estimation

UNIT - III

Dimensionality Problem

Dimension and accuracy, Computational Complexity, Dimensionality Reduction, Fisher Linear Discriminant, Multiple Discriminant Analysis

Nonparametric Pattern Classification

Density Estimation, Nearest Neighbour Rule, Fuzzy Classification

UNIT - IV

Linear Discriminant Functions Separability, Two Category and Multi Category Classification, Linear Discriminators, Perceptron Criterion, Relaxation Procedure, Minimum Square Error Criterion, Widrow-Hoff Procedure, Ho-Kashyap Procedure, Kesler's Construction.

Neural Network Classifier Single and Multilayer Perceptron, Back Propagation Learning, Hopfield Network, Fuzzy Neural Network

UNIT - V

Time Varying Pattern Recognition

First Order Hidden Markov Model, Evaluation, Decoding, Learning

Unsupervised Classification

Clustering, Hierarchical Clustering, Graph Based Method, Sum of Squared Error TechniqueIterative Optimization

Textbooks:

- 1. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", JohnWiley& Sons, 2001.
- 2. Earl Gose, Richard Johsonbaugh and Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall, 1999.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech IV-IISem. (ECE)

L T P C

15A04804 RF INTEGRATED CIRCUITS (MOOCS-III)

UNIT – I

Introduction RF systems – basic architectures, Transmission media and reflections, Maximum power transfer , Passive RLC Networks, Parallel RLC tank, Q, Series RLC networks, matching, Pi match, T match, Passive IC Components Interconnects and skin effect, Resistors, capacitors Inductors

UNIT - II

Review of MOS Device Physics - MOS device review, Distributed Systems, Transmission lines, reflection coefficient, the wave equation, examples, Lossy transmission lines, Smith charts – plottingGamma, High Frequency Amplifier Design, Bandwidth estimation using open-circuit time constants, Bandwidth estimation, using short-circuit time constants, Rise time, delay and bandwidth, Zeros to enhance bandwidth, Shunt-series amplifiers, tuned amplifiers, Cascaded amplifiers

UNIT - III

Noise - Thermal noise, flicker noise review, Noise figure, LNA Design, Intrinsic MOS noise parameters, Power match versus, noise match, large signal performance, design examples & Multiplier based mixers. Mixer Design, Subsampling mixers.

UNIT - IV

RF Power Amplifiers, Class A, AB, B, C amplifiers, Class D, E, F amplifiers, RF Power amplifier design examples, Voltage controlled oscillators, Resonators, Negative resistance oscillators, Phase locked loops, Linearized PLL models, Phase detectors, charge pumps, Loop filters, and PLL design examples

UNIT - V

Frequency synthesis and oscillators, Frequency division, integer-N synthesis, Fractional frequency, synthesis, Phase noise, General considerations, and Circuit examples, Radio architectures, GSM radio architectures, CDMA, UMTS radio architectures

Textbooks:

- 1. The design of CMOS Radio frequency integrated circuits by Thomas H. Lee Cambridge university press, 2004.
- 2. RF Micro Electronics by BehzadRazavi, Prentice Hall, 1997.

Jawaharlal Nehru Technological University Anantapur

(Established by Govt. of A.P., Act. No. 30 of 2008)

Ananthapuramu-515 002 (A.P) India

B.Tech. in Electronics & Communication Engineering Course Structure and Syllabi under R19 Regulations

JNTUACurriculum Electronics and Communication EngineeringB. Tech Course Structure

S.No.	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	MC	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	MC	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

	Semester - I (Theory - 4, Lab - 4)						
S.No	Course No	Course Name	Category	L-T-P	Credits		
1.	19A54101	Algebra & Calculus	BS	3-1-0	4		
2.	19A56101T	Applied Physics	BS	3-0-0	3		
3.	19A05101T	Problem Solving & Programming	ES	3-1-0	4		
4.	19A52101T	Communicative English 1	HS	2-0-0	2		
5.	19A04101	Electronics & Communication	LC	0-0-2	1		
		Engineering Workshop					
6.	19A56101P	Applied Physics Lab	BS	0-0-3	1.5		
7.	19A05101P	Problem Solving & Programming Lab	ES	0-0-3	1.5		
8.	19A52101P	Communicative English 1 Lab	HS	0-0-2	1		
				Total	18		

	Semester - II (Theory - 4, Lab - 5)						
S.No	Course No	Course Name	Catego	L-T-P	Credits		
			ry				
1.	19A04201T	Network Theory	ES	3-0-0	3		
2.	19A54201	Differential Equations and Vector Calculus	BS	3-1-0	4		
3.	19A51102T	Chemistry	BS	3-0-0	3		
4.	19A05201T	Data Structures	ES	3-0-0	3		
5.	19A03101	Engineering Workshop	LC	0-0-2	1		
6.	19A03102	Engineering Graphics Lab	ES	1-0-4	3		
7.	19A04201P	Network Theory Lab	ES	0-0-3	1.5		
8.	19A51102P	Chemistry Lab	BS	0-0-3	1.5		
9.	19A05201P	Data Structures Lab	ES	0-0-3	1.5		
				Total	21.5		

	Semester – III(Theory - 6, Lab –3, MC-1)						
S.No	Course No	Course Name	Catego	L-T-P	Credits		
			ry				
1.	19A54302	Complex Variables and Transforms	BS	3-0-0	3		
2.	19A04301	Signals & Systems	PC	3-0-0	3		
3.	19A04302T	Electronic Devices and Circuits	PC	3-0-0	3		
4.	19A04303	Probability Theory and Stochastic Processes	PC	3-0-0	3		
5.	19A04304	Digital Electronics and Logic Design	PC	3-0-0	3		
6.	19A02304T	Electrical Technology	ES	3-0-0	3		
7.	19A04302P	Electronic Devices and Circuits Lab	PC	0-0-3	1.5		
8.	19A04305	Basic Simulation Lab	PC	0-0-2	1		
9.	19A02304P	Electrical Technology Lab	ES	0-0-2	1		
10.	19A99302	Biology For Engineers	HS	3-0-0	0		
Total							

	Semester – IV (Theory - 7, Lab –2, MC-1)						
S.No	Course No	Course Name	Cate	L-T-P	Credits		
			gory				
1.	19A04401	Electromagnetic Waves and Transmission lines	PC	3-0-0	3		
2.	19A04402T	Electronic Circuits – Analysis and Design	PC	3-0-0	3		
3.	19A02404	Control Systems	ES	3-0-0	3		
4.	19A04403T	Analog Communications	PC	3-0-0	3		
5.	19A05304T	Python Programming	ES	2-1-0	3		
6.	19A04404	Computer Architecture and Organization	PC	3-0-0	3		
7.	19A52301	Universal Human Values	HS	2-0-0	2		
8.	19A04402P	Electronic Circuits – Analysis and Design Lab	PC	0-0-3	1.5		
9.	19A04403P	Analog Communications Lab	PC	0-0-3	1.5		
10.	19A99301	Environmental Science	BS	3-0-0	0		
			1	Total	23		

	Semester - V (Theory - 6, Lab - 3)						
S.No	Course No	Course Name	Category	L-T-P	Credits		
1.	19A04501T	Integrated Circuits and Applications	PC	2-0-0	2		
2.	19A04502	Antennas and Wave Propagation	PC	3-0-0	3		
3.	19A52601T	English Language Skills	HS	3-0-0	3		
4.	19A04503T	Digital Communications	PC	3-0-0	3		
		Professional Elective-I	PC	3-0-0	3		
5.	19A05403T	Operating Systems					
	19A02403	Power Electronics					
	19A05303T	Object Oriented Programming Through					
		Java					
	19A04504a	Data Communications and Networks					
	19A04504b	Nano Electronics					
		Open Elective-I	OE	3-0-0	3		
6.	19A01506a	Experimental stress analysis.					
	19A01506b	Building Technology					
	19A02506a	Electrical Engineering Materials					
	19A03506a	Introduction to Hybrid and Electric					
		Vehicles					
	19A03506b	Rapid Prototyping					
	19A05506a	Free and Open Sources Systems					
	19A05506b	Computer Graphics and Multimedia					
		Animation					
	19A27506a	Brewing Technology					
	19A27506b	Computer Applications in Food Industry					
	19A54506a	Optimization Techniques					
	19A52506a	Technical Communication and					
		Presentation Skills					
	19A51506a	Chemistry of Energy Materials					
7.	19A04501P	Integrated Circuits and Applications Lab	PC	0-0-3	1.5		
8.	19A52601P	English Language Skills Lab	HS	0-0-3	1.5		
9.	19A04503P	Digital Communications Lab	PC	0-0-2	1		
10.	19A04507	Socially Relevant Project		0-0-1	0.5		
11.	19A99601	Research Methodology		3-0-0	0		
		(Mandatory course)					
<u> </u>				Total	21.5		

1. 19A04601T Microprocessors and Microcontrollers PC 3-0-0 2. 19A04602T Digital Signal Processing PC 3-0-0 3. 19A04603 Digital System Design through VHDL PC 3-0-0 4. Professional Elective-II (MOOC) PC 3-0-0 19A04605a Introduction to Wireless and Cellular Communications (IITMadras) PC 3-0-0 19A04605b Fabrication Techniques for MEMs-based sensors (IISc, Bangalore) Integrated Photonics Devices And Circuits Electrical Measurement and Electronic Instruments (IIT KGP) DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OP 3-0-0 DEVICE Principles and Techniques dystems (offered by IIT KGP) OP 3-0-0 Introduction to Mechatronics Princi			Semester – VI (Theory - 6, Lab –2, MC	-1)		
2. 19A04602T Digital Signal Processing PC 3-0-0 3. 19A04603 Digital System Design through VHDL PC 3-0-0 4. Professional Elective-II (MOOC) PC 3-0-0 19A04605a Introduction to Wireless and Cellular Communications (IITMadras) PC 3-0-0 19A04605b Fabrication Techniques for MEMs-based sensors (IISc, Bangalore) Integrated Photonics Devices And Circuits 19A04605c Electrical Measurement and Electronic Instruments (IIT KGP) Open Elective-II OE 19A01604a Industrial waste and wastewater management. Building Services & Maintenance Maintenance 19A02604b Industrial Automation System Reliability Concepts Introduction to Mechatronics 0ptimization techniques through MATLAB Fundamentals of VR/AR/MR Pundamentals of VR/AR/MR 19A05604a 19A27604b Data Science Pood Plant Equipment Design Wavelet Transforms & its applications Wavelet Transforms & its applications 6. Humanities Elective-I HS 3-0-0 19A52602a Enterpreneurship & Incubation Managerial Economics and Financial Analysis <	S.No	Course No	Course Name	Category	L-T-P	Credits
3. 19A04603 Digital System Design through VHDL PC 3-0-0 4. Professional Elective-II (MOOC) PC 3-0-0 19A04605a Introduction to Wireless and Cellular Communications (IITMadras) Pabrication Techniques for MEMs-based sensors (IISc, Bangalore) 19A04605b Integrated Photonics Devices And Circuits Electrical Measurement and Electronic Instruments (IIT KGP) 19A04605e Principles and Techniques of Modern Radar Systems (offered by IIT KGP) OE 3-0-0 5. Open Elective-II Industrial waste and wastewater management. ByA02604a Industrial Automation System Reliability Concepts Introduction to Mechatronics Optimization techniques through MATLAB Pha03604b Introduction to Mechatronics Optimization techniques through MATLAB Pha045604b Industrial Equipment Design Wavelet Transforms & its applications Soft Skills Chemistry of Polymers and Its Applications Humanities Elective-I Entreprise and Its Applications Humanities Elective-I Entreprise Resource Planning Suphy Scale Enterprise Resource Planning Suphy Scale Enterprise Resource Planning Suphy Chain Management HS 3-0-0 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04607 Comprehensive online examination 3-0-0	1.	19A04601T	Microprocessors and Microcontrollers	PC	3-0-0	3
19A04605a	2.	19A04602T	Digital Signal Processing	PC	3-0-0	3
19A04605a	3.	19A04603	Digital System Design through VHDL	PC	3-0-0	3
Communications (IITMadras) 19A04605b Fabrication Techniques for MEMs-based sensors (IISc, Bangalore) 19A04605c Integrated Photonics Devices And Circuits 19A04605e Principles and Techniques of Modern Radar Systems (offered by IIT KGP) 5. Open Elective-II OE 3-0-0 19A01604a Industrial waste and wastewater management. 19A01604b Injance Reliability Concepts 19A02604a Introduction to Mechatronics Optimization techniques through MATLAB 19A03604b Injance Prod Toxicology 19A27604a Food Toxicology 19A27604b Food Toxicology 19A27604b Food Plant Equipment Design Wavelet Transforms & its applications 5oft Skills Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 3-0-0 19A52602a Injance Entrepreneurship & Incubation Managerial Economics and Financial Analysis 19A52602c Injance Entreprise Resource Planning Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course)	4.		Professional Elective-II (MOOC)	PC	3-0-0	3
19A04605b Fabrication Techniques for MEMs-based sensors (IISc, Bangalore) 19A04605c 1ntegrated Photonics Devices And Circuits 19A04605d Electrical Measurement and Electronic 1ntstruments (IIT KGP) 19A04605e Principles and Techniques of Modern Radar Systems (offered by IIT KGP) Open Elective-II OE 3-0-0 19A01604a 19A01604b 19A01604b 19A02604a 1ndustrial waste and wastewater management. 19A02604b 19A02604a 1ntroduction to Mechatronics 19A03604a 19A03604b 19A0360		19A04605a	Introduction to Wireless and Cellular			
19A04605c			Communications (IITMadras)			
19A04605c		19A04605b	Fabrication Techniques for MEMs-based			
19A04605d Electrical Measurement and Electronic Instruments (IIT KGP) 19A04605e Principles and Techniques of Modern Radar Systems (offered by IIT KGP) 5.			sensors (IISc, Bangalore)			
Instruments (IIT KGP)		19A04605c	Integrated Photonics Devices And Circuits			
19A04605e		19A04605d	Electrical Measurement and Electronic			
Systems (offered by IIT KGP)			Instruments (IIT KGP)			
19A01604a		19A04605e	Principles and Techniques of Modern Radar			
19A01604a			Systems (offered by IIT KGP)			
19A01604b	5.		Open Elective-II	OE	3-0-0	3
19A02604a		19A01604a	Industrial waste and wastewater management.			
19A02604b System Reliability Concepts 19A03604a Introduction to Mechatronics 19A03604b Optimization techniques through MATLAB 19A05604a Fundamentals of VR/AR/MR 19A05604b Data Science 19A27604b Food Toxicology 19A27604b Food Plant Equipment Design 19A54604a Wavelet Transforms & its applications 19A52604a Soft Skills 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 3-0-0 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602c Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A01604b	Building Services & Maintenance			
19A03604a Introduction to Mechatronics 19A03604b Optimization techniques through MATLAB 19A05604a Fundamentals of VR/AR/MR 19A27604a Data Science 19A27604b Food Toxicology 19A54604a Wavelet Transforms & its applications 19A52604a Soft Skills 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A02604a	Industrial Automation			
19A03604b Optimization techniques through MATLAB 19A05604a Fundamentals of VR/AR/MR 19A27604a Data Science 19A27604b Food Toxicology 19A54604a Food Plant Equipment Design 19A52604a Wavelet Transforms & its applications 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602e Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A02604b	System Reliability Concepts			
19A05604a		19A03604a	Introduction to Mechatronics			
19A05604b Data Science 19A27604a Food Toxicology 19A27604b Food Plant Equipment Design 19A54604a Wavelet Transforms & its applications 19A52604a Soft Skills 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602e Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A03604b	Optimization techniques through MATLAB			
19A27604a Food Toxicology 19A27604b Food Plant Equipment Design 19A54604a Wavelet Transforms & its applications 19A52604a Soft Skills 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I HS 3-0-0 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0		19A05604a	Fundamentals of VR/AR/MR			
19A27604b		19A05604b	Data Science			
19A54604a		19A27604a	Food Toxicology			
19A52604a Soft Skills 19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0		19A27604b	Food Plant Equipment Design			
19A51604a Chemistry of Polymers and Its Applications 6. Humanities Elective-I 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 10. 19A99501 Constitution of India (Mandatory Course) 11. 19A04607 Comprehensive online examination		19A54604a	Wavelet Transforms & its applications			
6. Humanities Elective-I 19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A52604a	Soft Skills			
19A52602a Entrepreneurship & Incubation 19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A51604a	Chemistry of Polymers and Its Applications			
19A52602b Managerial Economics and Financial Analysis 19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination	6.		Humanities Elective-I	HS	3-0-0	3
19A52602c Business Ethics andCorporate Governance 19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A52602a	Entrepreneurship & Incubation			
19A52602d Enterprise Resource Planning 19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A52602b	Managerial Economics and Financial Analysis			
19A52602e Supply Chain Management 7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A52602c	Business Ethics and Corporate Governance			
7. 19A04602P Digital Signal Processing Lab PC 0-0-3 8. 19A04601P Microprocessors and Microcontrollers Lab PC 0-0-3 9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination		19A52602d	Enterprise Resource Planning			
8.19A04601PMicroprocessors and Microcontrollers LabPC0-0-39.19A04606Socially Relevant Project0-0-110.19A99501Constitution of India (Mandatory Course)3-0-011.19A04607Comprehensive online examination		19A52602e	Supply Chain Management			
9. 19A04606 Socially Relevant Project 0-0-1 10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination	7.	19A04602P	Digital Signal Processing Lab	PC	0-0-3	1.5
10. 19A99501 Constitution of India (Mandatory Course) 3-0-0 11. 19A04607 Comprehensive online examination	8.	19A04601P	Microprocessors and Microcontrollers Lab	PC	0-0-3	1.5
11. 19A04607 Comprehensive online examination	9.	19A04606	· ·		0-0-1	0.5
11. 19A04607 Comprehensive online examination PR	10.	19A99501			3-0-0	0
	11.	19A046 0 7	Comprehensive online examination	PR		0
Total 2			1		Total	21.5

S.No	Course No	Course Name	Category	L-T-P	Credits
1.	19A04701T	Microwave Engineering and Optical	DC.	3-0-0	3
		Communications	PC		
2.	19A04702T	VLSI Design	PC	3-0-0	3
		Professional Elective-III	PE	3-0-0	3
3.	19A04703a	Satellite Communications			
	19A04703b	Digital TV Engineering			
	19A04703c	Embedded Systems			
	19A04703d	Image Processing			
	19A04703e	Advanced Digital Signal Processing			
		Open Elective-III	OE	3-0-0	3
4.	19A01704a	Air pollution and control.	02		
••	19A01704b	Basics of civil Engineering			
	19A02704a	Renewable Energy Systems			
	19A02704b	Electric Vehicle Engineering			
	19A03704a	Finite element methods			
	19A03704b	Product Marketing			
	19A05704a	Fundamentals of Game Development			
	19A05704b	Cyber Security			
	19A27704a	Corporate Governance in Food			
	1911277014	Industries			
	19A27704b	Process Technology for Convenience			
	1311277010	& RTE Foods			
	19A54704a	Numerical Methods for Engineers			
	19113 170 14	(ECE, CSE, IT &CE)			
	19A51704a	Chemistry of Nanomaterials and			
	1971317014	Applications			
		Humanities Elective-II	HS	3-0-0	3
5.	19A52701a	Organizational Behavior	110	300	
٠.	19A52701b	Management Science			
	19A52701c	Business Environment			
	19A52701d	Strategic Management			
	19A52701e	E-Business			
6.	19A04701P	Microwave and Optical		0-0-3	1.5
		Communications Lab	PC		1.0
7.	19A04702P	VLSI Design Lab	PC	0-0-3	1.5
8.	19A04705	Industrial Training/Skill			2
		Development/Research Project	PR		_
	1	ı J		Total	20

	Semester – VIII(Theory - 2)						
S.No	Course No	Course Name	Category	L-T-P	Credits		
1.		Professional Elective-IV	PE	3-0-0	3		
	19A04801a	Advanced 3G and 4G Wireless Mobile					
	10 4 0 4 0 0 11	Communications					
	19A04801b	Introduction to Internet of Things					
	19A04801c	Fuzzy sets, logic and systems and					
	19A04801d	Applications					
	19A04801e	Biomedical Signal Processing					
		Analog IC design					
		Open Elective-IV	OE	3-0-0	3		
2.	19A01802a	Disaster Management.					
	19A01802b	Global Warming and climate changes					
	19A02802a	IoT Applications in Electrical Engineering					
	19A02802b	Smart Electric Grid					
	19A03802a 19A03802b	Energy conservation and management Non destructive testing					
	19A05802a	Block Chain Technology and Applications					
	19A05802a	MEAN Stack Technology					
	19A27802a	Food Plants Utilities & Services					
	19A27802b	Nutraceuticals & Functional Foods					
	19A54802a	Mathematical Modeling & Simulation					
	19A51802a	Green Chemistry and Catalysis for					
		Sustainable Environment					
3.	19A04803	Project	PR		7		
	Total						

Honours Degree in ECE

S.No.	Course	Course Name	L	T	P	Credits
	No.					
1.	19A04H01	Automotive Electronics	3	1	0	4
2.	19A04H02	Low power VLSI Design.	3	1	0	4
3.	19A04H03	Pattern Recognition	3	1	0	4
4.	19A04H04	Micro Electromechanical Systems	3	1	0	4
5.	19A04H05	VLSI Testing and Testability	3	1	0	4
Total						20

Minor Degree in ECE

S.No.	Course No.	Course Name	L	T	P	Credits
1.	19A04301	Signals and Systems	3	0	0	3
2.	19A04302T	Electronics Devices and Circuits	3	0	0	3
3.	19A04304	Digital Electronics and Logic Design	3	0	0	3
4.	19A04503T	Digital Communications	3	0	0	3
5.	19A04602T	Digital Signal Processing	3	0	0	3
6.	19A04M01	Minor Discipline Project	-	-	-	5
	Total					20

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I-I Sem L T P C

3 1 0 4

(19A54101) ALGEBRA & CALCULUS

(Common to all branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Bridge Course: Limits, continuity, Types of matrices

Unit 1:Matrices 10 hrs

Rank of a matrix by echelon form, solving system of homogeneous and non-homogeneous equations linear equations. Eigen values and Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix, quadratic forms and nature of the quadratic forms, reduction of quadratic form to canonical forms by orthogonal transformation.

Learning Outcomes:

At the end of this unit, the student will be able to

- solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigenvalues and eigenvectors, diagonal form and different factorizations of a matrix; (L3)
- identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

Unit 2: Mean Value Theorems

6 hrs

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof);

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- analyze the behaviour of functions by using mean value theorems (L3)

Unit 3: Multivariable calculus

8 hrs

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

Unit 4:Multiple Integrals

10hrs

Double integrals, change of order of integration, double integration in polar coordinates, areas enclosed by plane curves. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates.

Learning Outcomes:

- At the end of this unit, the student will be able to
- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

Unit 5:Special Functions

6 hrs

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 201.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press

- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education
- 9. H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.
- 10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- I-II Sem

L T P C 3 0 0 3

(19A56101T) APPLIED PHYSICS (ECE, CSE, EEE & IT Branches)

Course Objectives:

- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications.
- ➤ To explain the significant concepts of dielectric and magnetic materials this leads to potential applications in the emerging micro devices.
- ➤ To impart knowledge in basic concepts of electromagnetic waves and its propagation in optical fibers along with its Engineering applications.
- ➤ To identify the importance of semiconductors in the functioning of electronic devices.
- ➤ To teach the concepts related to superconductivity which lead to their fascinating applications.
- ➤ To familiarize the applications of nanomaterials relevant to engineering branches.

Unit-I: Wave Optics

8hrs

Interference-Principle of Superposition-Interference of light-Conditions for sustained Interference -Interference in thin films (reflected light)-Newton's Rings-Determination of Wavelength-Engineering applications of Interference

Diffraction-Fraunhofer Diffraction-Single and Double slits - Diffraction Grating - Grating Spectrum -Determination of Wavelength - Engineering applications of diffraction

Polarization-Polarization by double refraction-Nicol's Prism--Half wave and Quarter wave plate- Engineering applications of Polarization.

Unit Outcomes:

The students will be able to

- **explain** the need of coherent sources and the conditions for sustained interference (L2)
- ➤ identify engineering applications of interference including homodyne and heterodyne detection (L3)
- **analyze** the differences between interference and diffraction with applications (L4)
- illustrate the concept of polarization of light and its applications (L2)
- > classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Dielectric and Magnetic Materials

(8hrs)

Introduction--Dielectric polarization-Dielectric polarizability, Susceptibility and Dielectric constant- Types of polarizations: Electronic and Ionic, (Quantitative), Orientation Polarizations (Qualitative) - Frequency dependence of polarization-Lorentz (internal) field-Claussius -Mosotti equation-Applications of Dielectrics: Ferroelectricity.

Introduction-Magnetic dipole moment-Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment -Classification of Magnetic materials-Weiss theory of ferromagnetism (qualitative)-Hysteresis-soft and hard magnetic materials-Magnetic device applications (Magnetic bubble memory).

Unit Outcomes:

The students will be able to

- **explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- > summarize various types of polarization of dielectrics (L2)
- > interpret Lorentz field and Claussius- Mosotti relation in dielectrics (L2)
- > classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)

Unit – III: Electromagnetic Waves and Fiber Optics

10hrs

Divergence and Curl of Electric and Magnetic Fields- Gauss' theorem for divergence and Stokes' theorem for curl- Maxwell's Equations (Quantitative)- Electromagnetic wave propagation (Non-conducting medium) -Poynting's Theorem.

Introduction to Optical Fibers-Total Internal Reflection-Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of fibers based on Refractive index profile –Propagation of electromagnetic wave through optical fiber – modes -importance of V-number- Attenuation, Block Diagram of Fiber optic Communication -Medical Applications-Fiber optic Sensors.

Unit Outcomes:

The students will be able to

- > apply the Gauss' theorem for divergence and Stokes' theorem for curl (L3)
- > evaluate the Maxwell's equations, Maxwell's displacement current and correction in Ampere's law (L5)
- ➤ asses the electromagnetic wave propagation and its power in non-conducting medium (L5)
- > explain the working principle of optical fibers (L2)
- **classify** optical fibers based on refractive index profile and mode of propagation (L2)
- identify the applications of optical fibers in medical, communication and other fields (L2)
- > Apply the fiber optic concepts in various fields (L3).

Unit – IV: Semiconductors

8 hrs

Origin of energy bands - Classification of solids based on energy bands - Intrinsic semiconductors - density of charge carriers-Fermi energy - Electrical conductivity - extrinsic semiconductors - P-type & N-type - Density of charge carriers - Dependence of Fermi energy

on carrier concentration and temperature- Direct and Indirect band gap semiconductors-Hall effect- Hall coefficient - Applications of Hall effect - Drift and Diffusion currents - Continuity equation - Applications of Semiconductors.

Unit Outcomes:

The students will be able to

- > classify the energy bands of semiconductors (L2)
- > outline the properties of n-type and p-type semiconductors and charge carriers (L2)
- > interpret the direct and indirect band gap semiconductors (L2)
- identify the type of semiconductor using Hall effect (L2)
- ➤ identify applications of semiconductors in electronic devices (L2)

Unit – V: Superconductors and Nanomaterials

8 hrs

Superconductors-Properties- Meissner's effect-BCS Theory-Josephson effect (AC &DC)-Types of Super conductors-Applications of superconductors.

Nano materials – Significance of nanoscale – Properties of nanomaterials: Physical, Mechanical, Magnetic, Optical – Synthesis of nanomaterials: Top-down-Ball Milling, Bottom-up -Chemical vapour deposition – characterization of nanomaterials: X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) - Applications of Nano materials.

Unit Outcomes:

The students will be able to

- **explain** howelectrical resistivity of solids changes with temperature (L2)
- > classify superconductors based on Meissner's effect (L2)
- **explain** Meissner's effect, BCS theory & Josephson effect in superconductors (L2)
- identify the nano size dependent properties of nanomaterials (L2)
- illustrate the methods for the synthesis and characterization of nanomaterials (L2)
- **Apply** the basic properties of nanomaterials in various Engineering branches (L3).

Text Books:

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" AText book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.
- 2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.

Reference Books:

- 1. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 2. David J.Griffiths, "Introduction to Electrodynamics" 4/e, Pearson Education, 2014
- 3. T Pradeep "A Text book of Nano Science and Nano Technology"- Tata Mc GrawHill 2013

Course Outcomes:

The students will be able to

- identify the wave properties of light and the interaction of energy with the matter (L3)
- > apply electromagnetic wave propagation in different guided media (L2)
- > asses the electromagnetic wave propagation and its power in different media (L5)
- **calculate** conductivity of semiconductors (L3)
- > interpret the difference between normal conductor and superconductor (L2)
- **demonstrate** the application of nanomaterials (L2)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I-I Sem L T P C 3 1 04

(19A05101T) PROBLEM SOLVING AND PROGRAMMING (Common to All Branches of Engineering)

Course Objectives:

- 1. Introduce the internal parts of a computer, and peripherals.
- 2. Introduce the Concept of Algorithm and use it to solve computational problems
- 3. Identify the computational and non-computational problems
- 4. Teach the syntax and semantics of a C Programming language
- 5. Demonstrate the use of Control structures of C Programming language
- 6. Illustrate the methodology for solving Computational problems

Unit 1:

Computer Fundamentals: What is a Computer, Evolution of Computers, Generations of Computers, Classification of Computers, Anatomy of a Computer, Memory revisited, Introduction to Operating systems, Operational overview of a CPU.

Introduction to Programming, Algorithms and Flowcharts: Programs and Programming, Programming languages, Compiler, Interpreter, Loader, Linker, Program execution, Fourth generation languages, Fifth generation languages, Classification of Programming languages, Structured programming concept, Algorithms, Pseudo-code, Flowcharts, Strategy for designing algorithms, Tracing an algorithm to depict logic, Specification for converting algorithms into programs.

Unit Outcomes:

Student should be able to

- 1. Identify the different peripherals, ports and connecting cables in a PC (L2)
- 2. Illustrate the working of a Computer (L3)
- 3. Select the components of a Computer in the market and assemble a computer (L4)
- 4. Solve complex problems using language independent notations (L3)

Unit 2:

Introduction to computer problem solving: Introduction, the problem-solving aspect, top-down design, implementation of algorithms, the efficiency of algorithms, the analysis of algorithms.

Fundamental algorithms: Exchanging the values of two variables, counting, summation of a set of numbers, factorial computation, sine function computation, generation of the Fibonacci sequence, reversing the digits of an integer.

Learning Outcomes: Student should be able to

- 1. Solve Computational problems (L3)
- 2. Apply Algorithmic approach to solving problems (L3)
- 3. Analyze the algorithms (L4)

Unit 3:

Types, Operators, and Expressions: Variable names, data types and sizes, constants, declarations, arithmetic operators, relational and logical operators, type conversions, increment and decrement operators, bitwise operators, assignment operators and expressions, conditional expressions precedence and order of evaluation.

Input and output: standard input and output, formatted output-Printf, formatted input-Scanf.

Control Flow: Statements and blocks, if-else, else-if, switch, Loops-while and for, Loops-Dowhile, break and continue, Goto and labels.

Functions and Program Structure: Basics of functions, functions returning non-integers, external variables, scope variables, header variables, register variables, block structure, initialization, recursion, the C processor.

Learning Outcomes: Student should be able to

- 1. Recognize the programming elements of C Programming language (L1)
- 2. Select the control structure for solving the problem (L4)
- 3. Apply modular approach for solving the problem (L3)

Unit 4:

Factoring methods: Finding the square root of a number, the smallest divisor of a number, the greatest common divisor of two integers, generating prime numbers.

Pointers and arrays: Pointers and addresses, pointers and function arguments, pointers and arrays, address arithmetic, character pointers and functions, pointer array; pointers to pointers, Multi-dimensional arrays, initialization of arrays, pointer vs. multi-dimensional arrays, command line arguments, pointers to functions, complicated declarations.

Array Techniques: Array order reversal, finding the maximum number in a set, removal of duplicates from an order array, finding the kth smallest element

Learning Outcomes: Student should be able to

- 1. Solve mathematical problems using C Programming language (L3)
- 2. Structure the individual data elements to simplify the solutions (L6)
- 3. Facilitate efficient memory utilization (L6)

Unit 5:

Sorting and Searching: Sorting by selection, sorting by exchange, sorting by insertion, sorting by partitioning, binary search.

Structures: Basics of structures, structures and functions, arrays of structures, pointers to structures, self-referential structures, table lookup, typedef, unions, bit-fields.

Some other Features: Variable-length argument lists, formatted input-Scanf, file access, Error handling-stderr and exit, Line Input and Output, Miscellaneous Functions.

Learning Outcomes: Student should be able to

- 1. Select sorting algorithm based on the type of the data (L4)
- 2. Organize heterogeneous data (L6)
- 3. Design a sorting algorithm (L6)

Text Books:

- 1. Pradip Dey, and Manas Ghosh, "Programming in C", 2018, Oxford University Press.
- 2. R.G. Dromey, "How to Solve it by Computer". 2014, Pearson.
- 3. Brian W. Kernighan, and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson.

Reference Books:

- 1. RS Bichkar "Programming with C", 2012, Universities Press.
- 2. Pelin Aksoy, and Laura Denardis, "Information Technology in Theory", 2017, Cengage Learning.
- 3. Byron Gottfried and Jitender Kumar Chhabra, "Programming with C", 4th Edition, 2019, McGraw Hill Education.

Course Outcomes:

- 1. Construct his own computer using parts (L6).
- 2. Recognize the importance of programming language independent constructs (L2)
- 3. Solve computational problems (L3)
- 4. Select the features of C language appropriate for solving a problem (L4)
- 5. Design computer programs for real world problems (L6)
- 6. Organize the data which is more appropriated for solving a problem (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)- I-I Sem L T P C

2 0 0 2

(19A52101T) COMMUNICATIVE ENGLISH I (Common to All Branches of Engineering)

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- > Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- ➤ Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- ➤ Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Unit 1

Listening:Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:**Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing:**Beginnings and endings of paragraphs introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- > understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- > employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

Unit 2

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/ small groups on specific topics followed by short structured talks.**Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- > comprehend short talks on general topics
- participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- > understand the use of cohesive devices for better reading comprehension
- > write well structured paragraphs on specific topics
- identify basic errors of grammar/ usage and make necessary corrections in short texts

Unit 3

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- > comprehend short talks and summarize the content with clarity and precision
- > participate in informal discussions and report what is discussed
- infer meanings of unfamiliar words using contextual clues
- write summaries based on global comprehension of reading/listening texts
- > use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

Unit4

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:**Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Information transfer; describe, compare, contrast, identify significance/trendsbased on information provided in figures/charts/graphs/tables. **Grammar and Vocabulary:**Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Learning Outcomes

At the end of the module, the learners will be able to

- infer and predict about content of spoken discourse
- understand verbal and non-verbal features of communication and hold formal/informal conversations
- interpret graphic elements used in academic texts
- > produce a coherent paragraph interpreting a figure/graph/chart/table
- > use language appropriate for description and interpretation of graphical elements

Unit 5

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. **Speaking:** Formal oral presentations on topics from academic contexts - without the use of PPT slides. **Reading:** Reading for comprehension. **Writing:** Writing structured essays on specific topics using suitable claims and evidences**Grammar and Vocabulary:** Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- take notes while listening to a talk/lecture and make use of them to answer questions
- > make formal oral presentations using effective strategies
- > comprehend, discuss and respond to academic texts orally and in writing
- > produce a well-organized essay with adequate support and detail
- > edit short texts by correcting common errors

Text Book

• English all round: Communication Skills for Undegurdation Learners Vol. I, Orient BlackSwan Publisers, First Edition 2019.

Reference Books

- Bailey, Stephen. *Academic writing: A handbook for international students*. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

Sample Web Resources

Grammar/Listening/Writing

1-language.com

http://www.5minuteenglish.com/

https://www.englishpractice.com/

Grammar/Vocabulary

English Language Learning Online

http://www.bbc.co.uk/learningenglish/

http://www.better-english.com/

http://www.nonstopenglish.com/

https://www.vocabulary.com/

BBC Vocabulary Games

Free Rice Vocabulary Game

Reading

https://www.usingenglish.com/comprehension/

https://www.englishclub.com/reading/short-stories.htm

https://www.english-online.at/

Listening

https://learningenglish.voanews.com/z/3613

http://www.englishmedialab.com/listening.html

Speaking

https://www.talkenglish.com/

BBC Learning English – Pronunciation tips

Merriam-Webster – Perfect pronunciation Exercises

All Skills

https://www.englishclub.com/

http://www.world-english.org/

http://learnenglish.britishcouncil.org/

Online Dictionaries

Cambridge dictionary online

MacMillan dictionary

Oxford learner's dictionaries

Course Outcomes:

At the end of the course, the learners will be able to

- ➤ Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- > Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- > Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- > Create a coherent paragraph interpreting a figure/graph/chart/table

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I-I Sem L T P C 00 21

(19A04101) ELECTRONICS & COMMUNICATION ENGINEERING WORKSHOP

Course Objectives:

- To introduce electronic components, measuring instruments and tools used in electronic workshop.
- To equip with the knowledge of understanding data sheets of electronic components
- To give practical experience on soldering the electronic components on a PCB
- To introduce EDA tools
- To know about the internal parts of a computer, assembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide training on Productivity tools like word processors, spreadsheets, presentations
- To provide knowledge in understanding working of various communication systems

List of Exercises / Experiments:

- 1. Familiarization of commonly used Electronic Workshop Tools: Bread board, Solder, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, flux, knife/blade, soldering iron, de-soldering pump etc.
 - Provide some exercises so that electronics hardware tools and instruments are learned to be used by the students
- 2. Familiarization of Electronic Measuring Instruments like Voltmeters, Ammeters, multimeter, LCR-Q meter, Power Supplies, CRO, DSO, Function Generator, Frequency counter.
 - Provide some exercises so that electronic measuring instruments are learned to be used by the students

3. ElectronicComponents:

Familiarization/Identification of electronic components (Resistors, Capacitors, Inductors, Diodes, transistors, IC's etc.) – Functionality, type, size, color coding, package, symbol, cost etc.

- 4. Testing of electronic components like Resistor, Capacitor, Diode, Transistor, ICs etc.
 - Compare values of components like resistors, inductors, capacitors etc with the measured values by using electronic instruments
- 5. Study of Cathode Ray Oscilloscope (CRO)
 - Find the Amplitude and Frequency of a signal
 - Measure the Unknown Frequency & Phase difference of signals using Lissajous figures

- 6. Interpret data sheets of discrete components and IC's.
 - Write important specifications/ratings of components & ICs and submit it in the form of a report
- 7. Introduction to EDA Tools: MULTISIM/PSPICE/TINA schematic capture tool, Learning of basic functions of creating a new project, getting and placing parts, connecting placed parts, simulating the schematic, plotting and analyzing the results.
 - Provide some exercises so that students are familiarized in using EDA tools
- 8. Assembling and Testing of simple electronic circuits on breadboards; identifying the components and its location on the PCB, soldering of the components, testing the assembled circuit for correct functionality.
- 9. Familiarization with Computer Hardware & Operating System:
 - Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.
 - Disassemble and assemble the PC back to working condition. Students should be
 able to trouble shoot the computer and identify working and non-working parts.
 Student should identify the problem correctly by various methods available (eg:
 beeps). Students should record the process of assembling and trouble shooting a
 computer.
 - Install Operating system on the computer. Students should record the entire installation process.

10. Familiarization with Office Tools

- Word Processor: Able to create documents using the word processor tool. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied.
- Spreadsheet: Able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells.
- Presentations: creating, opening, saving and running the presentations, Selecting the style for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyper-linking, running the slide show, setting the timing for slide show.
- 11. Familiarization of PA system with different microphones, loud speakers, mixer etc. Represent the same in the form of diagrams, write specifications and submit it in the form of a report.

12. Understand working of various Communication Systems like Television, Satellite Transmitter & Receiver, Radio Receiver, Mobile Phone. Prepare demo boards/charts of various communication systems.

Course Outcomes:

- Identify discrete components and ICs (L3)
- Assemble simple electronic circuits over a PCB (L3)
- Testing of various components (L4)
- Interpret specifications (ratings) of the component (L5)
- Demonstrate disassembling and assembling a Personal Computer and make the computer ready to use (L2)
- Make use of Office tools for preparing documents, spread sheets and presentations (L3)
- Demonstrate working of various communication systems (L2)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I-I Sem L T P C 0 0 31.5

(19A56101P) APPLIED PHYSICS LAB (ECE, CSE, CSSE, EEE, EIE& IT Branches)

Course Objectives:

- ➤ Understands the concepts of interference and diffraction and their applications.
- ➤ Understand the role of optical fiber parameters in communication.
- Recognize the importance of energy gap in the study of conductivity and hall effect in a semiconductor.
- ➤ Illustrates the magnetic and dielectric materials applications.
- ➤ Apply the principles of semiconductors in various electronic devices.

Note: In the following list, out of 15 experiments, any 12 experiments must be performed in a semester

List of Physics Experiments

- 1. Determine the thickness of the wire using wedge shape method
 - Experimental outcomes:
 - operates optical instrument like travelling microscope. (L2)
 - estimate the thickness of the wire usingwedge shape method (L2)
 - Identifies the formation of interference fringes due to reflected light from non uniform thin film. (L2)
- 2. Determination of the radius of curvature of the lens by Newton's ring method Experimental outcomes:
 - operates optical instrument like travelling microscope. (L2)
 - estimate the radius of curvature of the lens (L2)
 - Identifies the formation of interference fringes due to reflected light from non uniform thin film. (L2)
 - plots the square of the diameter of a ring with no. of rings (L3)
- 3. Determination of wavelength by plane diffraction grating method
 - Experimental outcomes:
 - operates optical instrument like spectrometer. (L2)
 - estimate the wavelength of the given source (L2)
 - Identifies the formation of grating spectrum due diffraction. (L2)
- 4. Dispersive power of a diffraction grating
 - Experimental outcomes:
 - operates optical instrument like spectrometer. (L2)
 - estimate the wavelength of the given source (L2)
 - Identifies the formation of grating spectrum due diffraction. (L2)
- 5. Resolving power of a grating
 - Experimental outcomes:
 - operates optical instrument like spectrometer. (L2)
 - estimate the resolving power of the grating (L2)
 - Illustrates the role of resolving power in various optical instruments. (L3)
- 6. Determination of dielectric constant by charging and discharging method.

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the dielectric constant of the given substance. (L2)

Identifies the significance of dielectric constant in various devices. (L2)

7. Magnetic field along the axis of a circular coil carrying current.

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the magnetic field along the axis of a circular coil carrying current. (L2)

plots the intensity of the magnetic field of circular coil carrying current with distance (L3)

8. To determine the self inductance of the coil (L) using Anderson's bridge.

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the self inductance of the coil using Anderson's bridge. (L2)

Identifies the significance of self inductance of the coil in electric devices. (L2)

9. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the hysteresis loss, coercivity and retentivity of the ferromagnetic material.. (L2)

classifies the soft and hard magnetic material based on B-H curve. (L2)

plots the magnetic field H and flux density B (L3)

10. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the numerical aperture and acceptance angle of a given optical fiber. (L2)

Identifies the significance of numerical aperture and acceptance angle of a optical fiber in various engineering applications. (L2)

11. Measurement of magnetic susceptibility by Gouy's method

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the magnetic susceptibility of the given material. (L2)

Identifies the significance of magnetic susceptibility in various engineering applications. (L2)

12. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect.

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the charge carrier concentration and mobility in a semiconductor. (L2)

Illustrates the applications of hall effect. (L3)

plots the voltage with current and voltage with magnetic field (L3)

13. To determine the resistivity of semiconductor by Four probe method

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the resistivity of a semiconductor. (L2)

Identifies the importance of Four probe method in finding the resistivity of semiconductor. (L3)

14. To determine the energy gap of a semiconductor

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the energy gap of a semiconductor. (L2)

Illustrates the engineering applications of energy gap . (L3)

plots 1/T with log R (L3)

15. Measurement of resistance with varying temperature.

Experimental outcomes:

operates various instruments and connect them as per the circuit. (L2)

estimate the resistance with varying temperature. (L2)

plots **resistance** R with temperature T (L3)

Course Outcomes:

The students will be able to

- **operate** optical instruments like microscope and spectrometer (L2)
- **determine** thickness of a hair/paper with the concept of interference (L2)
- > estimate the wavelength of different colors using diffraction grating and resolving power (L2)
- ➤ **plot** the intensity of the magnetic field of circular coil carrying current with distance (L3)
- **evaluate** the acceptance angle of an optical fiber and numerical aperture (L3)
- **determine** magnetic susceptibility of the material and its losses by B-H curve (L3)
- **determine** the resistivity of the given semiconductor using four probe method (L3)
- identify the type of semiconductor i.e., n-type or p-type using hall effect (L3)
- **calculate** the band gap of a given semiconductor (L3)

References Books:

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics" S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I–I Sem L T P C 0 0 31.5

(19A05101P) PROBLEM SOLVING AND PROGRAMMING LAB (Common to All Branches of Engineering)

Laboratory Experiments#

- 1. Assemble and disassemble parts of a Computer
- 2. Design a C program which reverses the number
- 3. Design a C program which finds the second maximum number among the given list of numbers.
- 4. Construct a program which finds the kth smallest number among the given list of numbers.
- 5. Design an algorithm and implement using C language the following exchanges

$$a \leftarrow b \leftarrow c \leftarrow d$$

- 6. Develop a C Program which counts the number of positive and negative numbers separately and also compute the sum of them.
- 7. Implement the C program which computes the sum of the first n terms of the series

$$Sum = 1 - 3 + 5 - 7 + 9$$

- 8. Design a C program which determines the numbers whose factorial values are between 5000 and 32565.
- 9. Design an algorithm and implement using a C program which finds the sum of the infinite series

$$1 - x^2/2! + x^4/4! - x^6/6! + \dots$$

- 10 Design a C program to print the sequence of numbers in which each number is the sum of the three most recent predecessors. Assume first three numbers as 0, 1, and 1.
- 11. Implement a C program which converts a hexadecimal, octal and binary number to decimal number and vice versa.
- 12. Develop an algorithm which computes the all the factors between 1 to 100 for a given number and implement it using C.
- 13. Construct an algorithm which computes the sum of the factorials of numbers between m and n.
- 14. Design a C program which reverses the elements of the array.
- 15. Given a list of n numbers, Design an algorithm which prints the number of stars equivalent to the value of the number. The starts for each number should be printed horizontally.
- 16. Implement the sorting algorithms a. Insertion sort b. Exchange sort c. Selection sort

- d.. Partitioning sort.
- 17. Illustrate the use of auto, static, register and external variables.
- 18. Design algorithm and implement the operations creation, insertion, deletion, traversing on a singly linked list.
- 19. Develop a C program which takes two numbers as command line arguments and finds all the common factors of those two numbers.
- 20. Design a C program which sorts the strings using array of pointers.

The above list is not exhaustive. Instructors may add some experiments to the above list. Moreover, 50% of the experiments are to be changed every academic year. Instructors can choose the experiments, provided those experiments are not repetitions.

Course outcomes: Student should be able to

- 1. Construct a Computer given its parts (L6)
- 2. Select the right control structure for solving the problem (L6)
- 3. Analyze different sorting algorithms (L4)
- 4. Design solutions for computational problems (L6)
- 5. Develop C programs which utilize the memory efficiently using programming constructs like pointers.

References:

- 1. B. Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance", Tata McGraw-Hill, 2nd edition, 2002.
- 2. R.G. Dromey, "How to Solve it by Computer". 2014, Pearson.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE)– I-I Sem L T P C 0 0 21

(19A52101P) COMMUNICATIVE ENGLISH I LAB (Common to All Branches of Engineering)

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- > To expose the students to variety of self instructional, learner friendly modes of language learning
- ➤ To help the students cultivate the habit of reading passages from the computer monitor. Thus providing them with the required facility to face computer based competitive exams like GRE, TOEFL, and GMAT etc.
- > To enable them to learn better pronunciation through stress, intonation and rhythm
- > To train them to use language effectively to face interviews, group discussions, public speaking
- > To initiate them into greater use of the computer in resume preparation, report writing, format making etc

Course Outcomes

- ➤ CO1: To remember and understand the different aspects of the English language proficiency with emphasis on LSRW skills
- ➤ CO2: To apply communication skills through various language learning activities
- ➤ CO3: To analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- ➤ CO4: To evaluate and exhibit acceptable etiquette essential in social and professional settings
- ➤ CO5: To create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.

Unit 1

- 1. Phonetics for listening comprehension of various accents
- 2. Reading comprehension
- 3. Describing objects/places/persons

Learning Outcomes

At the end of the module, the learners will be able to

- > understand different accents spoken by native speakers of English
- > employ suitable strategies for skimming and scanning on monitor to get the general idea of a text and locate specific information
- ➤ learn different professional registers and specific vocabulary to describe different persons, places and objects

Unit 2

- 1. JAM
- 2. Small talks on general topics
- 3. Debates

Learning Outcomes

At the end of the module, the learners will be able to

- > produce a structured talk extemporarily
- > comprehend and produce short talks on general topics
- participate in debates and speak clearly on a specific topic using suitable discourse markers

Unit 3

- 1. Situational dialogues Greeting and Introduction
- 2. Summarizing and Note making
- 3. Vocabulary Building

Learning Outcomes

At the end of the module, the learners will be able to

- ➤ Learn different ways of greeting and introducing oneself/others
- > summarize the content with clarity and precision and take notes while listening to a talk/lecture and make use of them to answer questions
- replenish vocabulary with one word substitutes, homonyms, homophones, homographs to reduce errors in speech and writing

Unit4

- 1. Asking for Information and Giving Directions
- 2. Information Transfer
- 3. Non-verbal Communication Dumb Charade

Learning Outcomes

At the end of the module, the learners will be able to

- ➤ Learn different ways of asking information and giving directions
- ➤ Able to transfer information effectively
- > understand non-verbal features of communication

Unit 5

- 1. Oral Presentations
- 2. Précis Writing and Paraphrasing
- 3. Reading Comprehension and spotting errors

Learning Outcomes

At the end of the module, the learners will be able to

- > make formal oral presentations using effective strategies
- learn different techniques of précis writing and paraphrasing strategies
- > comprehend while reading different texts and edit short texts by correcting common errors

Reference Books

- English in Action, I st Edition, 2019, Maruthi Publications.
- Bailey, Stephen. *Academic writing: A handbook for international students*. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

Sample Web Resources

Grammar/Listening/Writing

1-language.com

http://www.5minuteenglish.com/

https://www.englishpractice.com/

Grammar/Vocabulary

English Language Learning Online

http://www.bbc.co.uk/learningenglish/

http://www.better-english.com/

http://www.nonstopenglish.com/

https://www.vocabulary.com/

BBC Vocabulary Games

Free Rice Vocabulary Game

Reading

https://www.usingenglish.com/comprehension/

https://www.englishclub.com/reading/short-stories.htm

https://www.english-online.at/

Listening

https://learningenglish.voanews.com/z/3613 http://www.englishmedialab.com/listening.html

Speaking

https://www.talkenglish.com/

BBC Learning English – Pronunciation tips

Merriam-Webster – Perfect pronunciation Exercises

All Skills

https://www.englishclub.com/

http://www.world-english.org/

http://learnenglish.britishcouncil.org/

Online Dictionaries

Cambridge dictionary online

MacMillan dictionary

Oxford learner's dictionaries

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–I- II Sem L T P C 3003

(19A04201T) NETWORK THEORY (ECE)

Course Objectives:

- To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits
- To impart knowledge on applying appropriate theorem for electrical circuit analysis
- To explain transient behavior of circuits in time and frequency domains
- To teach concepts of resonance
- To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

UNIT 1 Introduction to Electrical Circuits

Passive components and their V-I relations, Energy sources - Ideal, Non-ideal, Independent and dependent sources, Source transformation Kirchoff's laws, Star—to-Delta or Delta-to-Star Transformations, Mesh analysis and Nodal analysis problem solving, Super node and Super mesh for DC Excitations.

Unit Outcomes

- Gain knowledge on basic network elements, voltage and current laws (L1)
- Apply Kirchoff's laws, network reduction techniques on simple electrical circuits with dependent& independent sources (L3)
- Solve complex circuits using mesh and nodal analysis techniques (L3)

UNIT 2 Network Theorems

Superposition theorem, Thevenin & Norton theorems, Maximum power transfer theorem, Reciprocity theorem, Millman theorem, Miller Theorem, Tellegan's Theorem, Compensation theorem - problem solving using dependent sources also, Duality and dual networks.

Unit Outcomes:

- Understand significance of duality and dual networks (L2)
- Select appropriate theorem for network simplification (L5)
- Determine maximum power transfer to the load (L5)

UNIT 3 Transients

First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogeneous, problem solving using R-L-C elements with DC excitation and AC (sinusoidal) excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method.

- Understand behavior of circuit elements under switching conditions (L1)
- Analyze response of RL, RC & RLC circuits in time & frequency domains (L4)
- Evaluate initial conditions in RL, RC & RLC circuits (L5)

UNIT 4 Resonance and Coupled Circuits

Self inductance, Mutual inductance, dot rule, coefficient of coupling, Analysis of multiwinding coupled circuits, series & parallel connection of coupled inductors.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case resistance present in both branches, anti resonance at all frequencies.

Unit Outcomes:

- Understand magnetically coupled circuits (L1)
- Determine resonant frequency and bandwidth of a simple series or parallel RLC circuit (L5)
- Determine voltages and currents in a resonant circuit (L5)

UNIT 5 Two Port Networks & Network Functions

Two Port Networks, relationship of two port variables, impedance parameters, admittance parameters, transmission parameters, hybrid and inverse hybrid parameters, relationship between parameters, interconnection of two port networks.

Concept of complex frequency, driving point and transfer functions for one port and two port network, poles & zeros of network functions, Restriction on Pole and Zero locations of network function

Unit Outcomes:

- Determine network parameters for given two port network (L5)
- Relate different two port network parameters (L4)
- Represent transfer function for the given network (L4)

Text Books:

- 1. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.
- 2. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.

References Books:

- 1. D. Roy Choudhury, "Networks and Systems", New Age International Publications,1998.
- 2. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 3. Bhise, Chadda, Kulshreshtha, "Engineering network analysis and filter design" Umesh Publication, 2000.
- 4. Joseph Edminister and Mahmood Nahvi, "Electric Circuits", Schaum's Outline Series, Fourth Edition, Tata McGraw Hill Publishing Company, New Delhi, 2003.

Course Outcomes:

- Solve network problems using mesh and nodal analysis techniques (L3)
- Analyze networks using Thevenin, Norton, Maximum power transfer, Superposition, Miller and Millman theorems (L4)
- Compute responses of first order and second order networks using time & frequency domain analysis (L5)
- Design resonant circuits for given bandwidth (L6)
- Utilize z, y, ABCD and h parameters for analyzing two port circuit behavior (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSE)– I-II Sem L T P C

3 1 0 4

(19A54201) DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Civil, Mechanical, EEE, ECE and EIE)

Course Objectives:

- 1) To enlighten the learners in the concept of differential equations and multivariable calculus.
- 2) To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

UNIT 1: Linear differential equations of higher order

8hrs

Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.

Learning Outcomes:

At the end of this unit, the student will be able to

- identify the essential characteristics of linear differential equations with constant coefficients (L3)
- solve the linear differential equations with constant coefficients by appropriate method (L3)

UNIT 2: Equations reducible to Linear Differential Equations

Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients, Applications to L-C-R Circuit problems and Mass spring system.

Learning Outcomes:

At the end of this unit, the student will be able to

- classify and interpret the solutions of linear differential equations (L3)
- formulate and solve the higher order differential equation by analyzing physical situations (L3)

UNIT 3: Partial Differential Equations

8 hrs

8hrs

First order partial differential equations, solutions of first order linear and non-linear PDEs. Solutions to homogenous and non-homogenous higher order linear partial differential equations.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply a range of techniques to find solutions of standard PDEs (L3)
- outline the basic properties of standard PDEs (L2)

UNIT4: Vector differentiation

8hrs

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply del to Scalar and vector point functions (L3)
- illustrate the physical interpretation of Gradient, Divergence and Curl (L3)

UNIT 5: Vector integration

8hrs

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Learning Outcomes:

At the end of this unit, the student will be able to

- find the work done in moving a particle along the path over a force field (L4)
- evaluate the rates of fluid flow along and across curves (L4)
- apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals (L3)

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Books:

- 1. Dennis G. Zill and Warren S. Wright, Advanced Engineering Mathematics, Jones and Bartlett. 2011.
- 2. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 3. George B.Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 4. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 5. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 6. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 7. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 8. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 9. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 10. B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education.
- 11. H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.
- 12. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- solve the differential equations related to various engineering fields (L6)
- Identify solution methods for partial differential equations that model physical processes (L3)
- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I-II Sem L T P C

3 0 0 3

(19A51102T) CHEMISTRY (CSE, CSSE, ECE, EIE, EEE and IT)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Unit 1: Structure and Bonding Models:

(10 hrs)

Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of Ψ and Ψ^2 , applications to hydrogen, particle in a box and their applications for conjugated molecules, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O_2 and CO, etc. π -molecular orbitals of butadiene and benzene, calculation of bond order, crystal field theory – salient features – splitting in octahedral and tetrahedral geometry, magnetic properties and colour, band theory of solids – band diagrams for conductors, semiconductors and insulators, role of doping on band structures.

Learning Outcomes:

At the end of this unit, the students will be able to

- apply Schrodinger wave equation to hydrogen and particle in a box (L3)
- illustrate the molecular orbital energy level diagram of different molecular species (L2)
- explain the band theory of solids for conductors, semiconductors and insulators (L2)
- **discuss** the magnetic behaviour and colour of complexes (L3)

Unit 2: Electrochemistry and Applications:

(10 hrs)

Electrodes – concepts, reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode) electrochemical cell, Nernst equation, cell potential calculations, numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations), photovoltaic cell – working and applications, photogalvanic cells with specific examples. Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Secondary cells – lead acid, and lithium ion batteries- working of the batteries including cell reactions.

Learning Outcomes:

At the end of this unit, the students will be able to

• apply Nernst equation for calculating electrode and cell potentials (L3)

- **differentiate** between pH metry, potentiometric and conductometric titrations (L2)
- explain the theory of construction of battery and fuel cells (L2)
- solve problems based on cell potential (L3)

Unit 3: Polymer Chemistry:

(10 hrs)

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics - Thermoplastics and Thermosettings, Preparation, properties and applications of – Bakelite, urea-formaldehyde, Nylon-66, carbon fibres, Elastomers–Buna-S, Buna-N–preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, polypyrroles – mechanism of conduction and applications.

Learning Outcomes:

At the end of this unit, the students will be able to

- **explain** the different types of polymers and their applications (L2)
- **explain** the preparation, properties and applications of Bakelite, Nylon-66, and carbon fibres (L2)
- **describe** the mechanism of conduction in conducting polymers (L2)
- **discuss** Buna-S and Buna-N elastomers and their applications (L2)

Unit 4: Instrumental Methods and Applications

(10 hrs)

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. Principle and applications of pH metry, potentiometry, conductometry, UV-Visible, IR and NMR Spectroscopies. Principles of Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC), separation of gaseous mixtures and liquid mixtures

Learning outcomes:

After completion of Module IV, students will be able to

- explain the different types of spectral series in electromagnetic spectrum (L2)
- **understand** the principles of different analytical instruments (L2)
- **explain** the different applications of analytical instruments (L2)

Unit 5: Molecular Machines and Molecular Switches:

(10 hrs)

Concepts and terms of supra molecular chemistry, complementarity, Basic Lock and Key principle, examples of Supramolecules, Molecular recognition- cation binding, anion binding, simultaneous cation and anion binding, supramolecular reactivity and catalysis

Self assembly in biological systems, Synthetic systems- catenanes, rotaxanes, metal ion assisted assemblies, template synthesis of macrocyclic ligands

Applications of Supramolecular Devices- Ionic devices, Electronic devices, Switching devices

Learning Outcomes:

At the end of this unit, the students will be able to

- explain the band theory of solids for conductors, semiconductors and insulators (L2)
- **explain**supramolecular chemistry and self assembly (L2)
- **demonstrate** the application of Rotaxanes and Catenanes as artificial molecular machines (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. J. D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.
- 2. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 3. J.M.Lehn, Supra Molecular Chemistry, VCH Publications

Course Outcomes:

At the end of the course, the students will be able to

- **compare** the materials of construction for battery and electrochemical sensors (L2)
- **explain**the preparation, properties, and applications of thermoplastics &thermosettings, elastomers & conducting polymers. (L2)
- **explain** the principles of spectrometry, GC and HPLC in separation of gaseous and liquid mixtures (L2)
- **apply** the principle of supramolecular chemistry in application of molecular machines and switches (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– I-II Sem

L T P C

3 0 0 3

(19A05201T) DATA STRUCTURES (Common to All Branches of Engineering)

Course Objectives:

- 1. To teach the representation of solution to the problem using algorithm
- 2. To explain the approach to algorithm analysis
- 3. To introduce different data structures for solving the problems
- 4. To demonstrate modeling of the given problem as a graph
- 5. To elucidate the existing hashing techniques

Unit – 1: Introduction

Algorithm Specification, Performance analysis, Performance Measurement. Arrays: Arrays, Dynamically Allocated Arrays. Structures and Unions. Sorting: Motivation, Quick sort, How fast can we sort, Merge sort, Heap sort

Learning Outcomes:

Student should be able to

- 1. Analyze the given algorithm to find the time and space complexities.(L4)
- 2. Select appropriate sorting algorithm (L4)
- 3. Design a sorting algorithm (L6)

Unit – 2: Stack, Queue and Linked lists

Stacks, Stacks using Dynamic Arrays, Queues, Circular Queues Using Dynamic Arrays, Evaluation of Expressions, Multiple Stacks and Queues. Linked lists: Singly Linked Lists and Chains, Representing Chains in C, Linked Stacks and Queues, Additional List Operations, Doubly Linked Lists.

Learning outcomes: Student should be able to

- 1. Evaluate expressions (L5)
- 2. Develop the applications using stacks and queues (L3)
- 3. Construct the linked lists for various applications (L6)

Unit – 3:Trees

Introduction, Binary Trees, Binary Tree Traversals, Additional Binary Tree Operations, Binary Search Trees, Counting Binary Trees, Optimal Binary search Trees, AVL Trees. B-Trees: B-Trees, B + Trees.

Learning outcomes

- 1. Explain the concept of a tree (L2)
- 2. Compare different tree structures (L4)
- 3. Apply trees for indexing (L3)

Unit – 4 : Graphs and Hashing

The Graph Abstract Data Type, Elementary Graph Operations, Minimum Cost Spanning Trees, Shortest Paths and Transitive Closure

Hashing: Introduction to Hash Table, Static Hashing, Dynamic Hashing.

Learning outcomes:

Student should be able to

- 1. Recognize the importance of Graphs in solving real world problems (L2)
- 2. Apply various graph traversal methods to applications (L3)
- 3. Design a minimum cost solution for a problem using spanning trees (L6)
- 4. Select the appropriate hashing technique for a given application (L5)
- 5. Design a hashing technique (L6)

Unit – 5: Files and Advanced sorting

File Organization: Sequential File Organization, Direct File Organization, Indexed Sequential File Organization.

Advanced sorting: Sorting on Several keys, List and Table sorts, Summary of Internal sorting, External sorting.

Learning outcomes: Student should be able to

- 1. Organize data in the form of Files (L6)
- 2. Apply sorting on large amount of data (L3)

Text Books:

- 1. Ellis Horowitz, Sartaj Sahni and Susan Anderson Freed "Fundamentals of Data Structures in C", 2nd Edition, University Press, 2007.
- 2. Alan L. Tharp, "File Organization and Processing", Wiley and Sons, 1988.

Reference Books:

- 1. D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2016
- 3. Richard F.Gilberg, Behrouz A.Forouzan, "Data Structures A Pseudo code Approach with C", Second Edition, Cengage Learning 2005.

Course Outcomes:

Students should be able to

- 1. Select Appropriate Data Structure for solving a real world problem (L4)
- 2. Select appropriate file organization technique depending on the processing to be done (L4)
- 3. Construct Indexes for Databases (L6)
- 4. Analyse the Algorithms (L4)
- 5. Develop Algorithm for Sorting large files of data (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)- I-II Sem LTPC

0 0 2 1

(19A03101) ENGINEERING WORKSHOP (Common to all branches)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

- a) Half Lap joint
- b) Mortise and Tenon joint
- c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

- a) Tapered tray
- b) Conical funnel
- c) Elbow pipe
- d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises

- a) V-fit
- b) Dovetail fit
- c) Semi-circular fit
- d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series
- b) Two way switch
- c) Godown lighting d) Tube light

- e) Three phase motor
- f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- 1. apply wood working skills in real world applications. (L3)
- 2. build different parts with metal sheets in real world applications. (L3)
- 3. apply fitting operations in various applications. (L3)
- 4. apply different types of basic electric circuit connections. (L3)
- 5. demonstrate soldering and brazing. (L2)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– I-II Sem

L T P C

1 0 4 3

(19A03102) ENGINEERING GRAPHICS LAB (Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.
- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Part A:Manual Drawing: (7 Classes)

Introduction to Engineering graphics: Principles of Engineering Graphics and their significance-Conventions in drawing-lettering - BIS conventions.

- a) Conic sections including the rectangular hyperbola- general method only,
- b) Cycloid, epicycloids and hypocycloid
- c) Involutes

(2L + 6P hrs)

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces. (2L + 6P hrs)

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method. (1L + 3P hrs)

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections. (1L + 3P hrs)

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts. (1L + 6P hrs)

Part B: Computer Aided Drafting: (6 Classes)

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

$$(1L + 3P hrs)$$

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections. (3L + 9P hrs)

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids. (2L + 6P hrs)

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- draw various curves applied in engineering. (L2)
- show projections of solids and sections graphically. (L2)
- draw the development of surfaces of solids. (L3)
- use computers as a drafting tool. (L2)
- draw isometric and orthographic drawings using CAD packages. (L3)

Note:

- 1. Manual (part A) and Computer Aided Drafting (part B) classes can be held in alternative weeks for optimal utilization of computer facilities.
- 2. External examinations to be conducted both manual and computer mode with equal weight of marks.

Additional Sources

1. Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C

0 0 3 1.5

(19A04201P) NETWORK THEORY LAB (ECE)

Course Objectives:

- To gain hands on experience in verifying Kirchoff's laws and network theorems
- To analyze transient behavior of circuits
- To study resonance characteristics
- To determine 2-port network parameters

List of Experiments:

Any 10 of the following experiments are to be conducted in Hardware & Simulation (Multisim/Open source software):

- 1. Verification of Kirchoff's Laws
- 2. Apply Mesh & Nodal Analysis techniques for solving electrical circuits (problems with dependent sources also)
- 3. Verification of Superposition & Reciprocity Theorem
- 4. Verification of Thevenin's and Norton's Theorem
- 5. Verification of Maximum Power Transfer Theorem
- 6. Verification of Millman and Miller Theorm
- 7. Measure and calculate RC time constant for a given RC circuit
- 8. Measure and calculate RL time constant for a given RL circuit
- 9. Measure and analyze (settling time, overshoot, undershoot, etc.) step response of for a given series RLC circuit for following cases:
 - (i) $\zeta = 1$ (critically damped system)
 - (ii) $\zeta > 1$ (over damped system)
 - (iii) ζ <1 (under damped system)

Choose appropriate values of R, L, and C to obtain each of above cases one at a time.

- 10. Design a series RLC resonance circuit. Plot frequency response and find resonance frequency, Bandwidth, Q factor.
- 11. Design a parallel RLC resonance circuit. Plot frequency response and find resonance frequency, Bandwidth, Q factor.
- 12. Measure and calculate Z, Yparameters of two-port network.
- 13. Measure and calculate ABCD & h parameters of two-port network.

Course Outcomes:

- Verify Kirchoff's laws and network theorems (L4)
- Measure time constants of RL & RC circuits (L3)
- Analyze behavior of RLC circuit for different cases (L4)
- Design resonant circuit for given specifications (L6)

Characterize and model the network in terms of all network parameters (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- I-II Sem

L T P C 0 3 1.5

(19A51102P) CHEMISTRY LAB (CSE, CSSE, ECE, EIE, EEE and IT)

Course Objectives:

• Verify the fundamental concepts with experiments

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Models of potential energy surfaces
- 3. Conductometric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a polymer
- 8. Verify Lambert-Beer's law
- 9. Thin layer chromatography
- 10. Identification of simple organic compounds by IR and NMR
- 11. HPLC method in separation of gaseous and liquid mixtures
- 12. Estimation of Ferrous Iron by Dichrometry.

Course Outcomes:

At the end of the course, the students will be able to

- **determine** the cell constant and conductance of solutions (L3)
- **prepare** advanced polymer materials (L2)
- **measure** the strength of an acid present in secondary batteries (L3)
- analyse the IR and NMR of some organic compounds (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE) – I-II Sem

L T P C 0 0 3 1.5

(19A05201P) DATA STRUCTURES LAB (Common to All Branches of Engineering)

Course Objectives:

- 1. To introduce to the different data structures
- 2. To elucidate how the data structure selection influences the algorithm complexity
- 3. To explain the different operations that can be performed on different data structures
- 4. To introduce to the different search and sorting algorithms.

Laboratory Experiments

- 1. String operations using array of pointers
- 2. Searching Algorithms (With the Number of Key Comparisons) Sequential, Binary and Fibonacci Search Algorithms.
- 3. Sorting Algorithms: Insertion Sort, Selection Sort, Shell Sort, Bubble Sort, Quick Sort, Heap Sort, Merge Sort, and Radix Sort. Using the system clock, compute the time taken for sorting of elements. The time for other operations like I/O etc should not be considered while computing time.
- 4. Implementation of Singly Linked List, Doubly Linked List, Circular Linked List
- 5. Stack implementation using arrays
- 6. Stack implementation using linked lists
- 7. Queue implementation using arrays. Implement different forms of queue. While implementing you should be able to store elements equal to the size of the queue. No positions should be left blank.
- 8. Queue implementation using linked lists
- 9. Creation of binary search tree, performing operations insertion, deletion, and traversal.
- 10. Breadth first search
- 11. Depth first search
- 12. Travelling sales man problem
- 13. File operations
- 14. Indexing of a file
- 15. Reversing the links (not just displaying) of a linked list.
- 16. Consider a linked list consisting of name of a person and gender as a node. Arrange the linked list using 'Ladies first' principle. You may create new linked lists if necessary.
- 17. An expression can be represented in three ways: infix, prefix and postfix. All the forms are necessary in different contexts. Write modules to convert from one form to another form.
- 18. A table can be defined as a collection of rows and columns. Each row and

column may have a label. Different values are stored in the cells of the table. The values can be of different data types. Numerical operations like summation, average etc can be performed on rows/columns which contain numerical data. Such operations are to be prevented on data which is not numeric. User may like to insert row/columns in the already existing table. User may like to remove row/column. Create table datatype and support different operations on it.

Course Outcomes:

At the end of the course students should be able to

- 1. Select the data structure appropriate for solving the problem (L5)
- 2. Implement searching and sorting algorithms (L3)
- 3. Design new data types (L6)
- 4. Illustrate the working of stack and queue (L4)
- 5. Organize the data in the form of files (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

(19A54302) COMPLEX VARIABLES AND TRANSFORMS

(Common to ECE & EEE)

Course Objective:

This course aims at providing the student to acquire the knowledge on the calculus of functions of complex variables. The student develops the idea of using continuous/discrete transforms.

Unit-I:Complex Variable – Differentiation:

Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard and special transformations ($\sin z$, e^z , $\cos z$, z^2) Mobius transformations (bilinear) and their properties.

Unit Outcomes:

Students will be able to

- Understand functions of Complex variable and its properties.
- Find derivatives of complex functions.
- Understand the analyticity of complex functions .
- Understand the conformal mappings of complex functions.

Unit-II: Complex Variable – Integration:

Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof);power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis).

Unit Outcomes:

Students will be able to

- Understand the integration of complex functions.
- Apply Cauchy's integral theorem and Cauchy's integral formula.
- Understand singularities of complex functions.
- Evaluate improper integrals of complex functions using Residue theorem.

Unit-III: Laplace Transforms

Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms.

Unit Outcomes:

Students will be able to

- Understand the concept of Laplace transforms and find the Laplace transforms of elementary functions.
- Find the Laplace transforms of general functions using its properties.
- Understand Laplace transforms of special functions(Unit step function, Unit Impulse & Periodic).
- Apply Laplace transforms to solve Differential Equations.

Unit-IV: Fourier series

Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series.

Unit Outcomes:

Students will be able to

- Understand finding Fourier series expression of the given function.
- Determine Fourier coefficients (Euler's) and identify existence of fourier series of the given function.
- Expand the given function in Fourier series given in Half range interval.
- Apply Fourier series to establish Identities among Euler coefficients.
- Find Fourier series of wave forms.

Unit-V: Fourier transforms & Z Transforms:

Fourier integral theorem (without proof) – Fourier sine and cosine integrals-complex form of Fourier integral. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – convolution theorem .

Z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

Unit Outcomes:

Students will be able to

- Find Fourier Sine and cosine integrals.
- Understand Fourier transforms.
- Apply properties of Fourier transforms.
- Understand Z transforms.
- Apply properties of Z transforms.
- Apply Z transforms to solve difference equations.

Course Outcomes:

After the completion of course, students will be able to

- Understand the analyticity of complex functions and conformal mappings.
- Apply Cauchy's integral formula and Cauchy's integral theorem to evaluate improper integrals along contours.
- Understand the usage of Laplace Transforms, Fourier Transforms and Z transforms.
- Evaluate the Fourier series expansion of periodic functions.

Text Books:

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna publishers.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India

Reference Books:

- 1. B.V.Ramana, Higher, "Engineering Mathematics", Mc Graw Hill publishers.
- 2. Alan Jeffrey, "Advanced Engineering Mathematics", Elsevier.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– II-I Sem

L T P C

3 0 0 3

(19A04301) SIGNALS AND SYSTEMS

Course Objectives:

- To introduce students to the basic idea of signal and system analysis and its characterization in time and frequency domains.
- To present Fourier tools through the analogy between vectors and signals.
- To teach concept of sampling and reconstruction of signals.
- To analyze characteristics of linear systems in time and frequency domains.
- To understand Laplace and z-transforms as mathematical tool to analyze continuous and discrete-time signals and systems.

Unit I

Signals & Systems: Basic definitions and classification of Signals and Systems (Continuous time and discrete time), operations on signals, Concepts of Convolution and Correlation of signals, Analogy between vectors and signals-Orthogonality, mean square error, Fourier series: Trigonometric & Exponential, Properties of Fourier series, concept of discrete spectrum, Illustrative Problems.

Unit Outcomes:

- Understand different types of signals and systems. (L1)
- State principles of vector spaces and concept of Orthogonality. (L2)
- Describe continuous time signal and discrete time signal. (L2)
- Analyze the periodic signals by applying Fourier series. (L3)

Unit II

Continuous Time Fourier Transform: Definition, Computation and properties of Fourier transform for different types of signals and systems, Inverse Fourier transform. Statement and proof of sampling theorem of low pass signals, Illustrative Problems.

- Identify system properties based on impulse response and Fourier analysis. (L1)
- Analyze the spectral characteristics of signals. (L3)
- Illustrate signal sampling and its reconstruction. (L2)
- Apply Fourier transform to solve problems. (L2)

Unit III

Discrete Time Fourier Transform: Definition, Computation and properties of Discrete Time Fourier transform for different types of signals and systems, Illustrative Problems.

Unit Outcomes:

- Understand the properties of the discrete-time Fourier transform. (L1)
- Analyse the spectral characteristics of signals using Fourier transform. (L3)
- Evaluate the Fourier transform of Discrete-time signals. (L2)

Unit IV

Signal Transmission Through Linear Systems: Linear system, impulse response, Response of a linear system for different input signals, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between bandwidth and rise time, Energy and Power spectral densities, Illustrative Problems.

Unit Outcomes:

- Understand the impulse response, transfer characteristics of LTI system and various filters. (L1)
- Analyse filter characteristics and physical realisation of LTI system. (L3)
- Apply the relation between bandwidth and rise time & energy and power spectral densities in various applications. (L2)

Unit V

Laplace Transform: Definition, ROC, Properties, Inverse Laplace transforms, the S-plane and BIBO stability, Transfer functions, System Response to standard signals, Solution of differential equations with initial conditions.

Z–Transform: Definition, ROC, Properties, Poles and Zeros in Z-plane, The inverse Z-Transform, System analysis, Transfer function, BIBO stability, System Response to standard signals, Solution of difference equations with initial conditions, Illustrative Problems.

- Understand the limitations of Fourier transform and need for Laplace transform and develop. (L1)
- Apply transform techniques to analyse discrete-time signals and systems. (L2)

- Evaluate response of linear systems to known inputs by using Laplace transforms. (L2)
- Analyze the continuous-time and discrete-time signals and systems using Laplace and Z- transforms.(L3)

Course Outcomes:

After completion of the course, student will be able to

- **CO1:**Understand the mathematical description and representation of continuous-time and discrete-time signals and systems. Also understand the concepts of various transform techniques. (L1)
- CO2:Apply sampling theorem to convert continuous-time signals to discrete-time signals and reconstruct back, different transform techniques to solve signals and system related problems. (L2)
- **CO3:**Analyze the frequency spectra of various continuous-time and discrete-time signals using different transform methods. (L3)
- **CO4:** Classify the systems based on their properties and determine the response of them. (L4)

Text Books:

- 1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009.
- 2. Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, Wiley, 2005.

References:

- 1. BP Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford University Press, 015.
- 2. Matthew Sadiku and Warsame H. Ali, "Signals and Systems A primer with MATLAB", CRC Press, 2016.
- 3. Hwei Hsu, "Schaum's Outline of Signals and Systems", 4th Edition, TMH, 2019.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C

3 0 0 3

(19A04302T) ELECTRONIC DEVICES AND CIRCUITS

Course Objectives:

- To acquire fundamental knowledge and expose to the field of semiconductor theory and devices and their applications.
- To introduce different types of semiconductor devices, viz., diodes and special diodes.
- To explain application of diodes as rectifiers, clippers, clampers and regulators.
- To describe operation and characteristics of Bipolar Junction Transistor& Field Effect Transistor.
- To analyze the various biasing circuits using BJTs & FETs.

Unit I:

Semiconductor Diode: Open circuited PN junction, PN junction as a rectifier, Current components in a PN diode, Diode Equation and its mathematical derivation, Volt-Ampere Characteristics, Energy band diagram of PN diode, Temperature dependence of Volt-Ampere Characteristics, Diode resistance (Static and Dynamic resistance), Transition capacitance, Diffusion capacitance, Step graded junction.

Unit Outcomes:

- Study the characteristics and operation of p-n junction diode. (L1)
- Explain the energy band diagram & effect of temperature on the characteristics of diode. (L2)
- Derive the expression for transition capacitance and diffusion capacitance. (L2)

Unit II:

Special Devices: Avalanche breakdown, V-I Characteristics of Zener diode, Zener breakdown, Principle of operation and characteristics of Tunnel diode with the help of Energy band diagram, Photo diode, LED, PIN diode and Varactor diode, Silicon Controlled Rectifier (SCR) and its V-I characteristics, DIAC, TRIAC, Schottky Barrier diode, solar cell, Uni-Junction Transistor (UJT) and its V-I Characteristics, Problem solving.

- Study the characteristics operation and applications of Zener diode .(L1)
- Explain V-I Characteristics of Tunnel diode, Photo diode, SCR, UJT and other special diodes. (L2)
- Apply concepts of semiconductor devices and solve problems. (L2).

Unit III:

Diode Applications: Diode as switch, Rectifier – Half wave and Full wave rectifier, Bridge rectifier, Ripple factor, PIV, Filters – Inductor and Capacitor Filter, L-section filter, pi-Filter, Zener as voltage regulator, Clipping and Clamping circuits, Detector, Voltage doubler, Problem solving related to diode applications.

Unit Outcomes:

- Understand the circuit operation involving p-n junction and Zener diodes. (L1)
- Analyze the performance of rectifiers with and without filters. (L3)
- Design half wave and full wave rectifier circuits, clippers, clampers and voltage regulator. (L4)
- Compare the various rectifier circuits in terms of their parameter metrics. (L5)

Unit IV:

Bipolar Junction Transistor (BJT):

Transistor – Structure, current components and their relationship, PNP and NPN transistors-Active mode of operation, symbols and conventions, Transistor equations, Transistor as an amplifier, input and output characteristics of Common Base, Common Emitter and Common collector configurations. DC analyses of Common Base, Common Emitter and Common collector circuits.

BJT Biasing: Load line and modes of operations, operating point, Bias stability, fixed bias, self bias, stabilization against variations in I_{co} , V_{BE} , β , Bias compensation, Thermal runaway, condition for Thermal stability, Problem solving.

Applications: As a switch, as an amplifier.

Unit Outcomes:

- Understand the current components and their relationships in BJT. (L1)
- Explain principle, operation and applications of Bipolar Junction Transistor. (L2)
- Describe input and output Characteristics of Bipolar Junction Transistor. (L2)
- Derive the expression for stability factor of various biasing circuits. (L3)
- Analyse the different configurations (CB,CC,CE).(L3)

Unit V:

Field-Effect Transistors (FET): Metal Oxide Semiconductor Field-effect Transistor (MOSFET) - structures and V-I characteristics of n-channel Enhancement mode MOSFET, p-channel Enhancement mode MOSFET, n-channel depletion mode MOSFET, p-channel depletion mode MOSFET, symbols and conventions, Complementary MOSFETs (CMOSFETs) - structure, V-I characteristics, symbols and conventions, structure and V-I

characteristics of n-channel and p-channel Junction Field Effect Transistors (JFET), Problem solving.

Biasing Circuits Using MOSFETS and JFETS: Different configurations using MOSFETs and JFET, load line and modes of operation, different biasing circuits (self-bias, voltage divider bias) using MOSFETs and JFETs, DC Analysis of n-channel and p-channel MOSFETs (both Enhancement and Depletion modes),DC analysis of n-channel and p-channel JFETs, Problem solving.

Applications: MOSFETs, JFET as switch and small signal amplifier, CMOS as a switch.

Unit Outcomes:

- Understand the current components and their relationships in Field effect transistors (JFET, MOSFETs). (L1)
- Explain principle, operation and applications of Field effect transistors. (L2)
- Describe input and output Characteristics of Field effect transistors. (L2)
- Analyse the different configurations (CS,CG,CD) and biasing circuits.(L3)

Course Outcomes:

After the completion of the course students will able to

CO1: Understand principle, operation, characteristics and applications of Bipolar Junction Transistor and Field Effect Transistor (L1)

CO2: Describe basic operation and characteristics of various semiconductor devices. (L2)

CO3: Analyze diode circuits for different applications such as rectifiers, clippers and clampers also analyze low frequency and high frequency models of BJT and FET. (L3)

CO4: Design various biasing circuits for BJT and FET. (L4)

CO5: Compare the performance of various semiconductor devices. (L5)

TEXT BOOKS:

- 1. Donald A Neamen, "Electronic Circuits analysis and design", 3rd Edition, McGraw Hill (India), 2019.
- 2. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.

REFERENCES:

- 1. Behzad Razavi, "Microelectronics", 2nd edition, Wiley, 2013.
- 2. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.
- 3. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3rd edition, McGraw-Hill (India), 2010.

Prerequisites: Semiconductor Physics

Emphasis on this terminology: Energy band diagram of Insulators, Semiconductors and Metals, Mobility and Conductivity, Electrons and Holes in Intrinsic semiconductor, Donor and Acceptor impurities, drift and diffusion currents, charge densities and semiconductor. Fermi-Dirac function, Carrier concentrations, Fermi level in an intrinsic semiconductor, Fermi level in a semiconductor having impurities.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

(19A04303) PROBABILITY THEORY AND STOCHASTIC PROCESSES

Course Objectives:

- To gain the knowledge of the basic probability concepts and acquire skills in handling situations involving more than one random variable and functions of random variables.
- To understand the principles of random signals and random processes.
- To be acquainted with systems involving random signals.
- To gain knowledge of standard distributions that can describe real life phenomena.

Unit I

Probability Introduced Through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, Bayes' Theorem, Independent Events, Problem Solving.

Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous, Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Methods of defining Conditioning Event, Conditional Density, Properties, Problem Solving.

Unit Outcomes:

- Understand the fundamental concepts of probability theory, random variables, and conditional probability. (L1)
- Evaluate the different probability distribution and density functions. (L2)

Unit II

Operations on Single Random Variable: Introduction, Expectation of a random variable, moments-moments about the origin, Central moments, Variance and Skew, Chebyshev's inequality, moment generating function, characteristic function, transformations of random variable.

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected), Unequal Distribution, Equal Distributions.

- Apply the knowledge to the sum of random variables, central limit theorem in communication system (L2).
- Evaluate the single and multiple random variable concepts to expectation, variance and moments (L4).

Unit III

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties of Gaussian random variables, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

Unit Outcomes:

- Apply the different operations to multiple random variables (L2).
- Understand the concepts of linear transformation of Gaussian random variables (L1).

Unit IV

Random Processes-Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence, First-Order Stationary Processes, Second-Order and Wide-Sense Stationarity, N-Order and Strict-Sense Stationarity. Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Processes.

Random Processes-Spectral Characteristics: The Power Density Spectrum and its Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum and its Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function.

Unit Outcomes:

- Understand and analyze continuous and discrete-time random processes (L1).
- Analyze the concepts and its properties of auto correlation, cross correlation functions and power spectral density (L3).

Unit V

Random Signal Response Of Linear Systems: System Response – Convolution, Mean and Mean squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band Limited and Narrowband Processes, Properties.

Noise Definitions: White Noise, colored noise and their statistical characteristics, Ideal low pass filtered white noise, RC filtered white noise.

Unit Outcomes:

- Describe the theory of stochastic processes to analyze linear systems (L2).
- Apply the knowledge to linear systems; low pass and band pass noise models for random processes (L2).

Course Outcomes:

After completion of the course, student will be able to

- **CO1:** Understanding the concepts of Probability, Random Variables, Random Processes and their characteristics learn how to deal with multiple random variables, conditional probability, joint distribution and statistical independence. (L1)
- **CO2:** Formulate and solve the engineering problems involving random variables and random processes. (L2)
- **CO3:** Analyze various probability density functions of random variables. (L3)
- **CO4:** Derive the response of linear system for Gaussian noise and random signals as inputs. (L3)

TEXT BOOKS:

- 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002.

REFERENCES:

- 1. Simon Haykin, "Communication Systems", 3rd Edition, Wiley, 2010.
- 2. Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing," 3rd Edition, Pearson Education, 2002.
- 3. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis," 3rd Edition, Oxford, 1999.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– II-I Sem

 \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{C}

3 0 0 3

(19A04304) DIGITAL ELECTRONICS AND LOGIC DESIGN

Course Objectives:

- To teach significance of number systems, conversions, binary codes and functionality of logic gates.
- To discuss different simplification methods for minimizing Boolean functions.
- To impart knowledge on operation, characteristics and various configurations of TTL and CMOS logic families.
- To outline procedures for the analysis and design of combinational and sequential logic circuits.
- To introduce programmable logic devices.

Unit I

Number Systems and Codes: Decimal, Binary, Octal, and Hexa-decimal number systems and their conversions, ASCII code, Excess -3 codes, Gray code.

Binary codes Classification, Error detection and correction – Parity generators and checkers – Fixed point and floating-point arithmetic.

Boolean Algebra& Logic Gates: Boolean operations, Boolean functions, Algebraic manipulations, Min-terms and Maxterms, Sum-of-products and Product-of-sum representations, Two-input logic gates, NAND/NOR implementations.

Minimization of Boolean Functions: Karnaughmap, Don't-care conditions, Prime implicants, Minimization of functions using Quine-McClusky method.

Unit Outcomes:

- Summarize advantages of using different number systems. (L2)
- Explain usefulness of different coding schemes and functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Compare K- Map and Q-M methods of minimizing logic functions. (L5)

Unit II

Combinational Circuits: Introduction, Analysis of combinational circuits, Design Procedure—Binary Adder-Subtractor, Decimal Adder, Multiplier, Comparator, Code Converters, Encoders, Decoders, Multiplexers, Demultiplexers, Illustrative examples.

Sequential Circuits-1: Introduction, Latches –RS latch and JK latch, Flip-flops-RS, JK, T and D flip flops, Master-slave flip flops, Edge-triggered flip-flops, Flip-flop conversions.

- Apply Boolean algebra for describing combinational digital circuits. (L2)
- Analyze standard combinational circuits such as adders, subtractors, multipliers, comparators etc. (L4)
- Design various Combinational logic circuits. (L4)
- Implement logic functions with decoders and multiplexers. (L5)

Unit III

Sequential Circuits-2: Analysis and Design of Synchronous Sequential Circuits: Moore and Mealy machine models, State Equations, State Table, State diagram, State reduction & assignment, Synthesis using flip flops, Elements of Design style, Top–down design, Algorithmic state Machines (ASM), ASM chart notations.

Registers and Counters: Registers, shift registers, Ripple counters, Synchronous counters, Modulus-n Counter, Ring counter, Johnson counter, Up-Down counter.

Unit Outcomes:

- Describe behaviour of Flip-Flops and Latches.(L2)
- Compare Moore and Mealy machine models.(L5)
- Design synchronous sequential circuits using flip flops and construct digital systems using components such as registers and counters (L4)
- Utilize concepts of state and state transition for analysis and design of sequential circuits (L3)

Unit IV

Memory and Programmable Logic: RAM, Types of Memories, Memory decoding, ROM, Types of ROM, Programmable Logic Devices (PLDs): Basic concepts, PROM as PLD, Programmable Array Logic (PAL) and Programmable Logic Array (PLA), Design of combinational and sequential circuits using PLDs.

Unit Outcomes:

- Define RAM, ROM, PROM, EPROM and PLDs. (L1)
- Describe functional differences between different types of RAM & ROM. (L2)
- Compare different types of Programmable Logic Devices. (L5)
- Design simple digital systems using PLDs. (L4)

Unit V

Digital Logic Families: Unipolar and Bipolar Logic Families, Transistor-Transistor Logic (TTL): Operation of TTL, Current sink logic, TTL with active pull up, TTL with open collector output, Shockley TTL, TTL characteristics, I²L, ECL logic Families.

CMOS: CMOS Inverter, CMOS characteristics, CMOS configurations - Wired Logic, Open drain outputs, Interfacing: TTL to CMOS and CMOS to TTL, Tristate Logic, Characteristics of Digital ICs: Speed, power dissipation, figure of merit, fan-out, Current and voltage parameters, Noise immunity, operating temperature range, power supply requirements.

Unit Outcomes:

- Summarize significance of various TTL, I²L, ECL and CMOS subfamilies. (L2)
- Examine Interface aspects of TTL & CMOS logic families. (L5)
- Explain characteristics of digital ICs such as speed, power dissipation, figure of merit, fan-out, noise immunity etc. (L2)
- Compare bipolar and MOS logic families. (L5)

Course Outcomes:

After completion of the course, student will be able to

CO1: Understand various number systems, error detecting, correcting binary codes, logic families, combinational and sequential circuits. (L1)

CO2: Apply Boolean laws, k-map and Q-M methods to minimize switching functions. Also describe the various performance metrics for logic families. (L2)

CO3: Design combinational and sequential logic circuits. (L4)

CO4: Compare different types of Programmable logic devices and logic families. (L5)

TEXTBOOKS:

- 1. M. Morris Mano and Michael D. Ciletti, "Digital Design", 4th Edition, Pearson Education, 2013.
- 2. Z. Kohavi and N. K. Jha, "Switching and Finite Automata Theory", 3rd Edition, Tata McGraw Hill, 2010.
- 3. R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw Hill Education (India Private Limited), 2012.

REFERENCES:

- 1. Wakerly J.F., "Digital Design: Principles and Practices", 4th Edition, Pearson India, 2008.
- 2. Charles H Roth (Jr), Larry L. Kinney, "Fundamentals of Logic Design", 5th Edition, Cengage Learning India Edition, 2010.
- 3. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C

3 0 0 3

(19A02304T) ELECTRICAL TECHNOLOGY

Course Objectives: Student can be able to know

- The constructional features of DC machines, different types of DC machines and their characteristic.
- The constructional details of single phase transformer and their performance characteristics by conducting suitable tests.
- The analysis of three phase balanced and unbalanced circuits, Three phase induction motors and their characteristics.
- The constructional feature and operation of synchronous machines.

UNIT- I Dc Generators

D.C. Generators – Principle of Operation – Constructional Features – E. M.F Equation—Numerical Problems – Methods of Excitation – Separately Excited and Self Excited Generators – Build-Up of E.M.F - Critical Field Resistance and Critical Speed - Load Characteristics of Shunt, Series and Compound Generators- Applications

Unit Outcomes:

- To know about principle of operation of a DC machine working as a generator
- To distinguish between self and separately excited generators and classification
- To know how emf is developed
- To distinguish between critical field resistance and critical speed
- To know about various characteristics of different types of generators

UNIT – II D.C. Motors

D.C Motors – Principle of Operation – Back E.M.F.–Torque Equation – Characteristics and Application of Shunt, Series and Compound Motors-Speed Control of D.C. Motors: Armature Voltage and Field Flux Control Methods. Three Point Starter-Losses – Constant & Variable Losses – Calculation of Efficiency - Swinburne's Test.

- To know about principle of operation of DC machine working as a motor
- To know about torque developed
- To know about how to control speed of DC shunt motor
- To know about necessity of starter
- To know about various load characteristics of various types of DC motors

UNIT-III Single Phase Transformers & Three Phase A.C. Circuits

Introduction - Single Phase Transformers- Constructional Details- Emf Equation - Operation on No Load and on Load - Phasor Diagrams-Equivalent Circuit - Losses and Efficiency-Regulation-OC and SC Tests - Predetermination of Efficiency and Regulation. Analysis of Balanced Three Phase Circuits — Phase Sequence- Star and Delta Connection - Relation between Line and Phase Voltages and Currents in Balanced Systems - Measurement of Active and Reactive Power in Balanced and Unbalanced Three Phase Systems.

Unit Outcomes:

- To understand the principle of operation of 1- ϕ transformer
- To understand computation and predetermination of regulation of a 1-φ transformer
- To know about basics of three phase circuits
- To distinguish between phase voltages, currents, line values and phase values
- To distinguish between balanced and unbalanced three phase circuits and power measurement

UNIT-IV 3-Phase Induction Motors

Polyphase Induction Motors-Construction Details of Cage and Wound Rotor Machines--Principle of Operation – Slip- Rotor Emf and Rotor Frequency - Torque Equation- Torque Slip Characteristics – Losses and efficiency.

Unit Outcomes:

- To know about principle of operation of three phase induction motor
- To distinguish between squirrel cage and slip ring induction motors
- To know about various losses and computation of efficiency of induction motor
- To know about the torque developed by the induction motor
- To understand various characteristics of induction motor

UNIT – V Synchronous Machines

Principle and Constructional Features of Salient Pole and Round Rotor Machines – E.M.F Equation- Voltage Regulation by Synchronous Impedance Method- Theory of Operation of Synchronous Motor.

Unit Outcomes:

- To know about principle of working of alternator
- To distinguish between salient pole and cylindrical rotor machines
- To know about emf equation

- To know about predetermination of regulation of alternator by synchronous impedance method
- To know about principle of operation of synchronous motor

Course Outcomes:

After completing the course, the student should be able to do the following:

- CO1: Able to calculate the e.m.f. generated on DC Generator also able to control speed of different DC motors.
- CO2: Able to conduct open circuit and short circuit tests on single phase transformer for knowing their characteristics.
- CO3: Able to analyse three phase circuits, three induction motor operating principle and know their torque slip characteristics.
- CO4: Able to have knowledge on synchronous machine with which he/she can able to apply the above conceptual things to real-world problems and applications

TEXT BOOKS:

- 1. I.J.Nagrath & D.P.Kothari, "Electric Machines", 7th Edition, Tata Mc Graw Hill, 2005
- 2. T.K.Nagsarkar and M.S. Sukhija, "Basic Electrical Engineering", 3rd Edition, Oxford University Press2017.

REFERENCE BOOKS:

- 1. B. R. Gupta, "Fundamentals of Electric Machines", Vandana Singhal, 3rd Edition, New age International Publishers, 2005.
- 2. S. Kamakashiah, "Electromachanics III", overseas publishers Pvt. Ltd.
- 3. V.K. Mehta and Rohit Mehta, "Principles of Electrical Engineering", S.Chand Publications, 2005.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- II-I Sem

LTPC

0 0 3 1.5

(19A04302P) ELECTRONIC DEVICES AND CIRCUITS LAB

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of diodes, UJT, BJT, FET, SCR.
- To Model the electronic circuits using tools such as PSPICE/Multisim.

LIST OF EXPERIMENTS:

- 1. Verification of Volt- Ampere characteristics of a PN junction diode and find static, dynamic and reverse resistances of the diode from the graphs obtained.
- 2. Design a full wave rectifier for the given specifications with and without filters, and verify the given specifications experimentally. Vary the load and find ripple factor. Draw suitable graphs.
- 3. Verify various clipping and clamper circuits using PN junction diode and draw the suitable graphs.
- 4. Design a Zener diode based **voltage regulator** against variations of supply and load. Verify the same from the experiment.
- 5. Study and draw the **output** and **transfer** characteristics of MOSFET (Enhance mode) in Common Source Configuration experimentally. Find **Threshold voltage** (V_T), g_m , & K from the graphs.
- 6. Study and draw the **output** and **transfer** characteristics of MOSFET (Depletion mode) or JFET in Common Source Configuration experimentally. Find I_{DSS} , g_m , & V_P from the graphs.
- 7. Verification of the input and output characteristics of BJT in **Common Emitter** configuration experimentally and find required **h parameters** from the graphs.
- 8. Study and draw the input and output characteristics of BJT in **Common Base** configuration experimentally, and determine required **h parameters** from the graphs.
- 9. Verify the Volt Ampere characteristics of SCR experimentally and **determine holding current and break over voltage** from the graph.
- 10. Study and draw the Volt Ampere characteristics of UJT and determine η , I_P , I_v , V_P , & V_v from the experiment.
- 11. Design and analysis of voltage- divider bias/self bias circuit using BJT.
- 12. Design and analysis of voltage- divider bias/self bias circuit using JFET.
- 13. Design and analysis of self bias circuit using MOSFET.
- 14. Design a suitable circuit for switch using CMOSFET/JFET/BJT.

Tools / Equipment Required: Software Toollike Multisim/ Pspice or Equivalent,

DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices

Note: All the experiments shall be implemented using both Hardware and Software. Student has to perform minimum of any 12 experiments

Course Outcomes:

- CO1: Understand the basic characteristics and applications of basic electronic devices. (L1)
- CO2: Observe the characteristics of electronic devices by plotting graphs (L2)
- CO3: Analyze the Characteristics of UJT, BJT, FET, and SCR (L3).
- CO3: Design FET based amplifier circuits/BJT based amplifiers for the given specifications.(L4)
- CO4: Simulate all circuits in PSPICE /Multisim. (L5).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C

2 0 0 1

(19A04305) BASIC SIMULATION LAB

Course Objectives:

- To provide practical exposure with generation and simulation of basic signals using standardized tools.
- To teach analysing signals and sequences using Fourier, Laplace and Z-transforms.
- To enable to write programs for signal processing applications.

List of Experiments:

- 1. Write a program to generate various Signals and Sequences: Periodic and Aperiodic, Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc function.
- 2. Perform operations on Signals and Sequences: Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Write a program to find the trigonometric & exponential Fourier series coefficients of a rectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightages- Plot the discrete spectrum of the signal.
- 4. Write a program to find Fourier transform of a given signal. Plot its amplitude and phase spectrum.
- 5. Write a program to convolve two discrete time sequences. Plot all the sequences.
- 6. Write a program to find autocorrelation and cross correlation of given sequences.
- 7. Write a program to verify Linearity and Time Invariance properties of a given Continuous/Discrete System.
- 8. Write a program to generate discrete time sequence by sampling a continuous time signal. Show that with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
- 9. Write a program to find magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
- 10. Write a program to find response of a low pass filter and high pass filter, when a speech signal is passed through these filters.
- 11. Write a program to generate Complex Gaussian noise and find its mean, variance, Probability Density Function (PDF) and Power Spectral Density (PSD).
- 12. Generate a Random data (with bipolar) for a given data rate (say 10kbps). Plot the same for a time period of 0.2 sec.
- 13. To plot pole-zero diagram in S-plane/Z-plane of given signal/sequence and verify its stability.

Note: All the experiments are to be simulated using MATLAB or equivalent software.

Course Outcomes:

- **CO1**: Understand the basic concepts of programming in MATLAB and explain use of built-in functions to perform assigned task. (L1)
- CO2: Generate signals and sequences, Input signals to the systems to perform various operations (L2)
- **CO3**: Analyze signals using Fourier, Laplace and Z-transforms. (L3)
- CO4: Compute Fourier transform of a given signal and plot its magnitude and phase spectrum.(L3)
- **CO5**:Verify Sampling theorem, Determine Convolution and Correlation between signals and sequences. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC

B.Tech (ECE)— II-I Sem

2 0 0 1

(19A02304P) ELECTRICAL TECHNOLOGY LAB

Course Objectives:

- To do experiments on DC generators
- To do experiments on DC motors
- To do experiments on 1-φ transformer
- To do power measurements in 3-\psi balanced and unbalanced circuits
- To do tests on 3-\phi Induction motors
- To do experiment on Alternator
- To do experiment on Synchronous motor

List of Experiments:

- 1. OCC of a separately excited DC generator
- 2. Load characteristics of DC shunt generator
- 3. Load characteristics of DC shunt motor
- 4. Swinburne's test
- 5. Speed control of DC shunt motor
- 6. OC & SC tests on a 1-♦ transformer
- 7. Measurement of Active and reactive powers in a 3-φ balanced circuit
- 8. Measurement of 3-φ power using two wattmeter method in unbalanced circuit
- 9. Load test on Squirrel cage Induction motor
- 10. Load test on Slip ring Induction motor
- 11. Predetermination of regulation of alternator by Synchronous impedance method
- 12. V and Inverted V curves of Synchronous motor

Note: Student has to perform at least 10 experiments

Course Outcomes:

- To understand various characteristics of DC generators and DC motors
- To predetermine the efficiency and regulation of a 1- ϕ transformer
- To know power measurement in 3-φ circuits
- To understand various characteristics of Induction motors, Synchronous machines

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)— II-I Sem

L T P C

0 0

3

(19A99302) BIOLOGY FOR ENGINEERS

Course Objectives: To provide basic understanding about life and life Process. Animal an plant systems. To understand what bimolecules, are, their structures are functions. Application of certain bimolecules in Industry.

- Brief introduction about human physiology and bioengineering.
- To understand hereditary units, i.e. DNA (genes) and RNA and their synthesis in living organism.
- How biology Principles can be applied in our daily life using different technologies.
- Brief introduction to the production of transgenic microbes, Plants and animals.

Unit I: Introduction to Basic Biology

Cell as Basic unit of life, cell theory, Cell shapes, Cell structure, Cell cycle. Chromosomes. Prokaryotic and eukaryotic Cell. Plant Cell, Animal Cell, Plant tissues and Animal tissues, Brief introduction to five kingdoms of classification.

Unit Outcomes:

After completing this unit, the student will be able to

- Summarize the basis of life. (L1)
- Understand the difference between lower organisms (prokaryotes) from higher organisms (eukaryotes). (L2)
- Understand how organisms are classified. (L3)

Unit II: Introduction to Biomolecules

Carbohydrates, lipids, proteins, Vitamins and minerals, Nucleic acids (DNA and RNA) and their types. Enzymes, Enzyme application in Industry. Large scale production of enzymes by Fermentation.

Unit Outcomes:

After completing this unit, the student will be able to

- Understand what are biomolecules? their role in living cells, their structure, function and how they are produced. (L1)
- Interpret the relationship between the structure and function of nucleic acids. (L2)
- Summarize the applications of enzymes in industry. (L3)
- Understand what is fermentation and its applications of fermentation in industry. (L4)

Unit III: Human Physiology

Nutrition: Nutrients or food substances. Digestive system, Respiratory system, (aerobic and anaerobic Respiration). Respiratory organs, respiratory cycle. Excretory system.

Unit Outcomes:

After completing this unit, the student will be able to

- Understand what nutrients are (L1)
- Understand the mechanism and process of important human functions (L2 & L3)

Unit IV: Introduction to Molecular Biology and recombinant DNA Technology

Prokaryotic gene and Eukaryotic gene structure. DNA replication, Transcription and Translation. rDNA technology. Introduction to gene cloning.

Unit Outcomes:

After completing this unit, the student will be able to

- Understand and explain about gene structure and replication in prokaryotes and Eukaryotes (L1)
- How genetic material is replicated and also understands how RNA and proteins are synthesized. (L2)
- Understand about recombinant DNA technology and its application in different fields.(L3)
- Explain what is cloning. (L4)

Unit V: Application of Biology

Brief introduction to industrial Production of Enzymes, Pharmaceutical and therapeutic Proteins, Vaccines and antibodies. Basics of biosensors, biochips, Bio fuels, and Bio Engineering. Basics of Production of Transgenic plants and animals.

Unit Outcomes:

After completing this unit, the student will be able to Understand.

- How biology is applied for production of useful products for mankind.(L1)
- What are biosensors, biochips etc. (L2)
- Understand transgenic plants and animals and their production (L3)

Course Outcomes:

After studying the course, the student will be able to:

- Explain about cells and their structure and function. Different types of cells and basics for classification of living Organisms.
- Explain about biomolecules, their structure and function and their role in the living organisms. How biomolecules are useful in Industry.
- Briefly about human physiology.
- Explain about genetic material, DNA, genes and RNA how they replicate, pass and preserve vital information in living Organisms.

• Know about application of biological Principles in different technologies for the production of medicines and Pharmaceutical molecules through transgenic microbes, plants and animals.

Text books:

- 1. P.K.Gupta, Cell and Molecular Biology, 5th Edition, Rastogi Publications -
- 2. U. Satyanarayana. Biotechnology, Books & Allied Ltd 2017

Reference Books:

- 1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A Global Approach", Pearson Education Ltd, 2018.
- 2. T Johnson, Biology for Engineers, CRC press, 2011
- 3. J.M. Walker and E.B. Gingold, Molecular Biology and Biotechnology 2nd ed.. Panima Publications. PP 434.
- 4. David Hames, Instant Notes in Biochemistry –2016
- 5. Phil Tunner, A. Mctennan, A. Bates & M. White, Instant Notes Molecular Biology 2014

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

3 0 0 3

(19A04401) ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Course Objectives:

- To introduce fundamentals of static and time varying electromagnetic fields.
- To teach problem solving in Electromagnetic fields using vector calculus.
- To demonstrate wave concept with the help of Maxwell's equations.
- To introduce concepts of polarization and fundamental theory of electromagnetic waves in transmission lines and their practical applications.
- To analyze reflection and refraction of electromagnetic waves propagated in normal and oblique incidences.

Unit I

Vector Analysis: Coordinate systems and transformation-Cartesian, Cylindrical and Spherical coordinates

Vector Calculus: Differential length area and volume, line surface and volume integrals, del operator, gradient, divergent and curl operations.

Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Divergence Theorem, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

Unit Outcomes:

- Understand basic laws of static electric field. (L1)
- Derive the Maxwell's equations for electrostatic fields. (L3)
- Solve problems applying laws of electrostatics. (L3)

Unit II

Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic dipole, Ampere's Force Law, Inductances and Magnetic Energy, Illustrative Problems.

Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's equations for time varying fields, Maxwell's Equations in Different Final Forms and Word Statements, Illustrative Problems

Unit Outcomes:

- Understand basic laws of static magnetic field. (L1)
- Derive the Maxwell's equations for magnetic fields. (L3)
- Solve problems applying laws of magneto statics. (L3)
- Derive the Maxwell's equations for electromagnetic fields. (L3)
- Apply the boundary conditions of electromagnetic fields at the interface of different media. (L2)

Unit III

Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Illustrative Problems.

Unit Outcomes:

- Understand concept of wave propagation through the Maxwell's equations .(L1)
- Derive wave equations for different media. (L3)
- Explain concept of polarization of electromagnetic wave. (L2)

Unit IV

Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

Unit Outcomes:

- Understand principles of reflections and refraction for different incidences. (L1)
- State concept of power flow using Poynting vector. (L2)
- Calculate Brewster angle, power flow and surface impedance. (L3)

Unit V

Transmission Lines: Introduction, Transmission line parameters, Transmission line equivalent circuit, Transmission line equations and their solutions in their phasor form, input impedance, standing wave ratio, Transmission of finite length- half wave, quarter wave transmission line, Smith chart, graphical analysis of transmission lines using Smith chart, stub matching- single and double stub matching, Illustrative Problems.

Unit Outcomes:

- Understand the principles of transmission lines and concept of smith chart.(L1)
- Derive the input impedance of transmission line.(L3)
- Finding the line parameters through problem solving.(14)
- Study the applications of different lengths of transmission lines.(L2)

Course Outcomes:

After completion of the course, student will be able to

CO1: Explain basic laws of electromagnetic fields and know the wave concept. (L2)

CO2: Solve problems related to electromagnetic fields. (L3)

CO3: Analyze electric and magnetic fields at the interface of different media. (L3)

CO4: Derive Maxwell's equations for static and time varying fields. (L3)

CO5: Analogy between electric and magnetic fields. (L5)

C06: Describes the transmission lines with equivalent circuit and explain their characteristic with various lengths. (L2)

TEXT BOOKS:

- 1. Matthew N.O. Sadiku, "Elements of Electromagnetics", 4th edition. Oxford Univ. Press, 2008.
- 2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics", 7th edition., TMH, 2006.

REFERENCES:

- 1. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", 2nd Edition, PHI, 2000.
- 2. John D. Krauss, "Electromagnetics", 4th Edition, McGraw-Hill publication 1999.
- 3. Electromagnetics, Schaum's outline series, 2nd Edition, Tata McGraw-Hill publications, 2006.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

3 0 0 3

(19A04402T) ELECTRONIC CIRCUITS-ANALYSIS AND DESIGN

Course Objectives:

- To design and analyze single and multi stage amplifiers using BJT & FET at low and high frequencies.
- To discuss cascading of single stage amplifiers.
- To explain effect of negative feedback on amplifier characteristics.
- To teach basic principles for analysing RC & LC oscillator circuits.
- To introduce different types of large signal amplifiers and tuned amplifiers.

Unit I

Small Signal Amplifiers Using MOSFETS: Graphical analysis, Load line and small signal parameters, Small signal equivalent circuit, Small signal analysis of Common source, Common drain, Common gate amplifiers, Comparison of the three basic amplifier configurations, Problem solving.

JFET Small Signal Amplifiers: Small signal analysis of common source, common drain, common gate amplifiers, JFET as voltage variable resistor, Problem solving.

BJT Small Signal Models: Bipolar linear amplifier, Graphical and ac equivalent circuit, Small signal hybrid-∏equivalent circuit, Hybrid-∏equivalent circuit including the early effect, other small signal parameters and equivalent circuits-h-parameters.

Small Signal Analysis: Basic CE amplifier circuit, Circuit with Emitter resistance, ac load line analysis, maximum symmetrical swing, Small signal analysis-input and output impedances, Voltage gain, Current gain of CB, CC amplifiers, Problem solving.

Unit Outcomes:

- Understand the concepts and equivalent circuit models of small signal amplifiers. (L1)
- Analyze low frequency and high frequency models of BJT and FET. (L3)
- Design BJT and FET amplifier circuits.(L4)
- Determine performance parameters of BJT and FET amplifiers. (L2)

Unit II

Frequency Response: Amplifier frequency response-different ranges, short circuit and open circuit time constants, time response, transistor amplifiers with circuit capacitors-coupling capacitor effects, load capacitor effects, Bypass capacitor effects, Problem solving, combined effects of coupling and bypass capacitor, high-frequency response model for BJT and MOSFETs, short circuit current gain, Miller effect and its applications, unity-gain bandwidth in BJT and FET amplifiers, CE and CS circuits, CB and CG circuits, Cascode amplifier analysis, emitter and source follower circuits, high frequency response-design application.

Unit Outcomes:

- Analyze the frequency response of single stage amplifiers using BJT & FET at high and low frequencies. (L3)
- Design of single stage amplifiers using BJT and FET with and without coupling capacitors. (L4)
- Explore the various effects of load, bypass and coupling capacitor on the performance of amplifier circuits.(L5)

Unit III

Differential and Multistage Amplifiers: Differential amplifier, basic BJT differential pair and its qualitative description, DC transfer characteristics, small signal equivalent circuit analysis, CMRR, differential and common mode gains, differential and common mode input impedances.

Basic differential FET pair, small signal equivalent circuit analysis, JFET differential amplifier, differential amplifier with active load, MOSFET differential amplifier with active load, two stage RC coupled amplifier, Darlington pair and simple emitter follower output, voltage gain, input and output impedances, simplified BJT operational amplifier circuit, design applications-CMOS differential amplifier.

Unit Outcomes:

- Understand basic concepts and need of Differential and multistage amplifiers. Also various inter-stage coupling in multi-stage amplifiers. (L1)
- Analyze and examine few common two stage transistor amplifier circuits viz., Cascade amplifiers, Cascode amplifiers, Darlington pairs. (L3)
- Design multiple stage amplifier circuits. (L4)

Unit IV

Feedback Amplifiers: General Considerations, Properties of Negative Feedback, Types of Amplifiers, Sense and Return Techniques, Polarity of Feedback, Feedback Topologies, Effect of Nonideal I/O Impedances, Stability in Feedback Systems, Analysis of a feedback Amplifiers - Voltage – Series, Current Series, Current-shunt and Voltage-shunt, Illustrative problems.

Oscillators: General Considerations, LC Oscillators, Phase Shift Oscillator, Wien-Bridge Oscillator, Crystal Oscillators, Illustrative Problems.

Unit Outcomes:

- Understand concept of different feedback topologies. (L1)
- Determine the effect of feedback on amplifier characteristics .(L2)

- Analyse characteristics of various types of feedback configurations (L3)
- Explore working principle of oscillator. Also examine different types of oscillators, RC & LC, with detailed mathematical analysis and illustrations. (L2)

Unit V

Power Amplifiers:

Classes of amplifiers-Operations of Class A, B, AB, C, class-A: Inductively coupled amplifier, transformer-coupled common emitter amplifier, transformer-coupled emitter-follower amplifier,

Class-AB Push-pull complementary output stages-class-AB output stage with diode biasing, class-AB biasing using the V_{BE} multiplier, class-AB output stage with input buffer transistors, class –AB output stage utilizing the Darlington configuration, Illustrative Problems.

Tuned Amplifiers: Introduction to tuned amplifiers, Role of Q-Factor, Single-tuned, Double-tuned and Stagger-tuned amplifiers.

Unit Outcomes:

- Know most common classes of power amplifier and their basic characteristics. (L2)
- Understand various distortions of amplifiers and the concept of heat sink.(L1)
- Analyse complementary symmetry topologies. (L3)
- Evaluate conversion efficiency of various topologies. (L4)
- Analyse different types of distortions in power amplifiers. (L3)
- Evaluate the resonant frequency for tuned amplifiers. Analyse characteristics of tuned amplifiers (L5)

Course Outcomes:

- **CO1:** Understand the working principle of multistage amplifiers, Feedback amplifiers, power amplifiers, tuned amplifiers, Multivibrator and Time base generators (L1)
- CO2: Analyse multistage amplifiers, multistage amplifiers, feedback amplifiers, power amplifiers, tuned amplifier and Multivibrators. (L3)
- **CO3:** Design multistage amplifiers, feedback amplifiers, oscillators, Multivibrator, power amplifiers and tuned amplifiers for given specification.(L4)
- **CO5:** Evaluate efficiency of large signal (power) amplifiers and voltage regulators (L5)

TEXT BOOKS:

- 1. Donald A Neamen, "Electronic Circuits Analysis and Design," 3rdEdition, McGraw Hill (India), 2019.
- 2. J. Millman, C Chalkias, "Integrated Electronics", 4th Edition, McGraw Hill Education (India) Private Ltd., 2015.

3. K.Lal Kishore, "Electronic Circuit Analysis", 2nd Edition, B S Publications, 2008.

REFERENCE BOOKS:

- 1. Behzad Razavi, "Fundamentals of Micro Electronics", Wiley, 2010.
- 2. Millman and Taub, Pulse, "Digital and Switching Waveforms", 3rd Edition, Tata McGraw-Hill Education, 2011
- 3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory", 9th Edition, Pearson/Prentice Hall, 2006.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- II-II Sem

L T P C

3 0 0 3

(19A02404) CONTROL SYSTEMS

Course Objectives:

To make the students learn about:

- Merits and demerits of open loop and closed loop systems; the effect of feedback
- The use of block diagram algebra and Mason's gain formula to find the overall transfer function
- Transient and steady state response, time domain specifications and the concept of Root loci
- Frequency domain specifications, Bode diagrams and Nyquist plots
- State space modelling of Control system

UNIT – I CONTROL SYSTEMS CONCEPTS

Open loop and closed loop control systems and their differences- Examples of control systems- Classification of control systems, Feedback characteristics, Effects of positive and negative feedback, Mathematical models – Differential equations of translational and rotational mechanical systems and electrical systems, Analogous Systems, Block diagram reduction methods – Signal flow graphs - Reduction using Mason's gain formula. Principle of operation of DC and AC Servo motor, Transfer function of DC servo motor - AC servo motor, Synchros.

Unit Outcomes:

At the end of the unit, the student will be able to

- Write the differential equations for mechanical and electrical systems
- Obtain the transfer function from block diagrams, servo motors and signal flow graphs

UNIT-II TIME RESPONSE ANALYSIS

Step Response - Impulse Response - Time response of first order systems - Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications - Steady state response - Steady state errors and error constants, P, PI, PID Controllers.

Unit Outcomes:

At the end of the unit, the student will be able to

- Analyze the time domain specifications
- Calculate the steady state errors

• Understand about Proportional, Integral and Derivative controllers along with combinations

UNIT – III STABILITY ANALYSIS IN TIME DOMAIN

The concept of stability – Routh's stability criterion – Stability and conditional stability – limitations of Routh's stability. The Root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

Unit Outcomes:

At the end of the unit, the student will be able to

- Analyze the concept of stability in time domain
- Apply the concept of Routh's stability and Root locus in time domain

UNIT – IV FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Stability Analysis from Bode Plots. Polar Plots-Nyquist Plots- Phase margin and Gain margin-Stability Analysis. Compensation techniques – Lag, Lead, Lag-Lead Compensator design in frequency Domain.

Unit Outcomes:

At the end of the unit, the student will be able to

- Evaluate the frequency domain specifications from Bode, Polar and Nyquist plots
- Design Compensators for various systems
- Deducing transfer functions from Bode Plots
- Understand difference between Phase and Gain margins

UNIT – V STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS

Concepts of state, state variables and state model, state models - differential equations & Transfer function models - Block diagrams. Diagonalization, Transfer function from state model, Solving the Time invariant state Equations- State Transition Matrix and it's Properties. System response through State Space models. The concepts of controllability and observability, Duality between controllability and observability.

Unit Outcomes:

At the end of the unit, the student will be able to

- Understand the concept of state space, controllability and observability
- Obtain the transfer function from sate space and vice versa
- Understand the state transition method of solving time invariant state equations

Course Outcomes:

After completing the course, the student should be able to:

- CO1 Understand the concepts of control systems classification, feedback effect, mathematical modelling, time response and frequency response characteristics, state space analysis
- Apply the concepts of Block diagram reduction, Signal flow graph method and state space formulation for obtaining mathematical and Root locus, Bode, Nyquist, Polar plots for stability calculations, controllability and observability and demonstrate the use of these techniques.
- **CO3** Analyse time response analysis, error constants, and stability characteristics of a given mathematical model using different methods.
- CO4 Design and develop different compensators, controllers and their performance evaluation for various conditions. Implement them in solving various engineering applications.

TEXT BOOKS:

- 1. Katsuhiko Ogata, "Modern Control Engineering", 5th edition, Prentice Hall of India Pvt. Ltd., 2010.
- 2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", 5th edition, New Age International (P) Limited Publishers, 2007.

REFERENCE BOOKS:

- 1. M.Gopal, "Control Systems Principles & Design", 4th Edition, Mc Graw Hill Education, 2012.
- 2. B. C. Kuo and Farid Golnaraghi, "Automatic Control Systems", 8th edition, John wiley and sons, 2003.
- 3. Joseph J Distefano III, Allen R Stubberud & Ivan J Williams, "Feedback and Control Systems", 2nd Edition, Schaum's outlines, Mc Graw Hill Education, 2013.
- 4. Graham C. Goodwin, Stefan F. Graebe and Mario E. Salgado, "Control System Design" Pearson, 2000.
- 5. Gene F. Franklin, J.D. Powell and Abbas Emami-Naeini,Feedback "Control of Dynamic Systems", 6th Edition, Pearson, 2010.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

3 0 0 3

(19A04403T) ANALOG COMMUNICATIONS

Course Objectives

- To introduce various modulation and demodulation techniques of analog communication system.
- To analyze different parameters of analog communication techniques.
- Know Noise Figure in AM & FM receiver systems.
- Understand Function of various stages of AM, FM transmitters and Know Characteristics of AM & FMreceivers.
- Understand the concepts of information theory.

Unit – I

Introduction: Elements of communication systems, Information, Messages and Signals, Modulation, Modulation Methods, Modulation Benefits and Applications.

Amplitude Modulation & Demodulation: Baseband and carrier communication, Amplitude Modulation (AM), Rectifier detector, Envelope detector, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Switching modulators, Ring modulator, Balanced modulator, Frequency mixer, sideband and carrier power of AM, Generation of AM signals, Single sideband (SSB) transmission, Time domain representation of SSB signals & their demodulation schemes (with carrier, and suppressed carrier), Generation of SSB signals, Vestigial sideband (VSB) modulator & demodulator, Frequency division multiplexing (FDM), Illustrative Problems.

Unit Outcomes:

- Understand the concepts of Amplitude Modulation and demodulation techniques. (L1)
- Apply the concepts to solve problems in Amplitude modulation Schemes. (L2)
- Analyse frequency spectra of modulated signals used in various amplitude modulation (L3)
- Compare the Performance of different amplitude modulation techniques. (L4)

Unit – II

Angle Modulation & Demodulation: Concept of instantaneous frequency, Generalized concept of angle modulation, Bandwidth of angle modulated waves – Narrow band frequency modulation (NBFM) and Wide band FM (WBFM), Phase modulation, Verification of Frequency modulation bandwidth relationship, Features of angle modulation, Generation of FM waves-Indirect method, Direct generation; Demodulation of FM, Band pass limiter, Practical frequency demodulators, Small error analysis, Pre-emphasis, & De-emphasis filters, FM Capture Effect, Illustrative Problems.

Unit Outcomes:

- Understand the concepts of Angle modulation and demodulation techniques. (L1)
- Understand importance Pre-emphasis & de-emphasis circuit in FM modulation. (L1)
- Apply the concepts to solve problems in Angle modulation Schemes. (L2)
- Analyse frequency spectra of modulated signals used in various angle modulation (L3)

Unit – III

Noise in Communication Systems: Thermal noise, Time domain representation of narrowband noise, filtered white noise, Quadrature representation of narrowband noise, Envelope of narrowband noise plus sine wave, Signal to noise ratio & probability of error, Noise equivalent bandwidth, Effective noise temperature, and Noise figure, Baseband systems with channel noise, Performance analysis (i.e. finding SNR expression) of AM, DSB-SC, SSB-SC, FM, PM in the presence of noise, Illustrative Problems.

Unit Outcomes:

- Understand different types of noise and sources that effect the performance of the communication system. [L1]
- Analyse performance of analog communication system in the presence of noise. [L3]
- Compare the performance of communication system by evaluating figure of merit for different schemes of modulation. [L4]

Unit – IV

Analog Pulse Modulation Schemes: Pulse amplitude modulation – Natural sampling, flat top sampling and Pulse amplitude modulation (PAM) & demodulation, Pulse-Time Modulation – Pulse Duration and Pulse Position modulations, and demodulation schemes, PPM spectral analysis, Illustrative Problems.

Radio Receiver: Working principle of Super heterodyne AM and FM Receivers along with suitable block diagrams, Sensitivity, Selectivity and fidelity.

Unit Outcomes:

- Understand the concepts of Analog Pulse Modulation and Demodulation techniques. [L1]
- Understand the concepts of AM and FM receivers. [L1]
- Apply the concepts to solve problems in Analog pulse modulation schemes. [L2]
- Analyse the performance of AM and FM receivers.[L3]
- Compare the Performance of different Analog Pulse Modulation techniques.[L4]

Unit - V

Information Theory: Introduction, Information and Entropy, and its properties, source coding Theorem, Data Compaction – Prefix coding, Huffman coding, Discrete Memoryless channels, Mutual Information, and its properties, Channel capacity, Channel coding Theorem, Application to binary symmetric channels, differential entropy and mutual information, Information capacity theorem, implication of information capacity theorem, Rate Distortion, Illustrative problems.

Unit Outcomes:

- Understand the concepts of information theory and different coding techniques.[L1]
- Analyse Binary symmetric channel. [L3]
- Design the channel performance using information theory. [L4]
- Derive equation for Entropy, Mutual information and channel capacity for all types of channels. [L2]

Course Outcomes

After completion of the course, student will be able to

- **CO1**: Understand the concepts of various Amplitude, Angle and Pulse Modulation schemes. Understand the concepts of information theory with random processes. (L1)
- CO2: Apply the concepts to solve problems in analog and pulse modulation schemes. (L2)
- **CO3**: Analysis of analog communication system in the presence of noise. (L3)
- **CO4**: Compare and contrast design issues, advantages, disadvantages and limitations of various modulation schemes in analog communication systems.(L4)
- **CO5:** Solve basic communication problems & calculate information rate and channel capacity of a discrete communication channel (L5)

TEXT BOOKS:

- 1. B. P. Lathi, "Modern Digital and Analog Communication Systems," 3rd Edition, Oxford Univ. press, 2006.
- 2. John Wiley & Sons Simon Haykin, "Communication Systems,",3rd Edition, 2010.
- 3. Sham Shanmugam, "Digital and Analog Communication Systems", Wiley-India edition, 2006.(edition)

REFERENCES:

- 1. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", 5th Edition, McGraw-Hill International Edition, 2010.
- 2. Herbert Taub &Donald L Schilling, "Principles of Communication Systems", 3rd Edition, Tata McGraw-Hill, 2009.
- 3. R.E. Ziemer & W.H. Tranter, "Principles of Communication-Systems Modulation & Noise", 5thedition, Jaico Publishing House2001.
- 4. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004.(edition)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR P. Toch (ECE) H. H. Som

B.Tech (ECE)– II-II Sem

L T P C

2 1 0

(19A05304T) PYTHON PROGRAMMING

3

Course Objectives:

- To learn the fundamentals of Python
- To elucidate problem-solving using a Python programming language
- To introduce a function-oriented programming paradigm through python
- To get training in the development of solutions using modular concepts
- To introduce the programming constructs of python

Unit – I

Introduction: What is a program, Running python, Arithmetic operators, Value and Types. **Variables, Assignments and Statements**: Assignment statements, Script mode, Order of operations, string operations, comments.

Functions: Function calls, Math functions, Composition, Adding new Functions, Definitions and Uses, Flow of Execution, Parameters and Arguments, Variables and Parameters are local, Stack diagrams, Fruitful Functions and Void Functions, Why Functions.

Unit Outcomes:

Student should be able to

- List the basic constructs of Python.
- Solve the problems by applying modularity principle.

Unit – II

Case study: The turtle module, Simple Repetition, Encapsulation, Generalization, Interface design, Refactoring, docstring.

Conditionals and Recursion: floor division and modulus, Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Recursion, Infinite Recursion, Keyboard input.

Fruitful Functions: Return values, Incremental development, Composition, Boolean functions, More recursion, Leap of Faith, Checking types,

Unit Outcomes:

Student should be able to

- Apply the conditional execution of the program.
- Apply the principle of recursion to solve the problems.

Unit - III

Iteration: Reassignment, Updating variables, The while statement, Break, Square roots, Algorithms.

Strings: A string is a sequence, len, Traversal with a for loop, String slices, Strings are immutable, Searching, Looping and Counting, String methods, The in operator, String comparison.

Case Study: Reading word lists, Search, Looping with indices.

Lists: List is a sequence, Lists are mutable, Traversing a list, List operations, List slices, List methods, Map filter and reduce, Deleting elements, Lists and Strings, Objects and values, Aliasing, List arguments.

Unit Outcomes:

Student should be able to

- Use the data structure list.
- Design programs for manipulating strings.

Unit - IV

Dictionaries: A dictionary is a mapping, Dictionary as a collection of counters, Looping and dictionaries, Reverse Lookup, Dictionaries and lists, Memos, Global Variables.

Tuples: Tuples are immutable, Tuple Assignment, Tuple as Return values, Variable-length argument tuples, Lists and tuples, Dictionaries and tuples, Sequences of sequences.

Files: Persistence, Reading and writing, Format operator, Filename and paths, Catching exceptions, Databases, Pickling, Pipes, Writing modules.

Classes and Objects: Programmer-defined types, Attributes, Instances as Return values, Objects are mutable, Copying.

Classes and Functions:

Unit Outcomes:

Student should be able to

- Apply object orientation concepts.
- Use data structure dictionaries.
- Organize data in the form of files.

Unit - V

Classes and Functions: Time, Pure functions, Modifiers, Prototyping versus Planning

Classes and Methods: Object oriented features, Printing objects, The init method, The __str__method, Operator overloading, Type-based Dispatch, Polymorphism, Interface and Implementation

Inheritance: Card objects, Class attributes, Comparing cards, decks, Printing the Deck, Add Remove shuffle and sort, Inheritance, Class diagrams, Data encapsulation.

The Goodies: Conditional expressions, List comprehensions, Generator expressions, any and all, Sets, Counters, defaultdict, Named tuples, Gathering keyword Args,

Unit Outcomes:

Student should be able to

- Plan programs using object orientation approach.
- Illustrate the principle of inheritance.

Course Outcomes:

Student should be able to

- Apply the features of Python language in various real applications.
- Select appropriate data structure of Python for solving a problem.
- Design object oriented programs using Python for solving real-world problems.
- Apply modularity to programs.

TEXT BOOKS:

1. Allen B. Downey, "Think Python", 2nd edition, SPD/O'Reilly, 2016.

REFERENCE BOOKS:

- 1. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 2. Kenneth A. Lambert, B.L. Juneja, "Fundamentals of Python", CENGAGE, 2015.
- 3. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

3 0 0 3

(19A04404) COMPUTER ARCHITECTURE AND ORGANIZATION

Course Objectives:

- To discuss organization and design of a digital computer.
- To explain how to use RTL to represent memory and Arithmetic/ Logic/ Shift operations
- To introduce computer languages, machine, symbolic and assembly levels
- To present organization of central processing unit and concepts of micro-programmed control
- To explain how input-output devices communicate with the other components and methods of data transfer
- To teach different types of addressing modes and memory organization.

Unit I

Data Representation: Data Types, Complements, Fixed-Point Representation, Conversion of Fractions, Floating-Point Representation, Other Binary Codes

Register Transfer and Micro-operations: Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations, Arithmetic Logic Shift Unit

Unit Outcomes:

- Represent various data types found in digital computers in binary form (L2)
- Emphasize representation of numbers employed in arithmetic operations and on binary coding of symbols used in data processing (L5)
- Express micro-operations in symbolic form by using register transfer language (L2)
- Develop composite arithmetic logic shift unit to show hardware design of microoperations (L3)

Unit II

Basic Computer Organization and Design: Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference Instructions, Input-Output and Interrupt, Complete Computer Description, Design and Accumulator Logic.

Programming the Basic Computer: Machine Language, Assembly Language, the Assembler, Program Loops, programming arithmetic and logic operations

Unit Outcomes:

- Describe organization and design of a basic digital computer (L2)
- Illustrate techniques used in assembly language programming (L2)
- Show translation from symbolic code to an equivalent binary program using basic operations of an assembler (L2)

Unit III

Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC).

Unit Outcomes:

- Develop execution unit to show general register organization of a typical CPU (L3)
- Explain operation of a memory stack (L2)
- Illustrate various instruction formats together with a variety of addressing modes (L2)
- Discuss characteristics and advantages of reduced instruction set computer(RISC) (L6)

Unit IV

Micro-programmed Control: Control Memory, Address Sequencing, Micro-program example, Design of Control Unit.

Computer Arithmetic: Introduction, Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating-Point Arithmetic Operations

Unit Outcomes:

- Develop specific micro-programmed control unit to show how to write microcode for a typical set of instructions (L3)
- Design control unit including the hardware for the micro-program sequencer (L6)
- Show procedures for implementing arithmetic algorithms for addition, subtraction, multiplication and division with digital hardware (L2)
- Discuss algorithms to specify the sequence of micro-operations and control decisions required for implementation (L6)

UNIT V

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor (IOP), Serial Communication.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory.

Unit Outcomes:

- Explain how processor interacts with external peripherals through Interface units (L2)
- Compare different modes of data transfer (L4)
- Illustrate procedures for serial data transmission (L2)
- Describe concept of memory hierarchy composed of cache memory, main memory, and auxiliary memory (L2)
- Explain organization and operation of associative memories (L2)

Course Outcomes:

- CO1: Conceptualize basics of organizational and architectural issues of a digital computer (L4)
- **CO2**: Emphasize representation of data types, numbers employed in arithmetic operations and binary coding of symbols used in data processing (L5)
- **CO3**: Develop low-level programs to perform different basic instructions (L5)
- CO4: Evaluate various modes of data transfer between CPU and I/O devices (L5)
- CO5: Analyze various issues related to memory hierarchy (L3)
- **CO6**: Design basic computer system using the major components (L4)

TEXT BOOKS:

1. M. Morris Mano, "Computer System Architecture", 3rd edition, Pearson Education, 2017.

REFERENCES:

- 1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization", 5th Edition McGraw Hill,
- 2. John D. Carpinelli, "Computer Systems Organization and Architecture", 15th reprint Pearson Education, 2018,
- 3. William Stallings, "Computer Organization and Architecture: Designing for Performance", 8th Edition, Pearson

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- II-II Sem

LTPC

 $0 \quad 0 \quad 2$

(19A52301)UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY

(Common to all)

Introduction:

This course discusses the role of human values in one's family. It, very briefly, touches issues related to their role in the society and the nature, which needs to be discussed at length in one more semester for which the foundation course names as"H-102 Universal Human Values 2: "Understanding Harmony" is designed which may be covered in their III or IV Semester.

In the Induction Program, students would get an initial exposure to human valuesthroughUniversalHumanValues—I.Thisexposureistobeaugmentedby this compulsory full semester foundation course.

Course Objective:

The objective of the course is four fold:

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Unit 1:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- Continuous Happiness and Prosperity- A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- Understanding Happiness and Prosperity correctly- A critical appraisal of the

- current scenario
- Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and coexistence) rather than as arbitrariness in choice based on liking-disliking

Unit 2:

Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Unit 3:

Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as

extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Unit 4:

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Unit 5:

Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Text Book

- R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"
- 6. Slow is Beautiful –Cecile Andrews
- 7. J C Kumarappa "Economy of Permanence"
- 8. Pandit Sunderlal "Bharat Mein Angreji Raj"
- 9. Dharampal, "Rediscovering India"
- 10. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland(English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT (L-T-P-C 2-1-0-2)

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are

included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

OUTCOME OF THE COURSE:

By the end of the course,

- Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
- They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability.
- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

0 0 3 1.5

(19A04402P) ELECTRONIC CIRCUIT ANALYSIS AND DESIGN LAB

Course Objectives:

- To provide a practical exposure for design& analysis of electronic circuits for generation and amplification input signal.
- To learn the frequency response and finding gain, input &output impedance of multistage amplifiers
- To Design negative feedback amplifier circuits and verify the effect of negative feedback on amplifier parameters.
- To understand the application of positive feedback circuits& generation of signals.
- To understand the concept of design and analysis of Power amplifiers and tuned amplifiers
- To construct and analyse voltage regulator circuits.

LIST OF EXPERIMENTS:

1. MOSFET Amplifier

- a. Design and simulate MOSFET (Depletion mode) amplifier using PSPICE /Multisim and study the Gain and Bandwidth of amplifier
- b. Design common source MOSFET (Enhance mode) amplifier with discrete components and calculate the bandwidth of amplifier from its frequency response

2. JFET Amplifier

- a. Design and simulate common source FET amplifier using PSPICE /Multisim and study the Gain and Bandwidth of amplifier
- b. Design common source FET amplifier with discrete components and calculate the bandwidth of amplifier from its frequency response
- 3. Common Emitter Amplifier (Self bias Amplifier)
 - a. Design and simulate a self- bias (Emitter bias)Common Emitter amplifier using PSPICE /Multisim and study the Gain and Bandwidth of amplifier
 - b. Design voltage divider based Common Emitter amplifier with discrete components and calculate the bandwidth of amplifier from its frequency response.
- 4. Design and simulate two stage RC coupled amplifier for given specifications. Determine Gain and Bandwidth from its frequency response curve.
- 5. Design and simulate Darlington amplifier. Determine Gain and Bandwidth from its frequency response curve.
- 6. Design and Simulate CE CB Cascode amplifier. Determine Gain and Bandwidth from its frequency response curve.
- 7. Design and simulate voltage series feedback amplifier for the given specifications. Determine the effect of feedback on the frequency response of a voltage series feedback amplifier.

- 8. Design and simulate current shunt feedback for the given specifications. Determine the effect of feedback on the frequency response of a current shunt feedback amplifier.
- 9. Design and simulate RC Phase shift oscillator and Wien bridge oscillator for the given specification. Determine the frequency of oscillation.
- 10. Design and simulate Hartley and Colpitts oscillators for the given specifications. Determine the frequency of oscillation.
- 11. Design and simulate class A power amplifier and find out the efficiency. Plot the output waveforms.
- 12. Design and simulate class B push-pull amplifier and find out the efficiency. Plot the output waveforms.
- 13. Design and simulate single tuned amplifier. Determine the resonant frequency and bandwidth of a tuned amplifier.
- 14. Design and simulate double tuned amplifier. Determine the resonant frequency and bandwidth of a tuned amplifier.

Note: Design & simulate any 12 experiments with Multisim / PSPICE or equivalent software and verify the results in hardware lab with discrete components.

Course Out Comes

After completion of the course, student will be able to

CO1: Understand Characteristics and frequency response of various amplifiers (L1)

CO2: Analyze negative feedback amplifier circuits, oscillators, Power amplifiers, Tuned amplifiers. (L3)

CO3: Determine the efficiencies of power amplifiers (L2)

CO4: Design RC and LC oscillators, Feedback amplifier for specified gain and multistage amplifiers for Low, Mid and high frequencies (L4)

CO3: Simulate all the circuits and compare the performance.(L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

0 0 3 1.5

(19A04403P) ANALOG COMMUNICATIONS LAB

Course Objectives

- To familiarize the students with basic analog communication systems. Integrate theory
 with experiments so that the students appreciate the knowledge gained from the theory
 course.
- Understand all types of analog modulation / demodulation principles.
- Substantiate pulse modulation techniques.
- To design and implement different modulation and demodulation techniques.
- To write and execute programs in MATLAB to implement various modulation techniques.

LIST OF EXPERIMENTS

- 1. (a) Develop an Amplitude modulation circuit to get modulated signal for various modulation indices. Verify the Spectrum of the modulated signal experimentally and find its Bandwidth.
 - (b) Design a suitable demodulated circuit to recover original information signal.
- 2. Generate a DSB SC signal using suitable circuit diagram. Extract information bearing signal from DSB-SC signal. Calculate the power of the DSB-SC signal.
- 3. (a) Develop a Frequency modulation circuit to get modulated signal for various modulation depths. Verify the Spectrum of the modulated signal experimentally and find its Bandwidth.
 - (b) Design a suitable demodulated circuit to recover original information signal.
- 4. (a)Design a Mixer circuit to verify the principle of operation of Mixer experimentally.
 - (b)Design a Pre-emphasis & de-emphasis circuit and verify its importance experimentally and plot necessary graph.
- 5. Construct Pulse Amplitude Modulation circuit and plot modulated signal. Extract the modulated signal by constructing suitable demodulated circuit.
- 6. Construct Pulse Width Modulation circuit and plot modulated signal. Extract the modulated signal by constructing suitable demodulated circuit.
- 7. Construct Pulse Position modulation circuit and plot modulated signal. Extract the modulated signal by constructing suitable demodulated circuit.
- 8. Radio receiver measurements Sensitivity Selectivity and Fidelity.
- 9. Simulate AM and FM signals and find power spectrum of each signal. Plot the graphs.
- 10 Simulate PAM and PWM signals and find power spectrum of each signal. Plot the graphs.
- 11. Generate a complex Gaussian noise (with zero mean unit variance). And pass through an LTI system. Find the power spectrum density of the noise signal available at the output of LTI system.

- 12. Make use of AM signal from experiment no. 9 add Gaussian noise (with zero mean and unity variance) to the signal. Extract the information bearing signal using suitable system.
- 13. Simulate Huffman coding.

Equipment & Software Required:

Software:

- 1. Computer Systems with latest specifications
- 2. Connected in LAN (Optional)
- 3. Operating system (Windows XP)
- 4. Simulations software (MATLAB)

Equipment:

- 1. Regulated Power Supply (0-30) V
- 2. CROs (0-20)MHz
- 3. Function Generators (0-3) MHz
- 4. RF Signal Generators (0-1000) MHz
- 5. Multimeters
- 6. Required Electronic components(active and passive)for the design of experiments from 1 -7
- 7. Radio Receiver Demo kits or Trainers.
- 8. RF power meter frequency range 0 1000 MHz
- 9. Spectrum Analyzer

Note: Conduct experiments (9-12) using MATLAB software. Student has to perform minimum twelve Experiments

Course Outcomes:

After the completion of the course students able to

CO1: Understand different analog modulation techniques &Radio receiver characteristics.(L1)

CO2: Analyze different analog modulation techniques. (L3)

CO3: Design and implement different modulation and demodulation techniques.(L4)

CO4: Observe the performance of system by plotting graphs & Measure radio receiver characteristics. (L2)

CO5: Simulate all digital modulation and demodulation techniques. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C

3 0 0 0

(19A99301) ENVIRONMENTAL SCIENCE

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

UNIT – I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources — Natural resources and associated problems — Forest resources — Use and over — exploitation, deforestation, case studies — Timber extraction — Mining, dams and other effects on forest and tribal people — Water resources — Use and over utilization of surface and ground water — Floods, drought, conflicts over water, dams — benefits and problems — Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies — Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. — Energy resources:

Unit Outcomes

- To know the importance of public awareness
- To know about the various resources

UNIT - II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at

global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Course Outcomes:

- To know about various echo systems and their characteristics
- To know about the biodiversity and its conservation

UNIT - III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management : Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

Course Outcomes:

- To know about the various sources of pollution.
- To know about the various sources of solid waste and preventive measures.
- To know about the different types of disasters and their managerial measures.

UNIT - IV

Social Issues And The Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

Course Outcomes:

- To know about the social issues related to environment and their protection acts.
- To know about the various sources of conservation of natural resources.
- To know about the wild life protection and forest conservation acts.

UNIT - V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds — river, hill slopes, etc..

Unit Outcomes:

- To know about the population explosion and family welfare programmes.
- To identify the natural assets and related case studies.

Course Outcomes:

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

TEXT BOOKS:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications(India), Pvt. Ltd.

REFERENCES:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Pubilishing House
- **6.** Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

 $2 \quad 0 \quad 0 \quad 2$

(19A04501T)INTEGRATED CIRCUITS AND APPLICATIONS

Course Objectives:

- To introduce basic building blocks of Op-Amps & specialized ICs.
- To explain DC and AC performance characteristics of Op-Amps.
- To impart knowledge on linear and non-linear applications of Op-Amps.
- To describe operation & characteristics of data converters.
- To design various circuits using Op-Amps and 555 timer.
- To familiarise specialised ICs such as VCO, PLL, voltage regulators.

UNIT- I

Operational Amplifier: Introduction, Block diagram, Characteristics and Equivalent circuits of an ideal op-amp, Various types of Operational Amplifiers and their applications, Power supply configurations for OP-AMP applications, Inverting and non-inverting amplifier configurations. The Practical op-amp: Introduction, Input offset voltage, Offset current, Thermal drift, Effect of variation in power supply voltage, common-mode rejection ratio, Slew rate and its Effect, PSRR and Gain – bandwidth product, frequency limitations and compensations, transient response.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand different Offsets present in Op amp & nullification circuits. (L1)
- Examine performance of Op-Amp in open loop and closed configurations. (L2)
- Analyse emitter-coupled differential amplifier. (L3)
- Compare ideal and practical Op-Amps. (L5)

UNIT-II

Applications of Operational Amplifier: Amplifiers: Adder, Integrator, Differentiator, Difference amplifier and Instrumentation amplifier, Converters: Current to voltage and voltage to current converters, Active Filters: First order filters, second order active finite and infinite gain low pass, high pass, band pass and band reject filters, Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator.

Learning Outcomes:

At the end of this unit, the student will be able to

• Describe operation of Op-Amp based Linear application circuits, converters, amplifiers and non-linear circuits. (L2)

- Examine different types of oscillators & active filters with detailed mathematical analysis and illustrations. (L3)
- Design circuits such as amplifiers, comparator, differentiators and integrators using operational amplifiers for various applications, Design active filters and oscillators using Op amp for given specifications. (L4)

UNIT- III

Non-Linear Applications of Operational Amplifier: Comparators: Inverting comparator, non-inverting comparator, zero crossing detector, window detector and level detector, Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with adjustable threshold levels.

Waveform Generators: Square wave and triangular wave generator with duty cycle modulation, Precision Rectifiers: Half and full wave precision, rectifiers, log and antilog amplifiers, voltage to frequency converter, frequency to voltage converter.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based comparators, converters, detectors, rectifiers, sample & hold circuits and waveform generators. (L2)
- Analyse Op-Amp based Comparators, converters, detectors, rectifiers, sample & hold circuits and waveform generators. (L3)
- Design Wave form generators, voltage to frequency converters & frequency to voltage converters for given specification. (L4)

UNIT-IV

Data Converters: Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC. Dual Slope ADC, DAC and ADC Specifications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain operation principles of different A/D & D/A converters. (L2)
- Compare different types of A/D & D/A converter circuits. (L5)
- Inspect ADC & DAC specifications to select the right converter for an application. (L4)

UNIT-V

Special Purpose Integrated Circuits: Functional block diagram, working, design and applications of Timer 555 (Monostable & Astable), Functional block diagram, working and applications of VCO 566, PLL 565, Fixed and variable Voltage regulators.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe internal circuit operation of 555 timer, IC voltage regulators (L2)
- Describe functionality of special purpose ICs such as VCO, PLL. (L2)
- Design multi-vibrator circuits using timer. (L4)

Course Outcomes:

- Understand DC and AC characteristics of operational amplifiers & Op amp parameters and functionality of specialized ICs such as 555 TIMER, VCO, PLL & Voltage regulators.
- Make use of Op-Amps and specialized ICs to design circuits for various applications.
- Analyze Op-Amp based Comparators, Waveform generators, Active filters, Converters.
- Design of Op amp based Comparators, Waveform Generators, Active filters, Converters, design various multi-vibrator circuits using IC 555 timer
- Compare different types of A/D and D/A Converter circuits.

TEXTBOOKS:

- 1. Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", 4th Edition, Pearson, 2017.
- 2. D. Roy Choudhury, "Linear Integrated Circuits", 2nd Edition, New Age International (p) Ltd, 2003.

REFERENCES:

- 1. Sergio Franco, "Design with Operational Amplifiers & Analog Integrated Circuits", 3rd edition, McGraw Hill, 1988.
- 2. Jacob Millman, Christos C. Halkias, "Integrated Electronics Analog and Digital circuits system", Tata McGraw Hill, 2003.
- 3. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", 5th edition Wiley International, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C

3 0 0 3

(19A04502)ANTENNAS AND WAVE PROPAGATION

Course Objectives:

- To introduce radiation mechanisms and basic characteristics of antennas.
- To derive mathematical expressions and their application for complete design of antennas.
- To demonstrate various modes of EM wave propagation.
- To explain measurement of antenna parameters
- To introduce design concepts of various types of antennas including micro strip antenna.

UNIT- I

Antenna Characteristics: Radiation mechanism and current distribution, radiation pattern, directivity, gain, Input impedance, polarization, bandwidth, HPBW. Reciprocity, equivalence of radiation and receive patterns, equivalence of impedances, effective aperture, vector effective length, antenna temperature, Friis transmission formula, problem solving.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand radiation mechanism and basic antenna characteristics. (L1)
- Compute radiation intensity, gain and directivity of antennas. (L2)

UNIT- II

Wire and Antenna Arrays: Wire and antenna arrays: Radiation resistance and directivity and other characteristics of short dipole, monopole, half-wave dipole, small loop antenna.

Linear array and pattern multiplication, two-element array, uniform array, binomial array, broadside and end-fire arrays.

Rhombic antennas, Yagi-Uda array, Turnstile Antenna, Helical antenna - axial and normal modes, log-periodic Array, spiral antenna.

Learning Outcomes:

At the end of this unit, the student will be able to

- Derive expressions for radiation resistance, directivity of wire antennas. (L3)
- Obtain radiation pattern of various array antennas using pattern multiplication. (L3)
- Compare radiation pattern and other antenna parameters of broadside and endfire array antennas. (L5)
- To know the design aspects of antenna arrays. (L4)

UNIT-III

Aperture Antennas and Lens Antennas: Aperture Antennas and Lens Antennas: Slot antenna, pyramidal and conical horn antennas, reflector Antenna: flat plate, corner and parabolic reflectors - common curved reflector shapes, Feed mechanisms.

Lens Antennas - Introduction, Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand basic principles of aperture and lens antennas. (L1)
- Design aperture and lens antennas. (L4)

UNIT-IV

Micro-Strip Antennas And Antenna Measurements: Micro-strip Antennas and Antenna Measurements: Basic characteristics, feeding methods, methods of analysis - Design of Rectangular and Circular Patch Antennas, Introduction to Smart Antennas - Concept of adaptive beam forming, Measurement of Antenna Parameters, basic setup, radiation pattern measurement, gain, directivity.

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe feeding methods for micro-strip antennas. (L2)
- Apply the concepts to measure antenna parameters. (L2)
- Design rectangular and circular patch antennas for given specifications. (L4)

UNIT-V

Wave Propagation - I: Introduction, Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts, Ground Wave Propagation (Quantitative Treatment) - Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections, Space Wave Propagation - Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super retraction, M- Curves and Duct Propagation, Scattering Phenomena, Tropospheric Propagation.

Wave Propagation - II: Sky Wave Propagation - Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and skip Distance, Multihop Propagation, illustrative problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand effects of earth's magnetic field on wave propagation (L1)
- Apply the concepts to solve problems related to wave propagation(L2)

- Analyze tropospheric propagation and derive the expression for received field strength (L3)
- Identify layers in ionosphere and their ionization densities (L1)

Course Outcomes:

- Understand various antenna parameters, principle of operation of various antennas viz. wired, aperture, micro strip antennas.
- Discuss various EM wave propagation methods in ionosphere and troposphere
- Analyze mathematical aspects of wave propagation, Derive expressions related to radiation mechanisms for antennas
- Design various antennas namely array, micro strip, horn, lens and aperture antennas, etc., for a given application.
- Compare performance of various antennas.

TEXT BOOKS:

- 1. John D. Kraus, Ronald J. Marhefka, Ahmad S. Khan, "Antennas and Wave Propagation", 4thEdition, TMH, 2010.
- 2. Jordan, E.C. and Balmain. K. G., "Electromagnetic Waves and Radiating Systems", Prentice-Hall Publications.

REFERENCES:

- 1. Constantine A. Balanis, "Antenna Theory-Analysis and Design", Wiley Publication, 2016.
- 2. K.D. Prasad, "Antenna & Wave Propagation", Satya Prakash Publications, 2009.
- 3. Matthew N.O.Sadiku, "Principle of Electromagnetics", 4th edition, Oxford (International), 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

3 0 0 3

(19A52601T)ENGLISH LANGUAGE SKILLS

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language skills in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. They shouldbe able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate active listening to enable inferential learning through expert lectures and talks
- Impart critical reading strategies for comprehension of complex texts
- Provide training and opportunities to develop fluency in English through participation in formal group discussions and presentations using audio-visual aids
- Demonstrate good writing skills for effective paraphrasing, argumentative essays and formal correspondence
- Encourage use of a wide range of grammatical structures and vocabulary in speech and writing

UNIT -I

Text:

- 1. Lines Composed a Few Miles above Tintern Abbey William Wordsworth
- 2. The Lotos-Eaters Alfred Tennyson

Listening: Listening to famous speeches for structure and style

Speaking: Oral presentations on general topics of interest.

Reading: Reading for meaning and pleasure – reading between the lines.

Writing: Appreciating and analyzing a poem –Paraphrasing, note-taking.

Grammar and Vocabulary: Tenses (Advanced Level) Correcting errors in punctuation - Word roots and affixes.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand the purpose of rhythm and rhyme and the use of figures of speech in making the presentation lively and attractive
- Apply the knowledge of structure and style in a presentation, identify the audience and make note of key points
- Make formal structured presentations on general topics using grammatical understanding
- Prioritize information from reading texts after selecting relevant and useful points
- Paraphrase short academic texts using suitable strategies and conventions

UNIT-II

Text: The Model Millionaire - Oscar Wilde

Listening: Following the development of theme; answering questions on key concepts after listening to stories online.

Speaking: Narrating personal experiences and opinions.

Reading: Reading for summarizing and paraphrasing; recognizing the difference between facts and opinions.

Writing: Summarizing, précis writing, letter and note-making

Grammar and Vocabulary: Subject-verb agreement, noun-pronoun agreement, collocations.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend academic lectures, take notes and answer questions
- Make formal structured presentations on academic topics
- Distinguish facts from opinions while reading
- Summarize and make a précis of reports
- Use correct english avoiding common errors in formal speech and writing

Unit – III

Text: Speech at IIM Calcutta – AzimPremji

Listening: Identifying views and opinions expressed by different speakers while listening to speeches.

Speaking: Small talks on general topics; agreeing and disagreeing, using claims and examples/ evidences for presenting views, opinions and position.

Reading: Identifying claims, evidences, views, opinions and stance/position.

Writing: Writing structured persuasive/argumentative essays on topics of general interest using suitable claims, examples and evidences.

Grammar and Vocabulary: The use of Active and passive Voice, vocabulary for academic texts

Learning Outcomes

At the end of the module, the learners will be able to

- Critically follow and participate in a discussion
- participate in group discussions using appropriate conventions and language strategies
- comprehend complex texts and identify the author's purpose
- produce logically coherent argumentative essays
- use appropriate vocabulary to express ideas and opinions

UNIT - IV

Text: A Biography of Steve Jobs

Listening: Listening to identify important moments - Understanding inferences; processing of information using specific context clues from the audio.

Speaking: Group discussion; reaching consensus in group work (academic context).

Reading: Reading for inferential comprehension.

Writing: Applying for internship/job - Writing one's CV/Resume and cover letter.

Grammar and Vocabulary: Phrasal verbs, phrasal prepositions and technical vocabulary.

Learning Outcomes

At the end of the module, the learners will be able to

- Draw inferences and conclusions using prior knowledge and verbal cues
- Express thoughts and ideas with acceptable accuracy and fluency
- Develop advanced reading skills for deeper understanding of texts
- Prepare a cv and write a cover letter to seek internship/job
- Understand the use of technical vocabulary in academic writing

UNIT-V

Text: How I Became a Public Speaker - George Bernard Shaw

Listening: Understanding inferences - processing of explicit information presented in the text and implicit information inferable from the text or from previous/background knowledge.

Speaking: Formal team presentations on academic/general topics.

Reading: Intensive and extensive reading.

Writing: Structure and contents of a Report – Abstract – Project report features.

Grammar and Vocabulary: Correcting common errors, improving vocabulary and avoiding clichés and jargons.

Learning Outcomes

At the end of the module, the learners will be able to

- Develop advanced listening skills for in-depth understanding of academic texts
- Collaborate with a partner to make effective presentations
- Understand and apply the structure of project reports
- Demonstrate ability to use grammatically correct structures and a wide range of vocabulary

Course Outcomes

At the end of the course, the learners will be able to

- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

TEXT BOOK:

• "Forging Ahead": A Course Book for B.Tech Students. Orient BlackSwan, 2020.

REFERENCE BOOKS:

- 1) Bailey, Stephen. "Academic writing: A handbook for international students". Routledge, 2014.
- 2) Chase, Becky Tarver. Pathways: Listening, "Speaking and Critical Thinking". Heinley ELT; 2nd Edition, 2018.
- 3) Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4) Hewings, Martin. "Cambridge Academic English" (B2). CUP, 2012. (Student Book, Teacher Resource Book, CD & DVD)
- 5). Create a coherent paragraph interpreting a figure/graph/chart/table

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C 3 0 0 3

(19A04503T) DIGITAL COMMUNICATIONS

Course Objectives:

- To understand the key modules of digital communication systems with emphasis on digital modulation techniques.
- To get introduced to the concept and basics of information theory and the basics of source and channel coding/decoding.
- To prepare mathematical background for communication signal analysis.
- To study signal flow in a digital communication system.
- To analyze error performance of a digital communication system in presence of noise and other interferences.

UNIT-I:

Source Coding Systems: Introduction, sampling process, quantization, quantization noise, conditions for optimality of quantizer, encoding, Pulse-Code Modulation (PCM), Line codes, Differential encoding, Regeneration, Decoding & Filtering, Noise considerations in PCM systems, Time-Division Multiplexing (TDM), Synchronization, Delta modulation (DM)-Granular noise Slope over distortion, Differential PCM (DPCM), Processing gain, Adaptive DPCM (ADPCM), Comparison of the above systems, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand source coding techniques & pulse modulation techniques. (L1)
- Describe and determine the performance of line codes. (L2)
- Analyze different pulse modulation techniques &Distortions. (L3)
- Compare the performance different pulse modulation Schemes. (L5)

UNIT-II:

Baseband Pulse Transmission: Introduction, Matched filter, Properties of Matched filter, Matched filter for rectangular pulse, Error rate due to noise, Inter-symbol Interference (ISI), Nyquist's criterion for distortion less baseband binary transmission, ideal Nyquist channel, raised cosine filter & its spectrum, Correlative coding — Duo binary & Modified duo binary signalling schemes, Partial response signalling, Baseband M-ary PAM transmission, Eye diagrams, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

• Analyze the performance of baseband pulse transmission system. (L3)

- Describe the generation & detection of pass band modulated signals. (L2)
- Analyze probability of error for various pass band data transmission schemes. (L3)
- Compare the power bandwidth required for various pass band data transmission scheme. (L4)

UNIT-III:

Signal Space Analysis: Introduction, Geometric representation of signals, Gram-Schmidt orthogonalization procedure, Response of bank of correlators to noisy input, Coherent detection of signals in noise - maximum likelihood decoder, Probability of error, Correlation receiver, detection of signals with unknown phase, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the concepts of signal space analysis. (L1)
- Examine the characteristics of maximum likelihood decoder. (L2)
- Analyze correlation receiver. (L3)

UNIT-IV:

Passband Data Transmission: INTRODUCTION, Passband transmission model, Coherent modulation schemes- Generation and detection of binary phase shift keying (BPSK), Quadrature shift keying (QPSK), and Binary Frequency shift keying (BFSK). Analysis of probability of error for BPSK, QPSK, BFSK, Power spectra of above mentioned modulated signals. M-ary PSK, M-ary quadrature amplitude modulation (M-ary QAM), Non-coherent orthogonal modulation schemes - Generation and detection of non-coherent BFSK, DPSK - analysis of probability of error and Comparison of power bandwidth requirements for all the above schemes, Illustrative Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Analyse the different digital modulation techniques, generation and detection, power spectra and their probability of error performance. (L3)
- Compare the power bandwidth, bit error probability for various modulation scheme.(L5)

UNIT-V

Channel Coding: Discrete memory less channels, Linear Block Codes-Repetition codes, Syndrome decoding, minimum distance considerations, Cyclic codes- generator polynomial, parity check polynomial, encoder for cyclic code, calculation of syndrome, Convolutional Codes – generator polynomials, state diagrams, Viterbi algorithm, Illustrative problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand various error control encoding and decoding techniques. (L1)
- Apply information theory and linear algebra in source coding and channel coding. (L2)
- Analyse the performance of error control codes. (L3)

Course Outcomes:

- Understand the elements of digital communication system, baseband pulse transmission, pass band digital modulation, geometric representation of signals, basics of information theory and error correcting codes.
- Apply the knowledge of signals and system & statistical theory to evaluate the performance of digital communication systems.
- Analyze the different coding, modulation techniques, Probability of error performance of digital system.
- Compare the performance of different modulation schemes& error correcting codes.

TEXT BOOKS:

- 1. Simon Haykin, "Communication Systems", Wiley India Edition, 4th Edition, 2011.
- 2. B.P. Lathi, & Zhi Ding, "Modern Digital &Analog Communication Systems", 4th edition,Oxford University Press, International 2010.

REFERENCES:

- 1. Sam Shanmugam, "Digital and Analog Communication Systems", 3rd Edition, John Wiley, 2005.
- 2. Bruce Carlson, and Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", 5th Edition, McGraw-Hill International Edition, 2010.
- 3. Bernard Sklar, "Digital Communications", 2nd edition, Prentice-Hall PTR, 2001.
- 4. Herbert Taub and Donald L Schilling, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

3 0 0 3

(19A05403T) OPERATING SYSTEMS

Professional Elective-I

Course Objectives:

The course is designed to

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Provide good insight on various memory management techniques
- Expose the students with different techniques of handling deadlocks
- Explore the concept of file-system and its implementation issues
- Familiarize with the basics of Linux operating system
- Implement various schemes for achieving system protection and security

UNIT I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Operating system debugging, System Boot.

Learning Outcomes:

At the end of this unit, the student will be able to

- Identify major components of operating systems
- Understand the types of computing environments
- Explore several open source operating systems
- Recognize operating system services to users, processes and other systems

UNIT II

Process Concept: Process scheduling, Operations on processes, Inter-process communication, Communication in client server systems.

Multithreaded Programming: Multithreading models, Thread libraries, Threading issues, Examples.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling, Thread scheduling, Examples.

Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers problem.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the importance, features of a process and methods of communication between processes.
- Improving CPU utilization through multi programming and multithreaded programming
- Examine several classical synchronization problems

UNIT III

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation, Examples.

Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

Learning Outcomes:

At the end of this unit, the student will be able to

- Examine the various techniques of allocating memory to processes
- Summarize how paging works in contemporary computer systems
- Understanding the benefits of virtual memory systems.

UNIT IV

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection

And recovery, Deadlock avoidance, Deadlock prevention.

File Systems: Files, Directories, File system implementation, management and optimization. Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Investigate methods for preventing/avoiding deadlocks
- Examine file systems and its interface in various operating systems
- Analyze different disk scheduling algorithms

UNIT V

System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights.

System Security: Introduction, Program threats, System and network threats, Cryptography as a security, User authentication, implementing security defenses, firewalling to protect systems and networks, Computer security classification.

Case Studies: Linux, Microsoft Windows.

Learning Outcomes:

At the end of this unit, the student will be able to

- Infer various schemes available for achieving system protection.
- Acquiring knowledge about various countermeasures to security attacks
- Outline protection and security in Linux and Microsoft Windows.

Course Outcomes

By the end of this course students will be able to:

- Realize how applications interact with the operating system
- Analyze the functioning of a kernel in an Operating system.
- Summarize resource management in operating systems
- Analyze various scheduling algorithms
- Examine concurrency mechanism in Operating Systems
- Apply memory management techniques in design of operating systems
- Understand the functionality of file system
- Compare and contrast memory management techniques.
- Understand the deadlock prevention and avoidance.
- Perform administrative tasks on Linux based systems.

Text Books:

- 1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2016.
- 2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008. (Topics: Inter-process Communication and File systems.)

Reference Books:

- 1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd edition, PHI, 2006.
- 2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw-Hill, 2012.
- 3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education, 2009
- 4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

3 0 0 3

(19A02403) POWER ELECTRONICS Professional Elective-I

Course Objectives:

The student will be able to:

- 1. Understand the differences between signal level and power level devices.
- 2. Analyze controlled rectifier circuits.
- 3. Analyze the operation of DC-DC choppers.
- 4. Analyze the operation of voltage source inverters.

UNIT-I: Power Switching Devices

Diode, Thyristor, MOSFET, IGBT: I-V Characteristics; Firing circuit for thyristor; Voltage and current commutation of a thyristor; Gate drive circuits for MOSFET, IGBT and GTO.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the basic power semiconductor devices their construction, principle of working and their characteristics.
- Understand in detail about SCR i.e., its characteristics, series and parallel connection of SCR's, specification, its ratings and various commutation methods.
- Apply the above concepts to solve numerical problems.

UNIT-II: Thyristor Rectifiers

Single-phase half-wave and full-wave rectifiers, Single-phase full-bridge thyristor rectifier with R-load and highly inductive load; Three-phase full-bridge thyristor rectifier with R-load and highly inductive load; Input current wave shape and power factor-Numerical problems.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concepts of phase control technique, midpoint and bridge connections of half and full controlled converters with various loads for both 1Ø and 3Ø phase converters, effect of source inductance and dual converters.
- Analyze and evaluate voltages and currents, active and reactive power inputs to converter with and without freewheeling diode for 1Ø and 3Ø converters.
- Apply the above concepts to solve numerical problems.

UNIT-III: DC-DC buck converter

Elementary chopper with an active switch and diode, concepts of duty ratio and average voltage, power circuit of a buck converter, analysis and waveforms at steady state, duty ratio control of output voltage.

DC-DC boost converter:

Power circuit of a boost converter, analysis and waveforms at steady state, relation between duty ratio and average output voltage.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concepts of various control strategies, types of choppers and analyze their principle operation, waveforms of voltages and currents at different loads.
- Apply the above concepts to solve numerical problems.

UNIT-IV:

Single phase Voltage Source inverters – operating principle - steady state analysis, Simple forced commutation circuits for bridge inverters – Mc Murray and Mc Murray Bedford inverters, Voltage control techniques for inverters and Pulse width modulation techniques, single phase current source inverter with ideal switches, basic series inverter, single phase parallel inverter – basic principle of operation only, Three phase bridge inverters (VSI) – 180 degree mode – 120 degree mode of operation - Numerical problems.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the construction, working of single phase voltage inverters with their waveforms in various operating modes when different loads are applied and the different modulating techniques available.
- Understand the construction, working of three phase voltage inverters with their waveforms in various operating modes when different loads are applied, harmonic components and the different modulating techniques available.
- Apply the above concepts to solve numerical problems.

UNIT-V: AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS:

AC voltage controllers – Principle of phase control – Principle of integral cycle control - Single phase two SCRs in anti parallel – With R and RL loads – modes of operation of Triac – Triac with R and RL loads – RMS load voltage, current and power factor - wave forms – Numerical problems. Cyclo converters - Midpoint and Bridge connections - Single phase to

single phase step-up and step-down cyclo converters with Resistive and inductive load, Principle of operation, Waveforms, output voltage equation.

Learning Outcomes:

At the end of the unit, students will be able to

- Understand the concept of AC voltage controllers
- Understand the concept of Cyclo Converters

Course Outcomes:

At the end of this course students will be able to:

- Understand the operation, characteristics and usage of basic Power Semiconductor Devices.
- Understand different types of Rectifier circuits with different operating conditions.
- Understand DC-DC converters operation and analysis of their characteristics.
- Understand the construction and operation of voltage source inverters, Voltage Controllers and Cyclo Converters.
- Apply all the above concepts to solve various numerical problem solving

TEXT BOOKS:

- 1. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", 2nd edition, Prentice Hall of India, 1998
- 2. P.S.Bimbhra,"Power Electronics", 4th Edition, Khanna Publishers, 2010.
- 3. M. D. Singh & K. B. Kanchandhani, "Power Electronics", Tata Mc Graw Hill Publishing Company, 1998.

REFERENCE BOOKS:

- 1. Ned Moha, "Power Electronics", Wiley, 2011.
- 2. Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics" 2nd Edition, Kluwer Academic Publishers, 2004.
- 3. Vedam Subramanyam, "Power Electronics", New Age International (P) Limited, 1996.
- 4. V.R.Murthy, "Power Electronics", 1st Edition, Oxford University Press, 2005.
- 5. P.C.Sen, "Power Electronics", Tata Mc Graw-Hill Education, 1987.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C

3 0 0 3

(19A05303T) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Professional Elective-I

Course Objectives:

- To understand object oriented concepts and problem solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

UNIT - I

Introduction: Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the syntax, semantics and features of Java Programming Language.
- Learn object oriented features and understanding type conversion and casting.
- Understand different types of string handling functions and its usage.

UNIT - II

Inheritance: Basics, Using Super, CreatingMultilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

Learning Outcomes:

At the end of this unit, the student will be able to

- Implement types of Inheritance and developing new classes based on existing classes
- Distinguish between system packages and user defined packages.
- Demonstrate features of interfaces to implement multiple inheritances.

UNIT - III

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Readingconsole Input and Writing Console Output, File class, Reading and writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

Learning Outcomes:

At the end of this unit, the student will be able to

- Learn what exceptions are and how they are handled.
- Learn when to use exception handling and how to create user defined exceptions
- Learn the difference between various files and streams.

UNIT-IV

Multithreading: The Java thread model, Creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand concurrency, parallelism and multithreading
- Learn the importance of collections and use prebuilt generic data structures from framework.

UNIT - V

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, showmessagedialog, showconfirmdialog, showinputdialog, showoptiondialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Learning Outcomes:

At the end of this unit, the student will be able to

- Learn how to use the Nimbus look-and-feel
- Understand the GUI programming.
- Understand basic steps in developing JDBC applications,

Course Outcomes:

After the completion of the course the student will be able

- To solve real world problems using OOP techniques.
- To apply code reusability through inheritance, packages and interfaces
- To solve problems using java collection framework and I/O classes.
- To develop applications by using parallel streams for better performance.
- To develop applets for web applications.
- To build GUIs and handle events generated by user interactions.
- To use the JDBC API to access database

Text Books:

- 1. Herbert Schildt "Java The complete reference", 9th edition, McGraw Hill Education (India) Pvt. Ltd.
- 2. Paul Dietel, Harvey Dietel "Java How to Program", 10th Edition, Pearson Education.

REFERENCE BOOKS:

- 1. T. Budd "Understanding Object-Oriented Programming with Java", updated edition, Pearson Education.
- 2. Cay S. Horstmann, "Core Java Volume 1 Fundamentals", Pearson Education.
- 3. Sagayaraj, Dennis, Karthik and Gajalakshmi, "Java Programming for core and advanced learners" University Press
- 4. Y. Daniel Liang, "Introduction to Java programming", Pearson Education.
- 5. P. Radha Krishna, "Object Oriented Programming through Java", University Press.
- 6. S. Malhotra, S. Chudhary, "Programming in Java", 2nd edition, Oxford Univ. Press.
- 7. R.A. Johnson, "Java Programming and Object-oriented Application Development", Cengage Learning.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE) – III-I Sem

L T P C

3 0 0

3

(19A04504a)DATA COMMUNICATIONS AND NETWORKING

Professional Elective-I

Course Objectives:

- To explain the basic concept of computer communication networks
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce IP addressing, UDP and TCP Models.
- To have the concept of different routing techniques for data communications.

UNIT- I

Introduction to Computer Networks: Uses of computer Network, Network Software-design Issues for layers, Service primitives and relationship of services to Protocols, Reference models- OSI & TCP/IP, network architectures introduction, Example of Networks-X.25, Frame Relay & ATM, Protocols and Standards.

Learning Outcomes:

At the end of this unit, the student will be able to

- Enumerate the layers of the OSI model and TCP/IP. (L1)
- Explain the function(s) of each layer. (L2)

UNIT-II

Physical Layer: Physical layer- Data rate limits, Transmission media-guided and Unguided, Switching systems, Circuit switching, Datagram switching & Virtual circuit switching, Structure of circuit and packet switch, cable modem and DSL technologies, SONET basics, selection of IEEE std 802.11, a, b, c, g.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand principles of data communication using transmission (guided and wireless) media. (L1)
- Know to the concepts of various switching techniques. (L1)
- Explain the basics of DSL, SONET, and IEEE standards. (L2)

UNIT-III

Data link layer: Framing, Flow & Error control Protocols, HDLC, PPP, Multiple access techniques, random access, controlled access & Channelization, Ethernet types-bridged,

Switched, Full duplex, Fast & gigabit Ethernet, Introduction to Data link layer in 802.11 LAN, connecting devices like passive hubs, repeaters, Active hubs, Bridges, Two-layer Switches, Routers, three layer switches, Gateway etc., Backbone networks, Virtual LANs, Simple Router architecture, Sliding window protocol.

Learning Outcomes:

At the end of this unit, the student will be able to

- List the different connecting devices for networking. (L1)
- Understand the principles of error control protocols, multiple access protocols, routers and switches in data link layer. (L1)
- Solve the error control and multiple access based problems. (L2)

UNIT-IV

Network Layer: IPv4 address, IPv6 address, Address mapping-ARP, RARP & DHCP, IPv4 datagram detail format, IPv6 datagram detail format, ICMP, IGMP, Network layer issues like Delivery, forwarding, intra-domain and Inter-domain routing, Routing algorithms like Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, Path vector routing etc., Addressing types-Physical, Logical & port address.

Transport Layer: Transport layer-Process to process delivery, Connection oriented & Connectionless Transport, UDP, TCP, congestion control and Quality of Service.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the concepts of IPvx and different protocols.(L1)
- Apply the knowledge on different routing algorithms and measure their performance metrics.(L2)
- Distinguish between the connection oriented and connection less transport protocols.(L4)

UNIT- V

Application Layer: Application layer protocols and applications like Ping, FTP, telnet, HTTP, SMTP, SNMP, TFTP, BOOTP, DNS, NFS, RPC, X-server, E-mail, Introduction to streaming Audio/Video,P2P file sharing, Introduction to socket programming.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the importance of application layer and the terminology like FTP, HTTP, SMTP, SNMP,TFTP etc., (L1)
- Know about the P2P file sharing and socket programming.(L2)

Course Outcomes:

- Understand the requirement of theoretical & practical aspects of computer networks, functions of various layers involved in data communications, building the skills of sub netting and routing mechanisms.
- Explain the role of protocols in networking.
- Analyze the services and features of the various layers in the protocol stack.

TEXT BOOKS:

- 1. Behrouz A. Forouzan, "Data Communications and Networking", 4th Edition, Tata McGraw Hill, 2007.
- 2. Andrew Tenenbaum, "Computer Networks", 4th Edition, Pearson Education.
- 3. Kurose & Ross, "Computer Networking- A top down approach featuring the Internet", 3rd Edition, Pearson Education.
- 4. William Stallings, "Computer Networks and Cryptography", 3rd Edition, Pearson Education.

REFERENCES:

- 1. Behrouz A. Forouzan, "TCP/IP protocol Suit", 3rd Edition, Tata McGraw Hill Publications.
- 2. Stevens, "TCP/IP illustrated Volume I & II", Pearson education.
- 3. Feibel Werner, "Encyclopedia of networking", Pearson education.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE) – III-I Sem

L T P C

3 0 0 3

(19A04504b)NANO ELECTRONICS Professional Elective-I

Course Objectives

- To introduce the challenges in CMOS VLSI device design and fundamental limits of operation.
- To study novel MOS based silicon devices and various multi gate devices.
- To learn about SOI devices and its performance comparison with Silicon devices
- To understand the underlying concepts by setting up and solving the Schrödinger equation for different types of potentials in one dimension as well as in 2 or 3 dimensions for specific cases.
- To understand nano electronic systems and building blocks such as: low-dimensional semiconductors, hetero structures, carbon nano tubes, quantum dots, nano wires etc.
- To gain knowledge on spin electronic devices.
- To familiarize students with the present research front in Nano electronics and to be able to critically assess future trends.

UNIT-I:

Challenges going to sub-100 nm MOSFETs Oxide layer thickness, tunneling, power density, non-uniform dopant concentration, threshold voltage scaling, lithography, hot electron effects, sub-threshold current, velocity saturation, interconnect issues, fundamental limits for MOS operation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Retrieving the challenges and current trends of CMOS technologies. (L1)
- Explain the fabrication process and limitations in the CMOS design. (L2)

UNIT-II:

Novel MOS-based devices Multiple gate MOSFETs, Silicon-on-insulator, Silicon-on-nothing, Fin FETs, vertical MOSFETs, strained Si devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Inferring the latest MOS device in several aspects of latest configurations like SOI, SON, Strained Si and FETs. (L2).
- Choosing different models of MOS devices according to the requirement. (L3)

UNIT-III:

Quantum structures quantum wells, quantum wires and quantum dots, Single electron devices charge quantization, energy quantization, Coulomb blockade, Coulomb staircase, Bloch oscillations.

Learning Outcomes:

At the end of this unit, the student will be able to

- Categorize the structure of trendy devices. (L2)
- Integrate and model the device with basic quantum structures. (L4)

UNIT-IV:

Hetero structure based devices Type I, II and III hetero junctions, Si-Ge hetero structure, hetero structures of III-V and II-VI compounds - resonant tunneling devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Correlating device structures with type of materials, which are commonly used for fabrication (L5)
- Defend the tunneling devices with several parameters of hetero structures. (L5)

UNIT- V:

Carbon nanotubes based devices CNFET, characteristics; Spin-based devices spin FET, characteristics, Applications of MOSFET, CNFET and Spin FET devices.

Learning Outcomes:

At the end of this unit, the student will be able to

- Criticize based on characteristics study for the MOS/FET devices. (L5)
- Adapt the device in specific applications in real-time. (L2)

Course Outcomes:

- Retrieving the challenges and current trends of CMOS technologies.
- Explain the fabrication process and limitations in the CMOS design, Inferring the latest MOS device in several aspects of latest configurations like SOI, SON, Strained Si and FETs, Categorize the structure of trendy devices, Adapt the device in specific applications in real-time.
- Choosing different models of MOS devices according to the requirement.
- Integrate and model the device with basic quantum structures.
- Correlating device structures with type of materials, which are commonly used for fabrication, defend the tunneling devices with several parameters of hetero structures; compare characteristics study for the MOS/FET devices.

TEXT BOOKS:

- 1. Mircea Dragoman and Daniela Dragoman, "Nano electronics Principles & devices", Artech House Publishers, 2005.
- 2. Karl Goser, "Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices", Springer 2005.

REFERENCE BOOKS:

- 1. Mark Lundstrom and Jing Guo, "Nanoscale Transistors: Device Physics Modelling and Simulation", Springer, 2005.
- 2. Vladimir V Mitin, Viatcheslav A Kochelap and Michael A Stroscio, "Quantum hetero structures", Cambridge University Press, 1999.
- 3. S M Sze (Ed), "High speed semiconductor devices", Wiley, 1990.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–III-I L T P C

3 0 0 3

(19A01506a) EXPERIMENTAL STRESS ANALYSIS OPEN ELECTIVE-I

Course Objective:

To bring awareness on experimental method of finding the response of the structure to different types of load.

- Demonstrates principles of experimental approach.
- Teaches regarding the working principles of various strain gauges.
- Throws knowledge on strain rosettes and principles of non destructive testing of concrete.
- Gives an insight into the principles of photo elasticity.

UNIT-I

PRINCIPLES OF EXPERIMENTAL APPROACH: - Merits of Experimental Analysis Introduction, uses of experimental stress analysis advantages of experimental stress analysis, Different methods –Simplification of problems.

Learning outcomes:

At the end of the unit, students will be able to:

- Demonstrate the merits and principles of experimental approach
- Give an insight into the uses and advantages of experimental stress analysis

UNIT-II

STRAIN MEASUREMENT USING STRAIN GAUGES: - Definition of strain and its relation of experimental Determinations Properties of Strain Gauge Systems-Types of Strain Gauges – Mechanical, Acoustic and Optical Strain Gauges. Introduction to Electrical strain gauges - Inductance strain gauges – LVDT – Resistance strain gauges – various types – Gauge factor – Materials of adhesion base.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduce various strain gauge systems and their properties
- Give information regarding the gauge factor and materials of adhesion bases

UNIT-III

STRAIN ROSSETTES AND NON – DESTRUCTIVE TESTING OF CONCRETE:-Introduction – the three elements Rectangular Rosette – The Delta Rosette Corrections for Transverse Strain Gauge. Ultrasonic Pulse Velocity method –Application to Concrete. Hammer Test – Application to Concrete.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces various strain rosettes and corrections for strain gauges
- Gives an insight into the destructive and non destructive testing of concrete

UNIT-IV

THEORY OF PHOTOELASTICITY: - Introduction —Temporary Double refraction — The stress Optic Law —Effects of stressed model in a polariscope for various arrangements — Fringe Sharpening. Brewster"s Stress Optic law.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces stress optic laws.
- Gives the arrangements and working principles of polariscope.

UNIT-V

TWO DIMENSIONAL PHOTOELASTICITY: - Introduction – Iso-chromatic Fringe patterns-Isoclinic Fringe patterns passage of light through plane Polariscope and Circular polariscope Isoclinic Fringe patterns – Compensation techniques – Calibration methods – Separation methods – Scaling Model to prototype Stresses – Materials for photo – Elasticity Properties of Photoelastic Materials.

Learning outcomes:

At the end of the unit, students will be able to:

- Introduces the understanding of different fringe patterns.
- Introduces model analysis and properties of photo elastic materials.

Course Outcomes:

After completion of the course

- The student will be able to understand different methods of experimental stress analysis
- The student will be able to understand the use of strain gauges for measurement of strain
- The student will be exposed to different Non destructive methods of concrete
- The student will be able to understand the theory of photo elasticity and its applications in analysis of structures

TEXT BOOKS:-

- 1. J.W.Dally and W.F.Riley, "Experimental stress analysis College House Enterprises"
- 2. Dr. Sadhu Singh, "Experimental stress analysis", khanna Publishers

REFERENCE BOOKS:

- 1. U.C.Jindal, "Experimental Stress analysis", Pearson Publications.
- 2. L.S. Srinath, "Experimental Stress Analysis", MC. Graw Hill Company Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) –III-I L T P C

3 0 0 3

(19A01506b) BUILDING TECHNOLOGY OPEN ELECTIVE-I

Course Objectives:

- To impart to know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

UNIT-I

Overview of the course, basic definitions, buildings-types-components- economy and designprinciples of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

Learning outcomes:

At the end of the unit, students will be able to:

• To be able to plan the building with economy and according to functional requirement.

UNIT-II

Termite proofing: Inspection-control measures and precautions- lighting protection of buildings-general principles of design of openings-various types of fire protection measures to be considered while panning a building.

Learning outcomes:

At the end of the unit, students will be able to:

- Able to know the termite proofing technique to the building and protection form lightening effects.
- To be able to know the fire protection measure that are to be adopted while planning a building.

UNIT-III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairs- planning of stairs- other modes of vertical transportation – lifts-ramps-escalators.

Learning outcomes:

At the end of the unit, students will be able to:

To be able to know the different modes of vertical transportation and their suitability

UNIT-IV

Prefabrication systems in residential buildings- walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

Learning outcomes:

At the end of the unit, students will be able to:

- Identify the adoption of prefabricated elements in the building.
- Know the effect of seismic forces on buildings

UNIT-V

Acoustics – effect of noise – properties of noise and its measurements, principles of acoustics of building. Sound insulation- importance and measures.

Learning outcomes:

At the end of the unit, students will be able to:

• To know the effect of noise, its measurement and its insulation in planning the buildings

Course Outcomes:

After completion of the course the student will be able to

- Understand the principles in planning and design the buildings.
- Know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

TEXT BOOKS:

- 1. Varghese, "Building construction", PHI Learning Private Limited.
- 2. Punmia.B.C, "Building construction", Jain.A.K and Jain.A.K Laxmi Publications.
- 3. S.P.Arora and S.P.Brndra "Building construction", Dhanpat Rai and Sons Publications, New Delhi
- 4. "Building construction-Technical teachers training institute", Madras, Tata McGraw Hill.

REFERENCE BOOKS:

1. National Building Code of India, Bureau of Indian Standards

B.Tech (ECE) –III-I

L T P C

2 1 0 3

(19A02506a) ELECTRICAL ENGINEERING MATERIALS (OPEN ELECTIVE-I)

Course Objectives:

To make the students learn about

- Classification of materials.
- Properties of materials and its applications.
- Domestic wiring and earthing

UNIT-I Conducting Materials

Introduction – classification of materials – Metals and Non metals, physical, thermal, mechanical and electrical properties of materials – classification of electrical materials – concept of atom – electron configuration of atom, conductors, general properties of conductors, factors effecting resistivity of electrical materials –electrical/mechanical/thermal properties of copper, aluminum, iron, steel, lead, tin and their alloys – applications.

Learning outcomes:

At the end of the unit, students will be able to:

- Uunderstand the classification of conducting materials.
- Analyze the properties of different conducting materials
- Apply the materials where it is applicable
- Know about electron configuration of atom

UNIT-II Dielectric and High Resistivity Materials

Introduction – solid, liquid and gaseous dielectrics, leakage current, permittivity, dielectric constant, dielectric loss – loss angle – loss constant, Breakdown voltage and dielectric strength of – solid, liquid and gaseous dielectrics, effect of break down– electrical and thermal effects, Polarization – electric, ionic and dipolar polarization. Effect of temperature and Frequency on dielectric constant of polar dielectrics. High Resistivity materials – electrical / thermal / mechanical properties of Manganin, Constantan, Nichrome, Tungsten, Carbon and Graphite and their applications in electrical equipment.

Learning outcomes:

At the end of the unit, students will be able to:

- Understand the classification of dielectric and high resistivity materials.
- Analyze the properties of dielectric and high resistivity materials
- Understand about concept of polarization and dipolar polarization
- Apply the materials where it is applicable

UNIT-III Solid Insulating Materials

Introduction – characteristics of a good electrical insulating materials – classification of insulating materials – electrical, thermal, chemical and mechanical properties of solid insulating materials - Asbestos, Bakelite, rubber, plastics, thermo plastics. Resins, polystyrene, PVC, porcelain, glass, cotton and paper.

Learning outcomes:

At the end of the unit, students will be able to:

- Understand about various characteristics of solid insulating materials
- Understand the classification of solid insulating materials.
- Analyze the properties of solid insulating materials
- Apply the materials where it is applicable

UNIT-IV Liquid & Gas Insulating Materials

Liquid insulating materials – Mineral oils, synthetic liquids, fluorinated liquids – Electrical, thermal and chemical properties – transformer oil – properties – effect of moisture on insulation properties Gaseous insulators – classification based on dielectric strength – dielectric loss, chemical stability properties and their applications.

Unit Outcomes:

At the end of the unit, the student will be able to

- Understand the classification of liquid insulating materials.
- Analyze the properties of liquid insulating materials
- Apply the materials where it is applicable
- Understand about properties and classification of gaseous insulators

UNIT-V Domestic Wiring

Wiring materials and accessories – Types of wiring – Types of Switches - Specification of Wiring – Stair case wiring - Fluorescent lamp wiring- Godown wiring – Basics of Earthing – single phase wiring layout for a residential building.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand about wiring materials and accessories
- Understand about earthing and wiring layout of domestic buildings
- Design and develop Residential wiring
- Know about godown wiring

Course Outcomes:

After completing the course, the student should be able to:

• Understand the classification of materials, domestic wiring materials and earthing.

- Analyze the properties of different electrical materials
- Apply where the materials are applicable based on properties of materials
- Design and develop Residential wiring, godown wiring and earthing.

Text Books:

- 1. G.K. Mithal, "Electrical Engineering Materials", Khanna publishers, 2nd edition, 1991.
- 2. R.K. Rajput, A course in "Electrical Engineering Materials", Laxmi publications, 2009.

Reference Books:

- 1. C.S. Indulkar and S. Thiruvengadam, "An Introduction to Electrical Engineering Materials" S Chand & Company, 2008.
- 2. Technical Teachers Training Institute, "Electrical engineering Materials", 1st Edition, Madras, McGraw Hill Education, 2004.
- 3. by S.P. Seth, "A course in Electrical Engineering Materials Physics Properties & Applications", Dhanapat Rai & Sons Publications, 2018.

B.Tech (ECE)-III-I

L T P

3 0 0 3

 \mathbf{C}

(19A03506a) INTRODUCTION TO HYBRID AND ELECTRIC VEHICLES OPEN ELECTIVE-I

Course Objectives:

- Provide good foundation on hybrid and electrical vehicles.
- To address the underlying concepts and methods behind power transmission in hybrid and electrical vehicles.
- Familiarize energy storage systems for electrical and hybrid transportation.
- To design and develop basic schemes of electric vehicles and hybrid electric vehicles.

UNIT I: Electric Vehicle Propulsion and Energy Sources

Introduction to electric vehicles, vehicle mechanics - kinetics and dynamics, roadway fundamentals propulsion system design - force velocity characteristics, calculation of tractive power and energy required, electric vehicle power source - battery capacity, state of charge and discharge, specific energy, specific power, Ragone plot. battery modeling - run time battery model, first principle model, battery management system- soc measurement, battery cell balancing. Traction batteries - nickel metal hydride battery, Li-Ion, Lipolymer battery.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Summaries the concepts of electrical vehicle propulsion and energy sources. (12)
- Identify the types of power sources for electrical vehicles.(13)
- Demonstrate the design considerations for propulsion system. (12)
- Solve the problems on tractive power and energy required. (13)

UNIT II: Electric Vehicle Power Plant And Drives

Introduction electric vehicle power plants. Induction machines, permanent magnet machines, switch reluctance machines. Power electronic converters-DC/DC converters - buck boost converter, isolated DC/DC converter. Two quadrant chopper and switching modes. AC drives-PWM, current control method. Switch reluctance machine drives - voltage control, current control.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Choose a suitable drive scheme for developing an electric vehicles depending on resources.(11)
- List the various power electronic converters. (11)

- Describe the working principle dc/dc converters and buck boost convertor. (12)
- Explain about ac drives. (12)

UNIT III: Hybrid And Electric Drive Trains

Introduction hybrid electric vehicles, history and social importance, impact of modern drive trains in energy supplies. Hybrid traction and electric traction. Hybrid and electric drive train topologies. Power flow control and energy efficiency analysis, configuration and control of DC motor drives and induction motor drives, permanent magnet motor drives, switch reluctance motor drives, drive system efficiency.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Identify the social importance of hybrid vehicles. (13)
- Discus impact of modern drive trains in energy supplies. (16)
- Compare hybrid and electric drive trains.(12)
- Analyze the power flow control and energy efficiency. (l6)

UNIT IV: Electric and Hybrid Vehicles - Case Studies

Parallel hybrid, series hybrid -charge sustaining, charge depleting. Hybrid vehicle case study – Toyota Prius, Honda Insight, Chevrolet Volt. 42 V system for traction applications. Lightly hybridized vehicles and low voltage systems. Electric vehicle case study - GM EV1, Nissan Leaf, Mitsubishi Miev. Hybrid electric heavy duty vehicles, fuel cell heavy duty vehicles.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- List the various electric and hybrid vehicles in the present market. (11)
- Discus lightly hybridized vehicle and low voltage systems.(16)
- Explain about hybrid electric heavy duty vehicles and fuel cell heavy duty vehicles. (12)

UNIT V: Electric And Hybrid Vehicle Design:

Introduction to hybrid vehicle design. Matching the electric machine and the internal combustion engine. Sizing of propulsion motor, power electronics, drive system. Selection of energy storage technology, communications, supporting subsystem. Energy management strategies in hybrid and electric vehicles - energy management strategies- classification, comparison, implementation.

Learning Outcomes:

After successful completion of this unit, the students will be able to

- Illustrate matching the electric machine and the internal combustion engine. (12)
- Select the energy storage technology. (13)
- Select the size of propulsion motor. (13)
- Design and develop basic schemes of electric and hybrid electric vehicles. (13)

Course outcomes:

After learning the course the students will be able to:

- Explain the working of hybrid and electric vehicles. (12)
- Choose a suitable drive scheme for developing an hybrid and electric vehicles depending on resources. (13)
- Develop the electric propulsion unit and its control for application of electric vehicles.(13)
- Choose proper energy storage systems for vehicle applications. (13)
- Design and develop basic schemes of electric vehicles and hybrid electric vehicles.(13)

Text Books:

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", 2nd edition, CRC Press, 2003.
- 2. <u>Amir Khajepour, M. Saber Fallah, Avesta Goodarzi,</u> "Electric and Hybrid Vehicles: Technologies, Modeling and Control A Mechatronic Approach", illustrated edition, John Wiley & Sons, 2014.
- 3. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.

References:

- 1. James Larminie, John Lowry, "Electric Vehicle Technology", Explained, Wiley, 2003.
- 2. John G. Hayes, <u>G. Abas Goodarzi</u>, "Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles", 1st edition, Wiley-Blackwell, 2018.

B.Tech (ECE) – III-I

L T P C

3 0 0 3

(19A03506b) RAPID PROTOTYPING OPEN ELECTIVE-I

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

UNIT – I 10 Hours

Introduction: Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP. **RP Software:** Need for RP software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, SolidView, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain prototyping process. (12)
- Classify different rapid prototyping processes. (12)
- Summarize rp software's and represent a 3d model in stl format, other rp data formats. (12)

UNIT – II 8 Hours

Solid and Liquid Based RP Systems: Stereolithography (SLA): Principle, Process, Materials, Advantages, Limitations and Applications. Solid Ground Curing (SGC): Principle, Process, Materials, Advantages, Limitations, Applications.

Fusion Deposition Modeling (FDM): Principle, Process, Materials, Advantages, Limitations, Applications. **Laminated Object Manufacturing (LOM):** Principle, Process, Materials, Advantages, Limitations, Applications.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the principles, advantages, limitations and applications of Solid and Liquid based AM systems. (L2)
- Identify the materials for Solid and Liquid based AM systems. (L2)

UNIT – III 8 Hours

Powder Based RP Systems: Principle and Process of Selective Laser Sintering (SLS), Advantages, Limitations and Applications of SLS, Principle and Process of Laser Engineered Net Shaping (LENS), Advantages, Limitations and Applications of LENS, Principle and Process of Electron Beam Melting (EBM), Advantages, Limitations and Applications of EBM. **Other RP Systems:** Three Dimensional Printing (3DP): Principle, Process, Advantages, Limitations and Applications. Ballastic Particle Manufacturing (BPM): Principle, Process, Advantages, Limitations, Applications. Shape Deposition Manufacturing (SDM): Principle, Process, Advantages, Limitations, Applications.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the principles, advantages, limitations and applications of powder based AM systems. (L2)
- Understand the principles, advantages, limitations and applications of other Additive Manufacturing Systems such as 3D Printing, Ballistic Particle Manufacturing and Shape Deposition Modeling. (L2)

UNIT – IV 8 Hours

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify Rapid Tooling methods. (L2)
- Explain the concepts of reverse engineering and scanning tools. (L2)

UNIT – V 8 Hours

Errors in RP Processes: Pre-processing, processing, post-processing errors, Part building errors in SLA, SLS, etc.

RP Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Learning Outcomes:

At the end of the unit, the student will be able to

- Identify various Pre Processing, Processing and Post Processing errors in RP processes. (L2)
- Apply of RP in engineering design analysis and medical applications. (L3)

Course Outcomes:

At the end of the course, the student will be able to

- Use techniques for processing of CAD models for rapid prototyping. (L3)
- Understand and apply fundamentals of rapid prototyping techniques. ((L3)
- Use appropriate tooling for rapid prototyping process. (L3)
- Use rapid prototyping techniques for reverse engineering. (L3)
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes. (L3)

Text Books:

- 1. Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 2nd edition, World Scientific Publishers, 2003.
- 2. Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 1st Edition, Springer, 2010.
- 3. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley & Sons, 2006.

Reference Books:

- 1. Liou W. Liou, Frank W., Liou, "Rapid Prototyping and Engineering Applications: A Tool Box for Prototype Development", CRC Press, 2007.
- 2. Pham D.T. and Dimov S.S., "Rapid Manufacturing; The Technologies and Application of RPT and Rapid tooling", Springer, London 2001.
- 3. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC Press, 2005.

B.Tech (ECE)-III-I

L T P C

3 0 0 3

(19A05506a) FREE AND OPEN SOURCES SYSTEMS (Open Elective –I)

(Common to CSE & IT)

Course Objectives:

This course is designed to:

- Understand the context and operation of free and open source software (FOSS) communities and associated software projects.
- Motivate the students to contribute in FOSS projects
- Familiarize with programming languages like Python, Perl, Ruby
- Elucidate the important FOSS tools and techniques

UNIT I PHILOSOPHY

Notion of Community--Guidelines for effectively working with FOSS community--, Benefits of Community based Software Development --Requirements for being open, free software, open source software –Four degrees of freedom - FOSS Licensing Models - FOSS Licenses – GPL- AGPL-LGPL - FDL - Implications – FOSS examples.

Learning outcomes:

At the end of the unit, students will be able to:

- Analyze the benefits of Community based Software Development. (L4)
- Explain the degrees of Freedom. (L2)

UNIT II LINUX

Linux Installation and Hardware Configuration – Boot Process-The Linux Loader (LILO) - The Grand Unified Bootloader (GRUB) - Dual-Booting Linux and other Operating System - Boot-Time Kernel Options- X Windows System Configuration-System Administration – Backup and Restore Procedures- Strategies for keeping a Secure Server.

Learning outcomes:

At the end of the unit, students will be able to:

- Demonstrate Linux Installation and hardware configuration. (L2)
- Compare Linux and Windows System Configurations. (L4)

UNIT III PROGRAMMING LANGUAGES

Programming using languages like Python, Perl, Ruby

Learning outcomes:

At the end of the unit, students will be able to:

- Explain the syntax of programming Languages Python, Perl and Ruby. (L2)
- Develop applications in the Open source programming Languages. (L6)

UNIT IV PROGRAMMING TOOLS AND TECHNIQUES

Usage of design Tools like Argo UML or equivalent, Version Control Systems like Git or equivalent, – Bug Tracking Systems- Package Management Systems

Learning outcomes:

At the end of the unit, students will be able to:

- List various programming tools and explain their uses (L1)
- Make use of the various tools while building applications (L3)

UNIT V FOSS CASE STUDIES

Open Source Software Development - Case Study - Libre office -Samba

Learning outcomes:

At the end of the unit, students will be able to:

- Elaborate the open Source Software Development(L6)
- Compare Libre office with its proprietary equivalent (L5)

Course Outcomes:

Upon completion of the course, the students should be able to:

- Demonstrate Installation and running of open-source operating systems.(L2)
- Justify the importance of Free and Open Source Software projects. (L5)
- Build and adapt one or more Free and Open Source Software packages. (L6)
- Utilize a version control system. (L3)
- Develop software to and interact with Free and Open Source Software development projects.(L3)

TEXT BOOK:

Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.

REFERENCES:

- 1. Philosophy of GNU URL: http://www.gnu.org/philosophy/.
- $2.\ Linux\ Administration\ URL:\ http://www.tldp.org/LDP/lame/LAME/linux-admin-made-easy/.$
- 3. The Python Tutorial available at http://docs.python.org/2/tutorial/.

- 4. Perl Programming book at http://www.perl.org/books/beginning-perl/.
- 5. Ruby programming book at http://ruby-doc.com/docs/ProgrammingRuby/.
- 6. Version control system URL: http://git-scm.com/.
- 7. Samba: URL: http://www.samba.org/.
- 8. Libre office: http://www.libreoffice.org/.

B.Tech (ECE)– III-I

L T P C

3 0 0 3

(19A05506b) COMPUTER GRAPHICS and MULTIMEDIA ANIMATION (Open Elective –I) (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Introduce the use of the components of a graphics system and become familiar with the building approach of graphics system components and related algorithms.
- Understand the basic principles of 3- 3-dimensional computer graphics.
- Provide insites on how to scan, convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.
- Provide an understanding of mapping from world coordinates to device coordinates, clipping, and projections.
- Discuss the application of computer graphics concepts in the development of computer games, information visualization, and business applications.

UNIT I OVERVIEW OF COMPUTER GRAPHICS SYSTEM

OverView of Computer Graphics System – Video display devices – Raster Scan and random scan system – Input devices – Hard copy devices.

Learning outcomes:

At the end of the unit, students will be able to:

- Explain the overview of computer graphics with visualization. (L2)
- Classify the Input devices. (L2)
- Distinguish raster scan and random scan systems. (L4)

UNIT II OUTPUT PRIMITIVES AND ATTRIBUTES

Drawing line, circle and ellipse generating algorithms – Scan line algorithm – Character Generation – attributes of lines, curves and characters – Antialiasing.

Learning outcomes:

At the end of the unit, students will be able to:

- Analyse output primitives and attributes. (L4)
- Design algorithms based on output. (L6)

UNIT III TWO DIMENSIONAL GRAPHICS TRANSFORMATIONS AND VIEWING:

Two-dimensional Geometric Transformations – Windowing and Clipping – Clipping of lines and clipping of polygons.

Learning outcomes:

At the end of the unit, students will be able to:

- Create two-dimensional graphics. (L6)
- Examine the clipping of polygon. (L4)
- Compare different forms of variations. (L2)

UNIT IV THREE DIMENSIONAL GRAPHICS AND VIEWING

Three-dimensional concepts – Object representations- Polygon table, Quadric surfaces, Splines, Bezier curves and surfaces – Geometric and Modelling transformations – Viewing - Parallel and perspective projections.

Learning outcomes:

At the end of the unit, students will be able to:

- Create three-dimensional graphics. (L6)
- Explain the Quadric surfaces and polygon table. (L2)
- Define modelling transformations. (L1)

UNIT V REMOVAL OF HIDDEN SURFACES

Visible Surface Detection Methods – Computer Animation.

Learning outcomes:

At the end of the unit, students will be able to:

- List the different types of detection methods. (L1)
- Compare various computer animations. (L2)

Course outcomes:

Upon completion of the course, the students should be able to:

- Explain the basic concepts used in computer graphics. (L2)
- Inspect various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping. (L4)
- Assess the importance of viewing and projections. (L5)
- Define the fundamentals of animation, virtual reality and its related technologies. (L3)
- Analyze the typical graphics pipeline (L4)

TEXTBOOK

1. Hearn, D. and Pauline Baker, M., Computer Graphics (C-Version), 2nd Edition, Pearson Education, 2002.

REFERENCES

- 1. Neuman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, Mc Graw Hill Book Co., 1979.
- 2. Roger, D.F., Procedural elements for Computer Graphics, Mc Graw Hill Book Co., 1985.
- 3. Asthana, R.G.S and Sinha, N.K., Computer Graphics, New Age Int. Pub. (P) Ltd., 1996.
- 4. Floey, J.D., Van Dam, A, Feiner, S.K. and Hughes, J.F, Computer Graphics, Pearson Education, 2001.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C

3 0 0 3

(19A27506a) BREWING TECHNOLOGY OPEN ELECTIVE - I

PREAMBLE

This course covers the origin of brewing and ingredients used, methods and equipment used and innovations in this field.

Coues Objectives

- To understand the Beer manufacturing, ingredients and their roles.
- To understand overall view of a brewing industry

UNIT – I

Introduction of brewing, history of brewing; Raw materials: barley, hops, water, yeast; Adjuncts for beer production: Maize, rice, millet, wheat, sugar etc. Malt production, role of enzymes for malting; Barley storage, steeping, germination, kilning, cooling, storage;

Learning Outcomes:

At the end of the unit, the student should be able to:

- Introduction of brewing, history of brewing
- Raw materials like barley, hops, water, yeast
- Adjuncts for beer production: Maize, rice, millet, wheat, sugar etc
- Malt production, role of enzymes for malting
- Barley storage, steeping, germination, kilning, cooling, storage

UNIT – II

Malt from other cereals, caramel malt, roasted malt, smoked malt, malt extract; Malt quality evaluation, Wort production, malt milling, Mashing, Mashing vessels; Wort boiling, clarification, cooling and aeration Enzyme properties, starch degradation, b-glucan degradation; Conversion of fatty matter, Biological acidification

Learning Outcomes:

At the end of the unit, the student should be able to:

• Malt from other cereals, caramel malt, roasted malt, smoked malt, malt extract

- Malt quality evaluation, Wort production, malt milling, Mashing, Mashing vessels
- Wort boiling, clarification, cooling and aeration Enzyme properties, starch degradation, b-glucan degradation
- Conversion of fatty matter, Biological acidification

UNIT - III

Beer production methods, fermentation technology, changes during fermentation; Filtration procedure and equipment, beer stabilization conditions and durations, beer carbonation process; Packaging equipment and packaging materials, storage conditions and distribution process

Learning Outcomes:

At the end of the unit, the student should be able to:

- Beer production methods, fermentation technology, changes during fermentation
- Filtration procedure and equipment, beer stabilization conditions and durations, beer carbonation process
- Packaging equipment and packaging materials, storage conditions and distribution process

UNIT - IV

Brewing Equipment. Grain mill, kettles, siphons, carboys, fermentation equipment, wort chillers, pumps beer bottles, cans, labels, bottle caps, sanitation equipments Preventive Production of beer against technology, ling phenomenon of beer, possible measures against staling reactions, oxidation

Learning Outcomes:

At the end of the unit, the student should be able to:

- Brewing Equipments like Grain mill, kettles, siphons, carboys, fermentation equipment, wort chillers
- pumps beer bottles, cans, labels, bottle caps, sanitation equipments
- Preventive Production of beer against technology, ling phenomenon of beer, possible measures against staling reactions, oxidation

UNIT - V

Recent advances: Immobilized Cell Technology in Beer Production, immobilized yeast cell technology Energy management in the brewery and maltings; waste water treatment Automation and plant planning

Learning Outcomes:

At the end of the unit, the student should be able to:

- Immobilized Cell Technology in Beer Production, immobilized yeast cell technology
- Energy management in the brewery and maltings
- waste water treatment Automation and plant planning

Course Outcomes:

By the end of this course, students will attain the:

- Knowledge of beer making, chemistry of ingredients used for brewing,
- Knowledge on brewing industry, Unit operations and equipments involved.

TEXT BOOKS

- 1. Brewing: "Science and Practice, Brookes and Roger Stevens", Dennis E. Briggs, Chris A. Boulton, Peter A. 2004, Woodhead publishing limited.
- 2. Die Deutsche "Bibliothek Technology: "Brewing and Malting", Wolfgang Kunze. 2010, Bibliographic information published

REFERENCES

- 1. "Handbook of Brewing": Process, Technology, Markets, Hans Michael Eblinger. 2009, Wiley-VCH Verlag GmbH & Co.
- 2. Brewing: "New Technologies", Charles W. Bamforth. 2006, Woodhead Pub.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I L T P C

3 0 0 3

(19A27506b) COMPUTER APPLICATIONS IN FOOD INDUSTRY (OPEN ELECTIVE – I)

PREAMBLE

This course covers all facets of computerization and various software's used and their usage.

Course Objectives

- Able to know about "The necessity of Software & their applications in Food Industries"
- Able to Implement the Programs in 'C' to perform various operations that are related to

Food Industries.

UNIT – I

Computerization, Importance of Computerization in food industry and IT applications in food industries. Computer operating environments and information system for various types of food industries. Introduction to Bar charts and Pie charts & the procedure to develop bar charts and pie charts on given Data.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Computerization, Importance of Computerization in food industry and IT applications in food industries.
- Computer operating environments and information system for various types of food industries.
- Introduction to Barcharts and Piecharts & the procedure to develop barcharts and piecharts on given Data.

UNIT - II

Introduction to Software & Programming Languages, Properties, Differences of an Algorithm and Flowcharts, Advantages and disadvantages of Flowcharts & Algorithms. Introduction, Fundamentals & advantages of 'C'. Steps in learning 'C' (Character set, Identifiers, Keywords) Steps in learning 'C' (Data types, Constants, Variables, Escape sequences).

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Introduction to Software & Programming Languages, Properties, Differences of an Algorithm and Flowcharts
- Advantages and disadvantages of Flowcharts & Algorithms. Introduction, Fundamentals & advantages of 'C'.
- Steps in learning 'C' (Character set, Identifiers, Keywords)
- Steps in learning 'C' (Data types, Constants, Variables, Escape sequences).

UNIT - III

Steps in learning 'C' (Operators, Statements) Steps in learning 'C' (Header Files, Input & Output functions: Formatted I/O functions, Unformatted I/O functions). Basic Structure of a simple 'C' program. Decision Making/Control Statements. Branching, Concept of Looping & Looping statements.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Steps in learning 'C' (Operators, Statements)
- Steps in learning 'C' (Header Files, Input & Output functions: Formatted I/O functions, Unformatted I/O functions).
- Basic Structure of a simple 'C' program. Decision Making/Control Statements.
- Branching, Concept of Looping & Looping statements.

UNIT - IV

Concept of Functions (Defining a function & Function Prototypes, Types of functions: Library functions & User defined functions. Concept of various types of User Defined Functions (i.e., About 4 types). Concept of Arrays & Types of Arrays (Single, Double and Multi-Dimensional Arrays). Concept of a String Library Functions.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Concept of Functions (Defining a function & Function Prototypes, Types of functions: Library functions & User defined functions.
- Concept of various types of User Defined Functions (i.e., About 4 types).
- Concept of Arrays & Types of Arrays (Single, Double and Multi-Dimensional Arrays).
- Concept of a String Library Functions.

UNIT - V

Concept of Pointers, Structures & Unions. Introduction to Data Structures, Types of Data Structures (Primary & Secondary Data Structures) Concept of Linked Lists, Types of Linked Lists & Basic operations on linked Lists. Concept of Stacks & Operations on Stacks (PUSH &

POP Operations) Concept of Queues and types of Queues Operations on a Queue (ENQUEUE & DEQUEUE Operations)

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Concept of Pointers, Structures & Unions. Introduction to Data Structures, Types of Data Structures (Primary & Secondary Data Structures)
- Concept of Linked Lists, Types of Linked Lists & Basic operations on linked Lists.
- Concept of Stacks & Operations on Stacks (PUSH & POP Operations)
- Concept of Queues and types of Queues Operations on a Queue (ENQUEUE & Dequeue Operations)

Course Outcomes

By the end of the course, the students will be able to

- know about the various steps which are related to computer and Software and their application in Food Industries
- know about the various steps which are necessary to implement the programs in 'C'

TEXT BOOKS

- 1. Yeswanth Kanethkar, Let us 'C'
- 2. Balaguruswamy E., "Computer Programming in 'C"
- 3. Mark Allen Waise, "Data Structures"

REFERENCES

- 1. M. S Excel 2000, Microsoft Corporation
- 2. M. S. Office Microsoft Corporation
- 3. Verton M.V. "Computer concepts for Agri Business", AVI Pub. Corp., West Port, USA.

B.Tech (ECE) -III-I

L T P C

3 0 0 3

(19A54506a) OPTIMIZATION TECHNIQUES (OPEN ELECTIVE-I)

Course Objectives:

The student will be able to learn:

- The basic concepts of Optimization
- The emphasis of this course is on different classical Optimization techniques linear programming and simplex algorithms.
- About optimality of balanced transportation Problems
- About Constrained and unconstrained nonlinear programming.
- About principle of optimality and dynamic programming

UNIT – I Introduction and Classical Optimization Techniques:

Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems. Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers – multivariable Optimization with inequality constraints – Kuhn – Tucker conditions – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know how to formulate statement of optimization problem with or without constraints
- To know about classification of single and multivariable optimization problems
- To know about necessary and sufficient conditions in defining the optimization problems
- To understand how to formulate Kuhn-Tucker conditions and to solve numerical problems

UNIT - II Linear Programming

Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know about formulation of LPP
- To know about formulations of GPP
- To understand various theorems in solving simultaneous equations
- To understand about necessity of Simplex method and to solve numerical problems

UNIT – III Nonlinear Programming – One Dimensional Minimization methods

Introduction, Unimodal function, Elimination methods- Unrestricted Search, Exhaustive Search, Dichotomous Search, Fibonacci Method, Golden Section Method and their comparison; Interpolation methods - Quadratic Interpolation Method, Cubic Interpolation Method and Direct Root Methods - Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know about NLP in one dimensional optimization problems
- To understand about various search methods
- To learn about various interpolation methods
- To distinguish and compare the various elimination methods with numerical examples

UNIT – IV Unconstrained & Constrained Nonlinear Programming

Unconstrained Optimization Techniques: Introduction- Classification of Unconstrained Minimization Methods, General Approach, Rate of Convergence, Scaling of Design Variables; Direct Search methods- Random Search Methods, Grid Search Method, Pattern Directions, Powell's Method and Simplex Method

Constrained Optimization Techniques: Introduction, Characteristics of a Constrained Problem, Direct Search Methods - Random Search Methods, Basic Approach in the Methods of Feasible Directions, Rosen's Gradient Projection Method, Generalized Reduced Gradient Method and Sequential Quadratic Programming.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To distinguish between unconstrained and constrained optimization problems
- To learn about direct search methods in unconstrained NLP problems and comparison
- To understand about direct search methods in constrained NLP problems and comparison
- To do exercises for solving numerical examples of various methods

UNIT - V Dynamic Programming

Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution – examples illustrating the tabular method of solution – Numerical examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- To know what is DP problem?
- To know about computational procedure in solving DPP
- To know Calculus and Tabular methods of solving with numerical examples of various methods

Course Outcomes:

The student gets thorough knowledge on:

- Basic methods, principles in optimization
- Formulation of optimization models, solution methods in optimization
- Finding initial basic feasible solutions.
- Methods of linear and non-linear (constrained and unconstrained) programming.
- Applications to engineering problems.

TEXT BOOKS:

- 1. S. S. Rao, "Engineering optimization": Theory and practice 3rd edition, New Age International (P) Limited, 1998.
- 2. H.S. Kasana & K.D. Kumar, "Introductory Operations Research Springer (India)", 2004.

REFERENCES:

- 1. R Fletcher, "Practical Methods of Optimization", 2nd Edition, Wiley Publishers, 2000.
- 2. Jorge Nocedal and Wright S, "Numerical Optimization Springer", 1st Edition, 1999.
- 3. by K.V. Mital and C. Mohan, "Optimization Methods in Operations Research and systems Analysis" 3rd Edition, New Age International (P) Limited, 1996.
- 4. by S.D. Sharma, "Operations Research", Kedar Nath, 2012.
- 5. by H.A. Taha, "Operations Research", 9th Edition, An Introduction Pearson, 2010.
- 6. G. Hadley, "Linear Programming", Narosa, 2002.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-I L T P C

3 0 0 3

(19A52506a) TECHNICAL COMMUNICATION AND PRESENTATION SKILLS (OPEN ELECTIVE)

Course Objectives:

- To develop awareness in students of the relevance and importance of technical communication and presentation skills.
- To prepare the students for placements
- To sensitize the students to the appropriate use of non-verbal communication
- To train students to use language appropriately for presentations and interviews
- To enhance the documentation skills of the students with emphasis on formal and informal writing

SYLLABUS

UNIT -1:

Basics of Technical Communication – Introduction – Objectives & Characteristics of Technical Communication – Importance and need for Technical communication - LSRW Skills – Barriers to effective communication

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of LSRW skills
- Identify and overcome the barriers to effective communication
- Realize the need and importance of technical communication

UNIT-II

Informal and Formal Conversation - Verbal and Non-verbal communication –Kinesics, Proxemics, Chronemics, Haptics, Paralanguage

Learning Outcomes:

At the end of the module, the learners will be able to

- State the difference between formal and informal conversation.
- Apply the knowledge of the difference between the verbal and non-verbal communication
- Evaluate the different aspects of non-verbal communication.

UNIT-III

Written communication – Differences between spoken and written communication – Features of effective writing –Advantages and disadvantages of spoken and written communication- Art of condensation- summarizing and paraphrasing

Learning Outcomes:

At the end of the module, the learners will be able to

- Know the difference between written and spoken communication
- Apply the awareness of features of effective writing.
- Implement the understanding of summarizing and paraphrasing.

UNIT-IV

Presentation Skills – Nature and importance of oral presentation – Defining the purpose – Analyzing the audience - Planning and preparing the presentation, organizing and rehearsing the presentation –Individual and group presentations - Handling stage fright

Learning Outcomes:

At the end of the module, the learners will be able to

- State the importance of presentation skills in corporate climate.
- Analyze the demography of the audience.
- Plan, prepare and present individual and group presentations.

UNIT-V

Interview Skills – The Interview process –Characteristics of the job interview – Pre-interview preparation techniques – Projecting the positive image – Answering Strategies

Learning Outcomes:

At the end of the module, the learners will be able to

- Identify the characteristics of the job interview.
- Understand the process of Interviews.
- Develop a positive image using strategies in answering FAQs in interviews

Course Outcomes

- Understand the importance of effective technical communication
- Apply the knowledge of basic skills to become good orators
- Analyze non-verbal language suitable to different situations in professional life
- Evaluate different kinds of methods used for effective presentations
- Create trust among people and develop employability skills

TEXT BOOKS:

- 1. Ashrif Rizvi, "Effective Technical Communication", TataMcGrahill, 2011
- 2. Meenakshi Raman &Sangeeta Sharma, "Technical Communication", 3rd Edition, O U Press 2015

REFERENCES:

- 1. Pushpalatha & Sanjay Kumar, "Communication Skills", Oxford Univsesity Press
- 2.Barron's/Books on TOEFL/GRE/GMAT/CAT/IELTS DELTA/Cambridge University Press.2012.
- 3. Butterfield Jeff, "Soft Skills for Everyone", Cengage Publications, 2011.
- 4. Universities Press (India) Pvt Ltd., "Management Shapers Series", Himayatnagar, Hyderabad 2008.
- 5. John Hughes & Andrew Mallett, "Successful Presentations" Oxford.
- 6.Edgar Thorpe and Showick Thorpe, "Winning at Interviews" Pearson
- 7. Munish Bhargava, "Winning Resumes and Successful Interviews", McGraw Hill

B.Tech (ECE) – III-I

L T P C

3 0 0 3

(19A51506a) CHEMISTRY OF ENERGY MATERIALS

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

UNIT-1: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

Learning Outcomes:

At the end of this unit, the students will be able to

- Solve the problems based on electrode potential (L3)
- Describe the Galvanic Cell (L2)
- Differentiate between Lead acid and Lithium ion batteries (L2)
- Illustrate the electrical double layer (L2)

UNIT-2: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

Learning Outcomes:

At the end of this unit, the students will be able to

- Describe the working Principle of Fuel cell (L2)
- Explain the efficiency of the fuel cell (L2)
- Discuss about the Basic design of fuel cells (L3)

• Classify the fuel cell (L2)

UNIT-3: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

Learning Outcomes:

At the end of this unit, the students will be able to

- Differentiate Chemical and Physical methods of hydrogen storage (L2)
- Discuss the metal organic frame work (L3)
- Illustrate the carbon and metal oxide porous structures (L2)
- Describe the liquification methods (L2)

UNIT-4:Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply the photo voltaic technology (L3)
- Demonstrate about solar energy and prospects (L2)
- Illustrate the Solar cells (L2)
- Discuss about concentrated solar power (L3)

UNIT-5: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

Learning Outcomes:

At the end of this unit, the students will be able to

- Differentiate between Photo and Photo electrochemical Conversions (L2)
- Illustrate the photochemical cells (L2)
- Identify the applications of photochemical reactions (L3)
- Interpret advantages of photoelectron catalytic conversion (L2)

Course Outcome:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

References:

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C

0 0 3 1.5

(19A04501P)INTEGRATED CIRCUITS AND APPLICATIONS LAB

LIST OF EXPERIMENTS

Course Objectives:

- To familiarize different Analog ICs.
- To implement linear and nonlinear application circuits by Op amp.
- To realize active filters using Op amp.
- To design of various multi-vibrator circuits using 555 timer application
- To design and Understand the working of mixed signal circuits like Analog to Digital Convertors, Digital to analog Convertors and Phase Locked Loop.
- To understand the working of a few application specific analog ICs and to design circuits based on these ICs.

Conduct any 12 experiments from the following list. Out of them any 4 experiments may be conducted using software tools.

Note: All the Hardware experiments may be performed using ICs 741, TL082, 555,565

Interpretation of data sheets (741, TL082, 555, 565)

1. Applications of Op-amp

Design and test the performance of the following circuits using Op-amp IC741/TL082

- a. Inverting amplifier
- b. Non-inverting amplifier
- c. Voltage follower
- d. Summer
- 2. Design and test the performance of practical differentiator and integrator circuits for various time constants. Plot the graphs.
- 3. Comparator circuits

To study zero crossing detectors, window detector and Schmitt trigger using Op-Amp.

4. Signal converters

Construct suitable circuits for Voltage to Current and Current to Voltage converters using Op-Amp.

5. Active filters using Op-amp

Design and test the performance of 2nd and 3rd order Butterworth LPF, HPF.

6. Active filters using Op-amp

Design and test the performance of 2nd and 3rd order Butterworth BPF and BSF.

- 7. Construct and verify the performance of
 - a. Logarithmic and antilog amplifiers b. Instrumentation amplifier
- 8. Precision rectifiers

Conduct experiments on half wave and full wave precision rectifiers and draw the

- output waveforms.
- 9. Design the monostable multivibrator circuit and verify their performance practically using Op-Amp and IC 555.
- 10. Design the astable multivibrator circuit and verify their performance practically using Op-Amp and IC 555.
- 11. Data converters

Construct and study performance of

- a. DAC circuits R-2R and ladder type.
- b. Successive approximation type ADC.
- 12. To study performance of PLL IC565
- 13. Design a DC power supply using 78XX/79XX andLM723, verify the same practically.

Equipment required for

Laboratory Software:

- i. Multisim/ Pspice/Equivalent Licensed simulation software tool
- ii. Computer Systems with required specifications

Hardware:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components
- 10. Bread Boards
- 11. Connecting Wires
- 12.CRO Probes

Course Outcomes:

- Understand the working of Op amp ICs & Application specific analog ICs.
- Analyze operational amplifier based circuits for linear and non-linear applications.
- Design Operational amplifiers for linear and nonlinear application, Multivibrator circuits using 555 & application specific ICs.
- Simulate all linear and nonlinear application based Op amp Circuits and circuits based on application specific ICs.
- Compare theoretical, practical & simulated results in integrated circuits.

B.Tech (ECE)- III-I Sem

 $L \quad T \quad P \quad C$

0 0 3 1.5

(19A52601P)ENGLISH LANGUAGE SKILLS LAB

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- Students will cultivate the habit of reading passages from the computer monitor. Thus providing them with the required facility to face computer based competitive exams like GRE, TOEFL, and GMAT etc.
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

UNIT-I

- 1. Phonetics for listening comprehension of various accents 2
- 2. Formal Presentations using PPT slides without Graphic Elements
- 3. Paraphrasing

Learning Outcomes

At the end of the module, the learners will be able to

- Understand different accents spoken by native speakers of English
- Make formal structured presentations on general topics using PPT slides without graphical elements
- Paraphrase short academic texts using suitable strategies and conventions

UNIT- II

- 1. Debate 2 (Following Argument)
- 2. Listening to short speeches/ short stories for note-making and summarizing
- 3. E-mail Writing

Learning Outcomes

At the end of the module, the learners will be able to

- Participate in formal discussions and speak clearly on a specific topic using suitable discourse markers
- Make formal structured presentations on academic topics using ppt slides with relevant graphical elements
- Write formal emails in the standard format

UNIT-III

- 1. Listening for Discussions
- 2. Group Discussions
- 3. Writing Persuasive/argumentative essays on general topics

Learning Outcomes

At the end of the module, the learners will be able to

- Follow a discussion to identify the salient points
- Participate in group discussions using appropriate conventions and language strategies
- Produce logically coherent persuasive/argumentative essays

UNIT-IV

- 1. Reviewing film/ book
- 2. Group Discussions reaching consensus in Group Work
- 3. Resume Writing Cover Letter Applying for Internship

Learning Outcomes

At the end of the module, the learners will be able to

- Judge a film or book
- Express thoughts and ideas with acceptable accuracy and fluency with a view to reach consensus in group discussions
- Prepare a CV and write a cover letter to seek internship/job

UNIT-V

- 1. Writing Project Reports
- 2. Editing Short Texts
- 3. Answering FAQs in Interviews

Learning Outcomes

At the end of the module, the learners will be able to

- Collaborate with a partner to make effective presentations
- Understand the structure and produce an effective project report.
- Edit short texts according to different needs of the work place.

Course Outcomes

• Remember and understand the different aspects of the English language proficiency with emphasis on LSRW skills

- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.

SUGGESTED SOFTWARE:

- Walden Infotech English Language Communication Skills.
- iTell- Orell Digital Language Lab
- Digital Teacher
- LES(Learn English Select) by British council
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- DELTA's key to the Next Generation TOEFL Test: Advanced Skills Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- English Pronunciation in Use (Elementary, Intermediate, Advanced) CUP
- Cambridge Advanced Learners' English Dictionary with CD.

REFERENCE BOOKS:

The software consisting of the prescribed topics elaborated above should be procured and used.

- 1. Meenakshi Raman & Sangeeta Sharma, "Technical Communication" O U Press 2009.
- 2. Barron's Books on TOEFL/GRE/GMAT/CAT/IELTS /DELTA/Cambridge University Press.2012.
- 3. Butterfield Jeff, "Soft Skills for Everyone", Cengage Publications, 2011.
- 4. "Practice Psychometric Tests": How to familiarize yourself with genuine recruitment tests, 2012.
- 5. David A McMurrey& Joanne Buckely "Handbook for Technical Writing" CENGAGE Learning 2008.
- 6. "A Textbook of English Phonetics for Indian Students", 2nd Edition, T.Balasubramanyam. (Macmillan), 2012.
- 7. "A Handbook for English Laboratories", E. Suresh Kumar, P. Sreehari, Foundation Books, 2011

Note: Links provided by APSHE on LSRW, grammar and vocabulary

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

0 0 2 1

(19A04503P)DIGITAL COMMUNICATIONS LAB

Course Objectives

- To Develops skills for performance analysis of practical digital communication systems.
- To understand the fundamental concepts on TDM, Pulse modulations& digital modulation techniques.
- To evaluate the performance of PCM, DPCM and DM in a digital communication system.
- To learns how to use MATLAB software and hardware effectively and creatively to synthesis digital communication systems.

LIST OF EXPERIMENTS

Minimum of Twelve experiments to be conducted (any six from Part-A)

HARDWARE EXPERIMENTS (PART – A)

- 1. Generation of random data using linear feedback shift registers at a given data rate. Plot the random data.
- 2. Construct Time division multiplexing circuit to multiplex three users' data.
- 3. Verify the functionality of each block in Pulse code modulation system practically.
- 4. Find the processing gain in a Differential pulse code modulation circuit experimentally.
- 5. Verify the operation of Delta modulation and demodulation.
- 6. Design and verify modulated and demodulated circuit for Frequency shift keying.
- 7. Construct a modulated and demodulated circuit for Differential phase shift keying.
- 8. Design and verify working principle of QPSK modulation and demodulation with suitable setup.

SOFTWARE EXPERIMENTS (PART-B)

Modeling of Digital Communications using MATLAB

- 1. Study Sampling Theorem and verify the effect of under sampling and oversampling while retrieving the original signal.
- 2. Understand functioning of each block in Pulse code modulation circuit and verify through simulation.
- 3. Write a program on Differential pulse code modulation and demodulation.
- 4. Write a program on Frequency shift keying modulation schemes for given two carrier frequencies, determine the bit error probability.
- 5. Write a program and verify QPSK modulation and demodulation, determine the bit error probability.
- 6. Write a program and verify Differential phase shift keying modulation scheme is a non-coherent modulation scheme, determine the bit error probability is inferior to that

of QPSK.

EQUIPMENT REQUIRED FOR LABORATORIES:

RPS - 0-30V
 CROs - 0-20 MHz.
 Function Generators - 0-1 MHz
 RF Generators - 0-1000 MHz.

- 5. Multimeters
- 6. Required Electronic Components (Active and Passive) which include ICs as well.
- 7. Arbitrary Wave form generators/ PNS generators 2 Nos. (To generate digital data at required data rates)
- 8. Licensed MATLAB software with required toolboxes.

Course Outcomes

- Understand real time behavior of different digital modulation schemes and technically visualize spectra of different digital modulation schemes.
- Design and implement different modulation and demodulation techniques.
- Analyze digital modulation & demodulation techniques.
- Simulate all digital modulation and demodulation techniques in MATLAB.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-I Sem

L T P C

3 0 0 0

(19A99601) MANDATORY COURSE: RESEARCH METHODOLOGY

Course Objectives:

The objective of this course is

- To understand the basic concepts of research and research problem
- To make the students learn about various types of data collection and sampling design
- To enable them to know the method of statistical evaluation
- To make the students understand various testing tools in research
- To make the student learn how to write a research report
- To create awareness on ethical issues n research

Syllabus

UNIT- I

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – Research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of research and its process
- Explain various types of research
- Know the steps involved in research design
- Understand the different research approaches

UNIT-II

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design. Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation. Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of sampling and sampling design
- Explain various techniques in measurement and scaling

- Learn various methods of data collection
- Design survey questionnaires for different kinds of research
- Analyze the questionnaires

UNIT- III

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

Learning Outcomes:-

After completion of this unit student will

- Know the association of two variables
- Understand the importance of correlation and regression
- Compare and contrast correlation and regression
- Learn various types of correlation
- Apply the knowledge of C&R Analysis to get the results

UNIT-IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multivariate Analysis

Learning Outcomes:-

After completion of this unit student will

- Know the statistical inference
- Understand the hypothesis testing procedure
- Compare and contrast Parametric and Non-parametric Tests
- Understand the use of chi-square test in investigating the distribution of categorical variables
- Analyze the significance of variance and covariance

UNIT- V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Learning Outcomes:-

After completion of this unit student will

- Learn about report writing
- Understand how to write research paper

- Explain various techniques of interpretation
- Understand the importance of professional ethics in research
- Design a scientific paper to present in the conferences/seminars

Course Outcomes:

At the end of the course, students will be able to

- Understand basic concepts and its methodologies
- Demonstrate the knowledge of research processes
- Read. comprehend and explain research articles in their academic discipline
- Analyze various types of testing tools used in research
- Design a research paper without any ethical issues

TEXT BOOKS:

- 1. C.R.Kothari, "Research Methodology:Methods and Techniques",2nd edition, New Age International Publishers.
- 2. A Step by Step Guide for Beginners, "Research Methodology": Ranjit Kumar, Sage Publications

REFERENCES:

- 1. P.Narayana Reddy and G.V.R.K.Acharyulu, "Research Methodology and Statistical Tools", 1st Edition, Excel Books, New Delhi.
- 2. Donald R. "Business Research Methods", Cooper & Pamela S Schindler, 9th edition.
- 3. S C Gupta, "Fundamentals of Statistics", 7th edition Himalaya Publications

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C

3 0 0 3

(19A04601T)MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

- Tointroduce fundamental architectural concepts of microprocessors and microcontrollers.
- To impart knowledge on addressing modes and instruction set of 8086 and 8051.
- To introduce assembly language programming concepts.
- To explain memory and I/O interfacing with 8086 and 8051.
- To introduce 16 bit and 32 bit microcontrollers.

UNIT-I

Introduction to 8085 and 8086 Microprocessors: 8085 Microprocessor Architecture, Pin Diagram, Flag Register, Interrupts of 8085. Register Organisation of 8086, Architecture, Pin Diagram, Flag Register, Physical Memory concept, Memory addressing in 8086, Stack organization of 8086, Addressing Modes in 8086, Interrupt structure of 8086.

Learning Outcomes:-

After completion of this unit student will

- Summarize features of a microprocessor (L2)
- Explain about ISR and interrupt structure of 8086 (L2)
- Distinguish between Intel 8085& 8086 microprocessors (L5)

UNIT-II

8086 Microprocessor Instruction Set and Addressing Modes, Instruction Set of 8086, Assembly Language Programming, Simple programs, Assembler Directives, Procedures and Macros, String Instructions.

Learning Outcomes:-

After completion of this unit student will

- Understand instruction set of 8086 microprocessor (L1)
- Explain addressing modes of 8086 (L2)
- Develop assembly language programs for various problems (L2)

UNIT-III

Memory interacting with 8086 and Peripheral Devices, Interfacing SRAMs, DRAMs and EPROMs to 8086, Programmable Peripheral Interface 8255, Programmable Interval Timer 187 Page

8253, Programmable Interrupt Controller 8259, Programmable Communication Interface 8251 USART, DMA Controller 8257.

Learning Outcomes:-

After completion of this unit student will

- Demonstrate memory &I/O interfacing with 8086 (L2)
- Describe interfacing of 8086 with peripheral devices (L2)

UNIT-IV

Intel 8051 Microcontroller, Microprocessor vs Microcontroller, 8051 Microcontroller Architecture, Microcontroller 8051 pin diagram, 8051 Ports, Internal and External Memory, Counters and Timers, Serial Communication in 8051, Interrupts in 8051, Addressing Modes, Data Transfer Instructions, Data and Bit-Manipulation Instructions, Arithmetic Instructions, simple programs.

Learning Outcomes:-

After completion of this unit student will

- Describe architecture and features of Intel 8051 microcontroller (L2)
- Develop assembly language programs to perform various operations using 8051 (L2)
- Distinguish between microprocessor and a microcontroller (L5)

UNIT-V

ARM Architectures and Processors: What is ARM Architecture, ARM Processor Families, ARM Cortex-M Series, Cortex-M0+ Processor Overview, Cortex-M0+ Block Diagram, Registers, Memory Map, Bit-band Operations, Endianness, ARM Cortex-M0+ Processor Instruction Set – ARM and Thumb Instruction Set.

Learning Outcomes:-

After completion of this unit student will

- Explain architecture and addressing modes of ARM Cortex M0+. (L2)
- Explain the Assembly instruction set of ARM Cortex M0+. (L2)

Course Outcomes:

• Understand instruction set of 8086 microprocessor and ARM architecture.

- Explain addressing modes of 8086, develop assembly language programs for various problems, describe interfacing of 8086 with peripheral devices, architecture and addressing modes of ARM Cortex M0+, assembly instruction set of ARM Cortex M0+.
- Distinguish between microprocessor and microcontroller, 8085& 8086 microprocessors, design applications using microcontrollers.

Text Books:

- 1. K M Bhurchandi, A K Ray, "Advanced Microprocessors and Peripherals", 3rd edition, McGraw Hill Education, 2017.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", 2nd edition, Pearson, 2012.
- 3. Alexander G. Dean "Embedded Systems Fundamentals on Arm Cortex-M based Microcontrollers": APractical Approach

References:

- 1. Ramesh S Gaonkar, "Microprocessor Architecture Programming and Applications with the 8085", 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, "the 8051 Microcontroller", 3rd edition, Cengage Learning, 2004.
- 3. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide: "Designing and Optimizing System Software", Elsevier, 2004.
- 4. John H. Davies, Newness, "MSP 430 Microcontroller Basics", Elsevier Publications, 2008.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A04602T) DIGITAL SIGNAL PROCESSING

Course Objectives:

- To provide background and fundamental material for the analysis and processing of digital signals.
- To familiarize the relationships between continuous-time and discrete time signals and systems.
- To study fundamentals of time, frequency and Z-plane analysis and to discuss the inter-relationships of these analytic method.
- To study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- To introduce a few real-world signal processing applications.
- To acquaint with DSP processor.

UNIT-I:

Discrete Fourier Transform: Discrete Fourier series, Properties of Discrete Fourier series, Discrete Fourier Transform (DFT), The DFT as a linear transformation, Relationship of the DFT to other transforms, Properties of DFT.

Fast Fourier Transforms: Efficient computation of DFT algorithms - Radix 2-Decimation-in-Time & Decimation-in-Frequency algorithms, Inverse FFT, Illustrative problems.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of DFT and its properties.(L1)
- Find N-Point DFT/FFT for a given signal/sequence.(L2)

UNIT-II:

IIR Digital Filters: Review of analog filter design, Frequency transformation in the analog and digital domains, Design of IIR filters from Analog filters – Approximation of derivatives, Impulse invariance, Bilinear transformation, Design of Butterworth, Chebyshev filters, Illustrative problems.

Realization of IIR Systems: Structures for IIR systems—Direct form I& Direct form II, Transposed, Cascade form, Parallel form and Lattice structures, Signal flow graphs.

Learning Outcomes:-

After completion of this unit student will

- Understands signal flow graph and block diagram representations of difference equations that realize digital filters(L1)
- Realization of different structures for IIR filters(L2)
- Design of IIR filters using different techniques. (L4)

UNIT-III:

FIR Digital Filters: Linear phase FIR filter, characteristic response, location of zeros, Design of FIR filter using Windowing Techniques - Rectangular, Hanning, Hamming, Kaiser, Bartlett, Blackman, Design of FIR filter by Frequency sampling technique, Illustrative problems.

Realization of FIR Systems: Structures for FIR systems - Direct form, Cascade form and Lattice structures.Comparison of FIR and IIR filters.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of FIR filter(L1)
- Realization of different structures for FIR filters(L2)
- FIR filter design based on windowing methods.(L4)
- Compare FIR and IIR filters (L5)

UNIT-IV:

Architectures for Programmable DSP Devices: Basic Architectural features, DSPComputational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues.

Learning Outcomes:-

After completion of this unit student will

- Recognize the fundamentals of fixed and floating point architectures of various DSPs.(L1)
- Learn the architecture details and instruction sets of fixed and floating point DSPs.(L1)
- Illustrate the control instructions, interrupts, and pipeline operations.(L2)

UNIT- V:

Programmable Digital Signal Processors: Introduction, Commercial Digital signal-processingDevices, Architecture of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control,

TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

Learning Outcomes:-

After completion of this unit student will

- Illustrate the features of on-chip peripheral devices and its interfacing along with its programming details.(L2)
- Analyze and implement the signal processing algorithms in DSPs. (L3)

Course Outcomes

- Understand the basic concepts of IIR and FIR filters, DSP building blocks to achieve high speed in DSP processor, DSP TMS320C54XX architecture and instructions.
- Compute the fast Fourier transforms and find the relationship with other transforms. Realization of digital filter structures.
- Design of FIR and IIR digital filters.
- Compare FIR and IIR filters.

TEXT BOOKS:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4th ed., 2007.
- 2. Avtar Singh and S. Srinivasan, "Digital Signal Processing," Thomson Publications, 2004.

REFERENCES:

- 1. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3rd edition, 2009.
- 2. A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd, Pearson Education, 2012.
- 3. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 4. B. Venkata Ramani and M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications," TMH, 2004.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A04603) DIGITAL SYSTEM DESIGN THROUGH VHDL

Course Objectives:

- Learn and understand the architectures of Field-programmable Gate Arrays.
- Translate a software application into hardware logic for FPGA architectures.
- Design synthesizable systems based on industry-standard coding methods.
- Build testbenches and create data models to verify bit-true accurate designs.
- Acquire the knowledge about Design and modelling of Parwan CPU, vending machine, washing machine, etc.

UNIT-I

Introduction and Field-Programmable Gate Arrays: Hardware Description Languages, FPGA Boards and Software Tools, Transistor as a Switch, Logic Gates from Switches, FPGA Building Blocks, Layout of the Xilinx Artix-7 XC7A35T FPGA, Resources of FPGA, Clock Management, The XADC Block, High-Speed Serial I/O Transceivers, Peripheral Component Interconnect Express Interface, FPGA-Based Digital System Design Philosophy, Advantages and Disadvantages of FPGAs, Usage Areas of FPGAs, Introduction to VHDL, VHDL Fundamentals, Entity and Architecture Representations, Dataflow Modeling, Behavioral Modeling, Timing and Delays in Modeling, Hierarchical Structural Representation, Testbench Formation in VHDL, Structure of a VHDL Testbench File, Displaying Test Results.

Learning Outcomes:-

After completion of this unit student will

- Understand the architecture of FPGA devices (L2)
- Know the software tools used in digital design (L1)
- Understand the VHDL design styles to design digital systems (L2)

UNIT-II:

VHDL Data Types and Operators: Data Types in VHDL, Signal and Variable Data Types, Data Values, Naming a Signal or Variable, Defining Constants, Defining Arrays, Operators in VHDL, Application on Data Types and Operators, FPGA Building Blocks Used in Data Types and Operators, Implementation Details of Vector and Arithmetic Operations.

Learning Outcomes:-

After completion of this unit student will

- Know various data types used in VHDL language (L2)
- Understand the VHDL operators and apply them in digital design (L3)

• Implement various arithmetic and logical operations in digital design (L3)

UNIT-III:

Combinational Circuits: Logic Gates, Combinational Circuit Analysis, Logic Function Formation between Input and Output, Boolean Algebra, Gate-Level Minimization, Combinational Circuit Implementation, Truth Table-Based Implementation, Implementing Combinational Circuits, Combinational Circuit Design,

Combinational Circuit Blocks: Adders in VHDL, Comparators in VHDL, Decoders in VHDL, Encoders in VHDL, Multiplexers in VHDL, Parity Generators and Checkers in VHDL, Applications on Combinational Circuit Blocks, Sample Designs, Home Alarm System, Digital Safe System, Car Park Occupied Slot Counting System, Applications on Combinational Circuits, Implementing the Home Alarm System, Implementing the Digital Safe System, Implementing the Car Park Occupied Slot Counting System, FPGA Building Blocks Used in Combinational Circuits,

Data Storage Elements: Latches in VHDL, Flip-Flops in VHDL, Register, Memory, Read-Only Memory, ROM in VHDL, ROM Formation Using IP Blocks, Random Access Memory, Application on Data Storage Elements, FPGA Building Blocks Used in Data Storage Elements.

Learning Outcomes:-

After completion of this unit student will

- Design and analyze various combinational logic circuits (L4)
- Use VHDL in design of combinational logic circuits to analyze the behaviour (L4)
- Implement various memory and data storage elements using VHDL (L4)

UNIT-IV:

Sequential Circuits: Sequential Circuit Analysis, State Table, State Diagram, State Representation in VHDL, Timing in Sequential Circuits, Synchronous Operation, Asynchronous Operation, Shift Register as a Sequential Circuit, Shift Registers in VHDL, Multiplication and Division Using Shift Registers, Counter as a Sequential Circuit, Synchronous Counter, Asynchronous Counter, Counters in VHDL, Frequency Division Using Counters, Sequential Circuit Design, Applications on Sequential Circuits

Learning Outcomes:-

After completion of this unit student will

- Design sequential logic circuits (L4)
- Use VHDL in design of sequential logic circuits to analyze the behavior (L4)
- Create VHDL structural models to design sequential logic circuits (L5)

UNIT-V:

CPU Modeling and Design: Defining a Comprehensive Example, Parwan CPU Memory Organization of Parwan, Instruction Set, Instruction Format, Programming in Parwan Assembly, Behavioral Description of Parwan, Timing and Clocking, Packages, Interface Description of Parwan, Parwan Behavioral Architecture, Parwan Bussing Structure, Interconnection of Components, Global View of Parwan Components, Instruction Execution Advanced Applications: Vending Machine, Digital Clock, Moving Wave via LEDs, Translator, Air Freshener Dispenser, Obstacle-Avoiding Tank, Intelligent Washing Machine, Non-Touch Paper Towel Dispenser, Car Parking Sensor System, Digital Table Tennis Game

Learning Outcomes:-

After completion of this unit student will

- Understand the design of Parwan CPU (L5)
- Develop VHDL models for various advanced digital applications (L5)
- Use VHDL in design of digital design systems like washing machines, car parking systems (L5)

Course Outcomes:

- Understand the architecture of FPGAs, tools used in modelling of digital design and modelling styles in VHDL.
- Learn the IEEE Standard 1076 Hardware Description Language (VHDL).
- Analyze and design basic digital circuits with combinatorial and sequential logic circuits using VHDL.
- Model complex digital systems at several levels of abstractions, behavioural, structural.
- Design complex digital CPU, vending machine and washing machines etc and analyze the case studies.

Text Books:

- 1. CemUnsalan, Bora Tar "Digital System Design with FPGA Implementation Using Verilog and VHDL" McGraw-Hill Education, 2017
- 2. ZainalabedinNavabi "VHDL: Analysis and Modeling of Digital Systems" VHDL: Analysis and Modeling of Digital Systems, Z. Navabi, McGraw Hill International Ed. 1998.

References:

- 1. J. Bhaskar "A VHDL Primer", Pearson Education India, 3rd edition, 2015
- 2. Stephen Brown and ZvonkoVranesic "Fundamentals of digital logic design with VHDL" Tata McGraw Hill, 2nd edition, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE) – III-II Sem

L T P C

3 0 0 3

(19A04605a)INTRODUCTION TO WIRELESS AND CELLULAR COMMUNICATIONS PROFESSIONAL ELECTIVE-II

Course Objectves:

- To be familiar with evolution of Wireless communication standards
- To understand cellular concepts and various terminology used in wireless & cellular communications
- To analyze the propagation effects in free space and different types of fading channels.
- To be able to apply different concepts of equalization and diversity schemes for better performance of receivers.
- To understand and apply the knowledge of 3G and 4G communication technologies for designing suitable receivers to counter balance the effects of fading channels

Unit 1: Overview of Cellular Systems and evolution: Introduction, Mobile Radio Systems around the world and US, examples of wireless communication systems, Comparison and trends in wireless communication systems, Evolution of 2g/3G/4G/5G Communication Standards.

Cellular Concepts – Frequency reuse, Cochannel and Adjacent channel Interference, C/I, Handoff, Blocking, Erlang Capacity, Improving coverage and capacity in cellular systems.

Unit 2: Wireless propagation Part 1: Link budget, Free-space path loss, Noise figure of receiver, Large Scale Propagation effects.

Wireless propagation Part II: Small scale multipath propagation, Multipath fading, Shadowing, Fading margin, shadowing margin, Channel Models.

Unit 3: Equalization & Diversity: Introduction, Types of equalization techniques, Diversity Schemes -Antenna Diversity, Time Diversity.

Unit 4: Multiple Access Techniques: Introduction, Types of access techniques, Wireless Channel Capacity, Introduction to MIMO.

Unit 5: CDMA Part1 – PN codes, generation, properties, CDMA PartII, OFDM and LTE Part I OFDM and LTE Part II.

Course Outcomes:

- ➤ CO1: Understand different technologies used in the evalution of wireless communication standards.
- ➤ CO2: Apply the concepts of frequency reuse, fading channel characteristics, equalization and diversity techniques to find the solutions for a given problem.

- ➤ CO3: Analyze the performances of different technologies used in 2G, 3G standards of wireless communication.
- ➤ CO4: Solve some complex problems to design receivers due to small scale fading, effects of the chnnel.
- ➤ CO5: Compare various technologies used in different generations of wireless communication to know the merits and dermerits of eache technology.

Text Books:

- 1. T. S. Rappaport, "Wireless Communications Principles and Practice" (2nd edition) Pearson, 2010, ISBN 9788131731864
- 2. A. Molisch, "Wireless Communications," Wiley, 2005Haykin & Moher, "Modern Wireless Communications" Pearson 2011 (Indian Edition)
- 3. J. G. Proakis, "Digital Communications," McGraw Hill
- 4. A. Goldsmith, "Wireless Communications," Cambridge Univ Press, 2005
- 5. D. Tse and P. Viswanath, "Fundamentals of Wireless Communications," Cambridge Univ Press, 2005

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-II Sem L T P C

3 0 0 3

(19A04605b)FABRICATION TECHNIQUES FOR MEMS-BASED SENSORS: CLINICAL PERSPECTIVE PROFESSIONAL ELECTIVE-II

Course Objectves:

- To be familiar with microengineering devices, clean room, metallic impurities and wafer cleaning process.
- To understand the principles of MEMs based sensors and different technologies used in the fabrication process.
- To know the design process flow for fabricating microengineering devices, Process flow for microheater
- To understand process flow for Fabricating Flexible Force Sensors, Force Sensors on Silicon, and Fabricating VOC sensors,
- **Unit 1**: Introduction to microengineering devices and its applications, Clean room, contaminants, wafer cleaning processes (DI water, RCA, metallic impurities, etc.).
- **Unit 2**: Introduction to the microheater, force sensors, microfluidic devices, its specifications, and applications, Masks Types of masks, Types of Photoresists, Spin Coaters Lithography process: optical lithography, x-ray, and e-beam lithography, lift-off techniques, soft lithography, Use of resists (spin coating, positive and negative photoresists), photoresist prebaking, exposure, and development.
- **Unit 3**: Etching: Isotropic/anisotropic, selectivity, wet and plasma assisted etching, Types of wafers and orientations, Techniques of metallization: PVD [(Sputtering DC, RF, and Magnetron), thermal evaporation, e-beam evaporation], Chemical Vapor Deposition: Dielectric films (Plasma Enhance Chemical Vapor Deposition (PECVD)), Atomic Layer Deposition.
- **Unit 4**: Understanding and designing the process flow for fabricating microengineering devices, Process flow for microheater, force sensors, and microfluidic devices, Wafer dicing and bonding techniques, Microfluidic Chips.
- **Unit 5**: Process Flow for Fabricating Flexible Force Sensors and Force Sensors on Silicon, Process Flow for Fabricating VOC sensors, Biochips, Clinical Research: Problems and Solutions using Microengineering Device, Visit to non-conventional Class 10000 Clean Room and discussing few equipment within.

Course Outcomes:

➤ CO1: Unnderstand the principles of MEMs based sensors, clean room, types of wafers, and different technologies used in the fabrication process.

- ➤ CO2: Analyze the process flow for Fabricating Flexible Force Sensors, Force Sensors on Silicon, and Fabricating VOC sensors.
- ➤ CO3: design process flow for fabricating microengineering devices, Process flow for microheater.

Books and references

- 1. J.D. Plummer, M.D. Deal, P.G. Griffin, Silicon VLSI Technology, Pearson Education, 2001
- S.A.Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 2001. S.M. Sze (Ed), VLSI Technology, 2nd Edition, McGraw Hill, 1988
- 3. Senturia S. D., Microsystem Design, Kluwer Academic Publisher, 2001 Madou, M Fundamentals of Microfabrication, CRC Press, 1997.
- 4. Gad-el-Hak, M., Ed., The MEMS Handbook; CRC Press: New York, NY, 2002.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A04605c) INTEGRATED PHOTONICS DEVICES AND CIRCUITS PROFESSIONAL ELECTIVE-II

Course Objectves:

- To be familiar with Photonic Integrated Circuits, multimode waveguides, various types of directional couplers, and CMOS Compatible Silicon Photonics Technology.
- To understand the concepts of coupled mode theory, fiber to waveguide converters, and directional couplers.
- To analyze the functionality of multimode waveguides, various types of directional couplers Reconfigurable Filters and Tunable Delay Lines, and FPPGAs.
- To design single mode, multimode waveguides, bends, and photonic crystal waveguides and Integrated Optical High-Speed Modulators.

Unit 1: Introduction to Photonic Integrated Circuits – Functional Building Blocks; Theory of Optical Waveguide – The Basic Building Block; Orthogonality Condition of Guided Modes, Introduction to Photonic Integrated Circuits – Functional Building Blocks; Theory of Optical Waveguide – The Basic Building Block; Orthogonality Condition of Guided Modes.

Unit 2: Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides, Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides.

Unit 3: Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide, Vertical Grating Coupler (VGC), Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide Vertical Grating Coupler (VGC).

Unit 4: Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines, Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines. Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA).

Unit 5: Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA),

Integrated Optical High-Speed Modulators Design and Working Principle.

Course Outcomes:

- ➤ CO1: Get familiarity with Photonic Integrated Circuits, multimode waveguides, various types of directional couplers, and CMOS Compatible Silicon Photonics Technology.
- ➤ CO2: Understand the concepts of coupled mode theory, fiber to waveguide converters, and directional couplers.
- ➤ CO3: Analyze the functionality of multimode waveguides, various types of directional couplers Reconfigurable Filters and Tunable Delay Lines, and FPPGAs.
- ➤ CO4: Design single mode, multimode waveguides, bends, and photonic crystal waveguides and Integrated Optical High-Speed Modulators.

Books and references

- 1) Silicon Photonics An Introduction, G.T. Reed (Wiley)
- 2) Photonics: Optical Electronics for Modern Communication, Yariv and Yeh (Oxford)
- 3) Optoelectronic Integrated Circuit Design and Device Modeling, Jianjun Gao (Wiley)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A04605d) ELECTRICAL MEASUREMENT AND ELECTRONIC INSTRUMENTS PROFESSIONAL ELECTIVE-II

Course Objectves:

- To remember the basic definitions of some important measurement parameters of electrical and electronic instruments.
- To understand the basic principles of different measuring meters (voltage, current, and other passive parameters), CROs, and transducers.
- To apply the knowledge of DC and AC meters while solving problems related to measurement errors.
- To analyze the performance of various electric and electrionc instruments like energy meters, analog & digital meters, CROs, function generators and signal generators.
- To design the AC& DC multi-meters function generators and function generators for the given specifications.
- **Unit 1:** Measurement Error, Accuracy and Instrument grades, Electro-mechanical instruments, electromechanical ammeters, voltmeters and ohmmeters.
- **Unit 2**: Electromechanical wattmeter and energy meter, Resistance Measurement, Impedance Measurement: AC Bridges, Potentiometers: DC and AC, Instrument transformers: CT & PT.
- **Unit 3**: Magnetic Measurement, Analog Instrumentation Basics, Analog Instrumentation, Digital Instrumentation Basics, Digital Instrumentation, Signal and Function Generators, Spectrum Analyzer.
- **Unit 4:** Oscilloscope and Electronic probes: Introduction, Block diagram of CRO, Electron beam generation, Deflection Assembly Horizontal and Vertical amplifiers and associated blocks, Digtal CRO, basic principle, types of digital CROs, Probes types of probes and associated principles.
- **Unit 5**: Transducers: Introduction, types of transducers Strain guage, LVDT, Inductive and capacitive transducers, electromechanical transducers.

Course Outcomes:

- ➤ CO1: Remember the basic definitions of some important measurement parameters of electrical and electronic instruments.
- ➤ CO2: Understand the basic principles of different measuring meters (voltage, current, and other passive parameters), CROs, and transducers.

- ➤ CO3: Apply the knowledge of DC and AC meters while solving problems related to measurement errors.
- ➤ CO4: Analyze the performance of various electric and electrion instruments like energy meters, analog & digital meters, CROs, function generators and signal generators.
- ➤ CO5: Design the AC& DC multi-meters function generators and function generators for the given specifications.

Books and references

- 1. Electronic Instrumentation and Measurements: David A. Bell
- 2. A course in Electrical and Electronic Measurements and Instrumentation: A. K. Sawhney
- 3. Basic Electrical Measurements: M B Stout
- 4. Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis
- 5. Electronic Measurements and Instrumentation: William David Cooper.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-II Sem L T P C

3 0 0 3

(19A04605e)PRINCIPLES AND TECHNIQUES OF MODERN RADAR SYSTEMS PROFESSIONAL ELECTIVE-II

Course Objectves:

- To understand the basic principles of RADAR and its varients, RADAR based Microwave imaging.
- To apply the fundamental knowledge of various RADARs, Matched Filter and to find the range between the target and RADAR, frequency and phase of the received signal.
- To analyze the received data from the target using CW RADAR & MTI RADAR and to find the distance, tracking range for clutter analysis.
- **Unit 1:** Basic Principles: Fundamental elements of Radar and its block diagram, Radar equation Signal to Noise Power Ratio (SNR), Radar Cross section Cross sections of small targets, Examples of target cross sections, cross section fluctuations and models.
- **Unit 2**: CW Radar Principle, block diagram, FMCW Radar, Pulsed Radar Principles, Clutter Analysis, MTI Improvement Factor, Pulsed Doppler Radar, range measurement.
- **Unit 3:** Tracking in Radar, Frequency measurement and tracking, Angular resolution, Monopulse Technique, Detection Theory: Match Filtering, Radar Ambiguity Function.
- **Unit 4**: Imaging Radar: Resolution Concept, Pulse Compression, Synthetic Aperture Processing, ISAR Imaging, Probability of false alarm and Detection, Modified Radar Range Equation with Swerling Models.
- **Unit 5**: Ground Penetrating Radar for close sensing, Radar Tomography and Radar based Microwave Imaging, Emerging and Modern Applications of Radar Principles.

Course Outcomes:

- ➤ CO1: Understand the basic principles of RADAR and its varients, RADAR based Microwave imaging.
- ➤ CO2: Apply the fundamental knowledge of various RADARs, Matched Filter and to find the range between the target and RADAR, frequency and phase of the received signal.
- ➤ CO3: Analyze the received data from the target using CW RADAR & MTI RADAR and to find the distance, tracking range for clutter analysis.

Books and references

- 1. Introduction to Radar Systems, M.I. Skolnik, 3rdEdition, Tata Mcgraw hill edition, 2001
- 2. Radar Systems Analysis and Design using MATLAB, B.R.Mahafza, 3rd Edition, CRC Press, 2013.
- 3. Radar Principles, Peyton Z. Peebles, Jr., Wiley India, 2008.
- 4. Monopulse Principles and Techniques, S.M.sherman and D.K.Barton, 2ndEdition,Artech house, 2011
- 5. Fundamentals of Radar Signal Processing, M.A.Richards, TMH, 2005
- 6. Ground Penetrating Radar: Theory and Applications, Ed: H.M. Jolt, Elsevier, 2009
- 7. Microwave Imaging, M.Pastorino, John Wiley, 2010

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – III-II L T P C

3 0 0

(19A01604a) INDUSTRIAL WASTE AND WASTE WATER MANAGEMENT OPEN ELECTIVE-II

Course Objectives:

- To teach Health and Environment Concerns in waste water management
- To teach material balance and design aspects of the reactors used in waste water treatment.
- To impart knowledge on selection of treatment methods for industrial waste water
- To teach common methods of treatment in different industries
- To provide knowledge on operational problems of common effluent treatment plant

UNIT -I

Industrial water Quantity and Quality requirements:

Boiler and cooling waters—Process water for Textiles, Food processing, Brewery Industries, power plants, fertilizers, sugar mills Selection of source based on quality, quantity and economics. Use of Municipal wastewater in Industries – Adsorption, Reverse Osmosis, Ion Exchange, Ultra filtration, Freezing, Elutriation, Removal of Colour, Odour and Taste.

Learning Outcomes:

At the end of the unit, students will be able to:

- Learn the procedures for assessment of quality of Industrial water
- Suggest different processes of handling waste water

UNIT -II

Basic theories of Industrial Wastewater Management: Industrial waste survey - Measurement of industrial wastewater Flow-generation rates – Industrial wastewater sampling and preservation of samples for analysis -Wastewater characterization-Toxicity of industrial effluents-Treatment of wastewater-unit operations and processes-Volume and Strength reduction – Neutralization and Equalization, Segregation and proportioning- recycling, reuse and resources recovery

Learning Outcomes:

At the end of the unit, students will be able to:

- Measure industrial waste water flow
- Characterize waste water
- Suggest techniques for treatment of waste water.

UNIT -III

Industrial wastewater disposal management: Discharges into Streams, Lakes and oceans and associated problems, Land treatment - Common Effluent Treatment Plants: advantages and suitability, Limitations and challenges- Recirculation of Industrial Wastes- Effluent Disposal Method

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand options for waste water disposal.
- Explain functioning of common effluent treatment plants

UNIT - IV

Process and Treatment of specific Industries-1: Manufacturing Process and origin, characteristics, effects and treatment methods of liquid waste from Steel plants, Fertilizers, Textiles, Paper and Pulp industries, Oil Refineries, Coal and Gas based Power Plants

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand the character of waste water from Steel plants and refineries
- Suggest suitable waste water treatment techniques

UNIT - V

Process and Treatment of specific Industries-2: Manufacturing Process and origin, characteristics, effects and treatment methods of liquid waste from Tanneries, Sugar Mills, Distillers, Dairy and Food Processing industries, Pharmaceutical Plants

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand the character of waste water from tanneries and distilleries
- Suggest suitable waste water treatment techniques

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Design treatment methods for any industrial wastewater.
- Examine the manufacturing process of various industries.
- Assess need for common effluent treatment plant for an industry
- Test and analyze BOD, COD, TSS and MPN in waste water.

TEXT BOOK

- 1. M. N. Rao and A. K. Dutta, "Wastewater Treatment", Oxford & IBH, New Delhi.
- 2. K.V. S. G. Murali Krishna, "Industrial Water and Wastewater Management".

REFERENCES

- 1. A. D. Patwardhan, "Industrial Wastewater treatment", PHI Learning, Delhi
- 2. Metcalf and Eddy Inc., "Wastewater Engineering", Tata McGraw Hill co., New Delhi.
- 3.G. L. Karia & R.A. "Christian Wastewater Treatment- Concepts and Design Approach", Prentice Hall of India.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– III-II

L T P C

3 0 0 3

(19A01604b) BUILDING SERVICES AND MAINTAINANCE OPEN ELECTIVE-II

Course Objectives:

- To impart knowledge in concepts of building maintenance
- To insists the student to observe various practices of good building maintenance
- To teach the importance safety in buildings
- To demonstrate the use of ventilation in buildings.
- To give the list of different types of machineries in buildings

UNIT – I

PLUMBING SERVICES: Water supply system- fixing of pipes in buildings – maintenance of buildings- water meters-sanitary fittings-design of building drainage- gas supply systems

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand water supply system
- Understand the building drainage system.

UNIT - II

VENTILATION: Necessity of ventilation – functional requirements – systems of ventilation-natural ventilation-artificial ventilation-air conditioning-systems of air conditioning-essentials of air conditioning-protection against fire caused by air conditioning systems.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand concepts of ventilation
- Understand concepts of air conditioning

UNIT – III

THERMAL INSULATION: Heat transfer system-thermal insulating materials-methods of thermal insulation-economics of thermal insulation-thermal insulation of exposed walls, doors, windows and roofs.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand methods of insulation
- Understand materials of insulation

UNIT - IV

FIRE SAFETY: Causes of fire in buildings-fire safety regulations-charecteristics of fire resisting materials- fire resistant construction-heat and smoke detecters-fire alarms-fire fighting pump and water storage.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand safety regulations of fire system
- Know about the implementation and usage of various fire resistant materials in building construction

UNIT - V

MACHINERIES IN BUILDINGS: Lifts-essential requirements-design considerationsescalators-essential requirements-electrical installations in buildings-lighting in buildings-methods of electrical wiring-earthing

Learning Outcomes:

At the end of the unit, students will be able to:

- Understanding of different machineries of buildings
- Understanding of electrical installation of buildings

Course Outcomes:

Student will be able to understand

- Concepts of plumbing, drainage system and gas supply system
- Concepts of ventilation and air conditioning
- Concepts of thermal insulation and economics of thermal insulation
- Concepts of fire safety in buildings and fire resistant construction
- Concepts of different machineries of buildings

TEXT BOOKS:

- 1. B.C.Punmia, Er. Ashok K jain, Arun K Jain "Building construction", Laxmi publications pvt.ltd. New Delhi.
- 2. Janardhan Jah, S.K Sinha, "Building construction", Khanna publishers
- 3. Rangwala, "Building construction", Charothar publishing house.

REFERENCE BOOKS:

- 1. David V Chaddrton, "Building services engineering", Outledge
- 2. P.C Varghees "Building construction", Printice hall india

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A02604a) INDUSTRIAL AUTOMATION OPEN ELECTIVE-II

Course Objectives:

- To understand the basic concepts of Automation
- To understand the concepts of automation cycle and hardware components
- To gain knowledge about pneumatic and hydraulic devices
- To understand the concepts of sensors and actuators
- To know the use of Robotics used in industries automation

UNIT-I:

Introduction to Automation

Definition and fundamentals of automation, reasons for Automating, basic elements of an automated system: Power, Program and control system, safety, maintenance & repair diagnosis, error detection and recovery, Automation principles and strategies: USA principle, strategies of automation and production system, automation migration strategy

Learning Outcomes:

At the end of the unit, students will be able to:

- To understand the fundamental concepts of automation and its basic elements
- To understand system safety requirements
- To understand about maintenance and repair strategies
- To know about production system automation

UNIT-II:

Mechanization and Automation

Basic principles of Mechanization and automation, product cycle, hard Vs flexible automation, Capital- intensive Vs low cost automation. Types of systems-mechanical, electrical, hydraulic, pneumatic and hybrid systems, Automation using CAMS, Geneva mechanisms, gears etc. Assembly line Automation: automated assembly systems, transfer systems, vibratory bowl feeders, non-vibratory feeders, part orienting, feed track, part placing & part escapement systems. Introduction to Material storage/ handling and transport systems, and its automation using AS/RS, AGVS and conveyors etc.

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about how to analyse the various automation methods
- To know about assembling and placing of various parts
- To distinguish between mechanization and automation of systems
- To know about material storage, handling and automation using various approaches

UNIT-III:

Pneumatics and hydraulics

Hydraulic and pneumatic devices-Different types of valves, Actuators and auxiliary elements in Pneumatics & hydraulics, their applications and use of their ISO symbols. Synthesis and design of circuits (up to 3 cylinders)—pneumatic, electro pneumatics and hydraulics. Design of Electro-Pneumatic Circuits using single solenoid and double solenoid valves; with and without grouping.

Learning Outcomes:

At the end of the unit, students will be able to:

- To know design of various pneumatic and hydraulic components
- To understand about synthesis and design of Pneumatic circuits
- To understand about electro pneumatic circuits
- To design using various solenoid valves with and without grouping

UNIT-IV:

Sensors & Actuators Sensors

Selection of sensors (Displacement, temperature, acceleration, force /pressure) based on static and dynamic characteristics. Interfacing: Concept of interfacing, bit accuracy and sampling speed, amplifying electronics, and microcontroller. Actuators: Principle and selection of electro mechanical actuators (1) DC motors (2) Stepper Motors (3) Solenoid Actuators (4) Servo Motors (5) BLDC

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about selection of sensors and actuators based on dynamic characteristics
- To understand about necessity of interfacing sensors with Microcontroller
- To understand principle and selection of actuators
- To apply various electro mechanical actuators to certain machines

UNIT- V:

Robots and their applications

Introduction to robots, Types, Classifications, Selection of robots, Robot Degrees of freedom, Robot configuration, Accuracy and repeatability, Specification of a robot, Robot feedback

controls: Point to point control and Continuous path control, Control system for robot joint, Adaptive control, Drives and transmission systems, End effectors, Industrial robot applications of robots

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about Robots, classification, selection and specifications
- To understand the use of robotics in industrial applications
- To know about various feedback controls of Robot
- To understand how adaptive control strategies can be used in Robots

Course Outcomes:

- 1. Understand the basic concepts of Industrial automation
- 2. Design and analysis of automation methods, placing and assembling of various parts
- 3. Design of various processing and control circuits using pneumatic and hydraulic elements
- 4. Selection of sensors based on the industrial application
- 5. Role of robotics in industrial applications

TEXT BOOKS:

- 1. Stamatios Manesis and George Nikolakopoulos, "Introduction to Industrial Automation", CRC Press, 2018.
- 2. Frank Lamb, "Industrial Automation", Hands on, Mc Graw Hill Education, 2013.

REFERENCES:

1. Richerd L. Shell and Ernest L. Hall, "Hand Book of Industrial Automation", CRC Press, 2000.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A02604b) SYSTEM RELIABILITY CONCEPTS (OPEN ELECTIVE-II)

Course Objectives:

To make the students learn about:

- The Basic concepts, rules for combining probabilities of events, failure density and distribution functions.
- Evaluation of network Reliability / Unreliability and types of redundancies.
- Evaluation of network Reliability / Unreliability using conditional probability method.
- Expected value and standard deviation of Exponential distribution and Measures of reliability.
- Evaluation of Limiting State Probabilities of one, two component repairable models.

UNIT-I:

Basic Probability Theory

Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples

Learning Outcomes:

At the end of the unit, students will be able to:

- To know about basic rules for probabilities of events
- To distinguish between pdf and cdf
- Get detailed information about Probability of failure density and distribution functions
- Obtain the expected value and standard deviation for binomial distribution.

UNIT-II:

Network Modeling and Reliability Evaluation

Basic concepts – Evaluation of network Reliability / Unreliability – Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method – Paths based and Cutset based approach – complete event tree and reduced event tree methods - Examples.

Learning Outcomes:

At the end of the unit, students will be able to:

- How to find the Probability of success and failures of network using different approaches for series-parallel configurations.
- Classification of redundancies.
- To find reliability / unreliability of complex systems using different methods
- Comparison of approaches to solve probability index of SISO system

UNIT-III:

Time Dependent Probability

Basic concepts – Reliability functions f(t), Q(t), R(t), h(t) – Relationship between these functions – Bath tub curve – Exponential failure density and distribution functions - Expected value and standard deviation of Exponential distribution – Measures of reliability – MTTF, MTTR, MTBF – Evaluation of network reliability / Unreliability of simple Series, Parallel, Series-Parallel systems - Partially redundant systems - Evaluation of reliability measure – MTTF for series and parallel systems – Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of time domain functions and relationship between them.
- Obtain the expected value and standard deviation for exponential distribution.
- Obtain the values of probabilistic measures for series and parallel configurations.
- To obtain probabilistic measures for fully redundant and partially redundant configurations

UNIT-IV:

Discrete Markov Chains & Continuous Markov Processes

Markov Chains: Basic concepts – Stochastic transitional Probability matrix – time dependent probability evaluation – Limiting State Probability evaluation – Absorbing states. **Markov Processes:** Modeling concepts – State space diagrams – time dependent reliability

Markov Processes: Modeling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach - Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of Stochastic Transitional Probability Matrix, Limiting State Probability
- To know about evaluation for one and two component repairable models.
- Understand the concept of Frequency balance approach.

To distinguish between Markov chains and Markov processes

UNIT-V:

Multi Component & Approximate System Reliability Evaluation

Recursive relation for evaluation of equivalent transitional rates—cumulative probability and cumulative frequency and 'n' component repairable model — Series systems, Parallel systems, Basic probability indices — Series, Parallel systems — Complex Systems—Cutset approach — Examples.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concepts of recursive relation for evaluation of equivalent transitional rates.
- Obtain the cumulative probability and cumulative frequency for different systems
- To know about computation of basic probability indices for series, parallel configurations
- To know how to evaluate basic probability indices using cut set approach

Course Outcomes:

After completing the course, the student should be able to do the following:

- Understand the concepts for combining Probabilities of events, Bernoulli's trial, and Binomial distribution.
- Network Reliability/Unreliability using conditional probability, path and cutset based approach, complete event tree and reduced event tree methods.
- Understanding Reliability functions and to develop relationship between these functions, expected value and standard deviation of Exponential distribution and measures of reliabilities.
- Analyze the time dependent reliability evaluation of single component repairable model, frequency and duration concepts, Frequency balance approach.
- Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model.

Text Books:

- 1. Roy Billinton and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Reprinted in India B. S. Publications, 2007.
- 2. E. Balagurusamy, "Reliability Engineering", Tata McGraw Hill, 2003.

Reference Books:

- 1. E. E. Lewis, "Introduction to Reliability Engineering" Wiley Publications.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill, 2000.
- 3. by Ajit Kumar Verma, Srividya Ajit and Durga Rao Karanki, Springer, "Reliability and Safety Engineering" 2nd edition, 2016.
- 4. Rausand and Arnljot Hoyland, "System Reliability Theory Marvin", Wiley Publictions.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(19A03604a) INTRODUCTION TO MECHATRONICS OPEN ELECTIVE

Course Objectives:

- Familiarize the technologies behind modern mechatronic systems.
- Explain fundamentals for the development of fully automated system.
- Develop a robotic or automated systems focusing on the hardware and software integration.
- Demonstrate the development and design of mechatronic system and MEMS.

UNIT – I

Introduction: Definition of Mechatronics, Need for Mechatronics in Industry, Objectives of mechatronics, mechatronics design process, Mechatronics key elements, mechatronics applications – Computer numerical control (CNC) machines, Tool monitoring systems, Flexible manufacturing system (FMS), Industrial Robots, Automatic packaging systems, Automatic inspection systems.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the role of mechatronics in industry.(12)
- Identify the application of mechatronics in automation industry.(13)

UNIT - II

Sensors: Static characteristics of sensors, Displacement, Position and Proximity sensors, Force and torque sensors, Pressure sensors, Flow sensors, Temperature sensors, Acceleration sensors, Level sensors, Light sensors, Smart material sensors, Micro and Nano sensors, Selection criteria for sensors.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify various types of sensors. (12)
- Choose sensors for particular application. (13)
- Measure different quantity's using sensors. (14)

UNIT - III

Actuators: Mechanical, Electrical, Hydraulic and Pneumatic Actuation systems, Characteristics and their limitations, Design of Hydraulic and Pneumatic circuits, Piezoelectric actuators, Shape memory alloys, Selection criteria for actuators.

Learning Outcomes:

At the end of the unit, the student will be able to

- Classify various actuation systems. (12)
- Choose the criterion for different actuators. (11)

UNIT - IV

Microprocessors, Microcontrollers and Programmable Logic Controllers: Architecture of of Microprocessor, Microcontroller and Programmable Logic Controller, PLC Programming using ladder diagrams, logics, latching, sequencing, timers relays and counters, data handling, Analog input/output, selection of controllers.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the architecture of microprocessors, microcontrollers and PLC. (L2)
- Formulate various programs using PLC. (L6)

UNIT - V

Design of mechotronics systems, Mechotronics design elements, Traditional mechatronics systems, Embedded systems, Procedure for designing a mechotronic systems.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understanding design of mechotronics . (L2)
- Various Mechotronics systems. (L4)
- Design Aspects of Mechotronic systems. (L2)

Course Outcomes

Upon successful completion of this unit, the student will be able to:

- Explain mechatronics systems in industry. (12)
- Identify mechatronic systems encountered in practice. (13)
- Examine the components of a typical mechatronic system. (14)
- Compare the various techniques used for development of mems. (14)
- Develop programs using plc. (16)

Text books:

- 1. Er R. Rajput, "A Text book of Mechatronics", S.Chand, 2nd edition-2016.
- 2. James J Allen, "Micro Electro Mechanical Systems Design", CRC Press Taylor & Francis group, 2005.

Reference Text books:

- 1. WBolton, "Mechatronics Electronics Control Systems in Mechanical and Electrical Engineering", 3rd edition, Pearson Education Press, 2005.
- 2. Devadas Shetty and Richard A Kolk, "Mechatronic System Design", 2nd edition, Cengage learning, 2010.
- 3. Clarence W. de Silva, "Mechatronics an Integrated Approach", CRC Press, 2004.
- 4. Ganesh S Hedge, "Mechatronics", Jones & Bartlett Learning, 2010.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C

3 0 0 3

(19A03604b) OPTIMIZATION TECHNIQUES THROUGH MATLAB OPEN ELECTIVE-II

Course Objectives

- Introduce basics of MATLAB
- Familiarize the fundamentals of optimization
- Explain single variable optimization using various methods
- Implement multi variable optimization using various methods
- Train various evolutionary algorithms.

UNIT -I

Introduction to MAT LAB: Overview, MATLAB Preliminaries, Basics of MATLAB, Beyond the Basics of MATLAB, Popular Functions and Commands, Plotting using MATLAB, Optimization with MATLAB.

Learning Outcomes:

After completion of this unit, students will be able to

- Write simple codes in MATLAB. (L3)
- Plot the data using MATLAB. (L3)
- Implement optimization models in MATLAB. (L3)

UNIT-II

Introduction to Optimization: Statement of an optimization problem, Classifications of optimization Problems: Single variable optimization, Multi variable optimization with no constraints, Multi variable optimization with equality constraints, Multi variable optimization with inequality constraints, Convex and Concave programming.

Learning Outcomes:

After completion of this unit, students will be able to

- Build optimization problem. (11)
- Solve various optimization problems(13)
- Compare convex and concave programming (14)

UNIT-III

Single Variable Optimization: Finite difference method, Central difference method, Runge-Kutta method, interval halving method, golden section method with MATLAB code.

Learning Outcomes:

After completion of this unit, students will be able to

- Understand various methods involving single variable optimization. (12)
- Develop codes in matlab for different methods. (13)
- Identify methods for solving a single variable optimization problem. (13)

UNIT-IV

Multi Variable Optimization: Conjugate gradient method, Newton's method, Powell's method, Flectcher- Reeves method, Hook and Jeeves method, interior penalty function with MATLAB code.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply various methods involving multi variable optimization. (12)
- Develop codes in matlab for solving various multi variable optimization problems. (13)
- Choose methods for solving a multi variable optimization problem. (13)

UNIT-V

Evolutionary Algorithms: Overview, Genetic Algorithms: Basics of Genetic Algorithms, Options in MATLAB, Multi Objective Optimization using Genetic Algorithms, Ant Colony Optimization, Simulated Annealing, Particle Swarm Optimization.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply different types of genetic algorithms. (13)
- Model optimization problems using genetic algorithms in matlab. (13)
- Compare different genetic algorithms for performance. (15)

Course Outcomes:

After completion of this course the student can be able to

- Use optimization terminology and concepts, and understand how to classify an optimization problem.(14)
- Apply optimization methods to engineering problems.(13)
- Implement optimization algorithms.(13)
- Compare different genetic algorithms. (15)
- Solve multivariable optimization problems. (14)

TEXT BOOKS:

- 1. Rao V.Dukkipati, MATLAB: "An Introduction with Applications", Anshan, 2010.
- 2. Achille Messac, "Optimization in practice with MATLAB", Cambridge University Press, 2015.

3. Jasbir S Arora, "Introduction to optimum design", 2nd edition. Elsevier, 2004.

REFERENCES:

- 1. Cesar Perez Lopez, "MATLAB Optimization Techniques", Academic press, Springer publications, 2014.
- 2. Steven C.Chapra, "Applied Numerical Methods with MATLAB for Engineers and scientists": 4th edition, McGraw-Hill Education, 2018.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)— III-II Sem

 \mathbf{C} 0 0

3

(19A04604a) BASICS OF VLSI **OPEN ELECTIVE-II**

Course Objectives:

The objectives of the course are to

- Learn and Understand IC Fabrication process steps required for various MOS circuits
- Understand and Experience VLSI Design Flow
- Learn Transistor-Level CMOS Logic Design
- Understand VLSI Fabrication and Experience CMOS Physical Design
- Learn to Analyze Gate Function and Timing Characteristics

UNIT-I

Introduction: Introduction to MOS Technology - MOS, PMOS, NMOS, CMOS and BiCMOStechnologies, fabrication fundamentals: Oxidation, Lithography, Diffusion, Ionimplantation, Metallization and Encapsulation.

Basic Electrical Properties: Basic Electrical Properties of MOS, CMOS and BiCMOS Circuits, I_{DS}-V_{DS}relationships, MOS transistor threshold Voltage, g_m, g_{ds}, figure of merit ωo, Passtransistor, NMOS inverter, Various pull - ups, Determination of pull-up to pulldown ratio (Z_{pu} / Z_{pd}) , CMOS Inverter analysis and design, BiCMOS inverters,Latch-up in CMOS circuits.

Learning Outcomes:

After completion of this unit, students will be able to

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling (L2)
- Analyze the electrical properties of MOS and BiCMOS circuits (L3)
- Design MOSFET based logic circuit (L4)

UNIT – II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layouts, Lambda based design rules, Contact cuts, CMOS Lambda based design rules, Layout Diagrams for logic gates, Transistor structures, wires and vias, Scaling of MOS circuits- Scaling models, scaling factors, scaling factors for device parameters, Limitations of Scaling.

Learning Outcomes:

After completion of this unit, students will be able to

- Understand the design rules and layout diagram for logic gates, limitations of scaling (L1)
- Draw the Layout of simple MOS circuit using Lambda based design rules (L2)

UNIT - III

Gate Level Design and Layout: Architectural issues, Switch logic networks: Gate logic, Alternate gate circuit: Pseudo-NMOS Dynamic CMOS logic. Basic circuit concepts, Sheet ResistanceRs and its concept to MOS, Area Capacitance Units, Calculations, The delay unitT, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-inand fan-out, Choice of layers

Learning Outcomes:

After completion of this unit, students will be able to

- Apply basic circuit concepts to MOS circuits. (L2)
- Estimate the propagation delays in CMOS circuits (L3).

UNIT – IV

Subsystem Design: Subsystem Design, Shifters, Adders, ALUs, Multipliers: Array multiplier, SerialParallel multiplier, Parity generator, Comparators, Zero/One Detectors, Up/DownCounter, Memory elements: SRAM, DRAM, ROM, Serial Access Memories.

Learning Outcomes:

After completion of this unit, students will be able to

- Apply the Lambda based design rules for subsystem design (L2)
- Design of Adders, Multipliers and memories etc(L4)
- Design digital systems using MOS circuits(L4)

UNIT - V

Semiconductor Integrated Circuit Design:PLDs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic,Programmable Logic Array Design Approach.

Learning Outcomes:

After completion of this unit, students will be able to

- Analyze various architectures and device technologies of PLDs(L3)
- Design simple logic circuit using PLA, PAL, FPGA and CPLD.(L4)

Course Outcomes:

- Learn the basic fabrication process of MOS transistors, study CMOS inverter circuits, basic circuit concepts such as Sheet Resistance, Area Capacitance and Delay calculation, Field programmable gate arrays and realization techniques, CPLDs and FPGAs for implementing the various logic functions.
- Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality.
- Analyze the performance of CMOS Inverter circuits
- Compare various Scaling models and understand the effect of scaling on device parameters

TEXT BOOKS:

- 1. Kamran Eshraghian, "Essentials of VLSI circuits and systems", EshraghianDouglesand
 - A. Pucknell, PHI, 2005 Edition
- 2. Wayne Wolf, "Modern VLSI Design", 3rd Edition, Pearson Education, 1997.

REFERENCE BOOKS:

- 1. John .P. Uyemura, "CMOS logic circuit Design", Springer, 2007.
- 2. Neil H. E Weste, "CMOS VLSI Design A Circuits and Systems Perspective", 3rd edition, DavidHarris, Ayan Banerjee, Pearson, 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C

3 0 0 3

(19A04604b) PRINCIPLES OF COMMUNICATION SYSTEMS OPEN ELECTIVE-II

Course Objectives:

- To understand the concept of various modulation schemes and multiplexing.
- To apply the concept of various modulation schemes to solve engineering problems.
- To analyse various modulation schemes.
- To evaluate various modulation scheme in real time applications.

UNIT-I:

Amplitude Modulation

Introduction to Noise and Fourier Transform. An overview of Electronic Communication Systems. Need for Frequency Translation, Amplitude Modulation: DSB-FC, DSB-SC, SSB-SC and VSB. Frequency Division Multiplexing. Radio Transmitter and Receiver.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of noise, Fourier transform, career modulation and frequency division multiplexing (L1).
- Apply the concept of amplitude modulation to solve engineering problems (L2).
- Analyse various amplitude modulation schemes (L3).
- Evaluate various amplitude modulation schemes in real time applications (L3).

UNIT-II:

Angle Modulation

Angle Modulation, Tone modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulation and Demodulation. Stereophonic FM Broadcasting.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of angle modulation and its components (L1).
- Apply the concept of frequency modulation to solve engineering problems (L2).
- Analyse angle modulation schemes (L3).
- Evaluate frequency modulation scheme in real time applications (L3).

UNIT-III:

Pulse Modulation

Sampling Theorem: Low pass and Band pass Signals. Pulse Amplitude Modulation and Concept of Time Division Multiplexing. Pulse Width Modulation. Digital Representation of Analog Signals.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of various pulse modulation schemes and time division multiplexing (L1).
- Analyse various pulse modulation schemes (L3).

UNIT-IV:

Digital Modulation

Binary Amplitude Shift Keying, Binary Phase Shift Keying and QuadraturePhase Shift Keying, Binary Frequency Shift Keying. Regenerative Repeater.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of various digital modulation schemes (L1).
- Analyze various digital modulation schemes (L3).

UNIT-V:

Communication Systems

Satellite, RADAR, Optical, Mobile and Computer Communication (Block diagram approach only).

Learning Outcomes:

At the end of the unit, the student should be able to

• Understand the concept of various communication systems (L1).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Course Outcomes:

- Understand the concept of various modulation schemes and multiplexing (L1).
- Apply the concept of various modulation schemes to solve engineering problems (L2).
- Analyse various modulation schemes, and evaluate various modulation scheme in real time applications (L3).

TEXT BOOKS:

1. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill Publishing Company Ltd., 2008.

REFERENCES:

1. B. P. Lathi, Zhi Ding and Hari M. Gupta, "Modern Digital and Analog Communication

Systems", 4th Edition, Oxford University Press, 2017.

2. K. Sam Shanmugam "Digital and Analog Communication Systems", Wiley India Edition,

2008.

Blooms' Learning levels:

L1: Remembering and Understanding

L2: Applying

L3: Analyzing, Evaluating

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(19A05604a) FUNDAMENTALS OF VR/AR/MR Open Elective-II (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Explore the history of spatial computing and design interactions
- Understand the foundational principles describing how hardware, computer vision algorithms function
- Learn Virtual reality animation and 3D Art optimization
- Demonstrate Virtual reality
- Introduce to the design of visualization tools

UNIT-I

How Humans interact with Computers: Common term definition, introduction, modalities through the ages (pre- 20th century, through world war-II, post world war-II, the rise of personal computing, computer miniaturization), why did we just go over all of this?, types of common HCI modalities, new modalities, the current state of modalities for spatial computing devices, current controllers for immersive computing systems, a note on hand tracking and hand pose recognition.

Designing for our Senses, Not our Devices: Envisioning a future, sensory technology explained, who are we building this future for?, sensory design, five sensory principles, Adobe's AR story.

Learning Outcomes:

At the end of the unit, students will be able to:

- Explain common modalities and their pros and cons.(L2)
- Demonstrate Mapping modalities to current industry inputs(L2)
- Explore the importance of design with spatial computing(L5)

UNIT-II

Virtual Reality for Art: A more natural way of making 3D art, VR for animation.

3D art optimization: Introduction, draw calls, using VR tools for creating 3D art, acquiring 3D models vs making them from scratch.

How the computer vision that makes augmented reality possible works: Who are we?, a brief history of AR, how and why to select an AR platform, mapping, platforms, other development considerations, the AR cloud.

Learning Outcomes:

At the end of the unit, students will be able to:

- Utilize VR tools for creating 3D Animations(L3)
- Analyze how and why to Select an AR Platform(L4)

UNIT-III

Virtual reality and augmented reality: cross platform theory: Why cross platform? The role of game engines, understanding 3D graphics, portability lessons from video game design, simplifying the controller input.

Virtual reality toolkit: open source framework for the community: What is VRTK and why people use it?, the history of VRTK, welcome to the steam VR unity toolkit, VRTK v4, the future of VRTK, success of VRTK.

Three virtual reality and augmented reality development practices: Developing for virtual reality and augmented reality, handling locomotion, effective use of audio, common interaction paradigms.

Learning Outcomes:

At the end of the unit, students will be able to:

- Explain why the design approach should be considered at a holistic high level based on the goal of the experience(L2)
- Build VR solutions using Virtual reality toolkit(L6)
- Interpret the development practices in three Virtual reality and Augmented reality development(L2)

UNIT-IV

Data and machine learning visualization design and development in spatial computing:

Introduction, understanding data visualization, principles for data and machine learning visualization design and development in spatial computing, why data and machine learning visualization works in spatial computing, 2D data visualization vs 3D data visualization in spatial computing, interactivity in data visualizations and in spatial computing, animation, failures in data visualization, good data visualization design optimize 3D spaces, data representations, info graphics, and interactions, defining distinctions in data visualization and big data for machine, how to create data visualization: data visualization creation pipeline, webXR, data visualization challenges in XR, data visualization industry use case examples of data visualization, 3D reconstruction and direct manipulation of real world data, data visualization is for everyone, hands on tutorials, how to create data visualization, resources.

Learning Outcomes:

At the end of the unit, students will be able to:

- Understand, define, and set data and machine visualization design and development principles in embodied reality(L1)
- Demonstrate best practices, and practical tools to create beautiful and functional data visualizations.(L2)

UNIT-V

Character AI and Behaviors: Introduction, behaviors, current practice: Reactive AI, more intelligence in the system, Deliberative AI, machine learning.

The virtual and augmented reality health technology ecosystem: VR/AR health technology application design, standard UX isn't intuitive, tutorial: insight Parkinson's experiment, companies, case studies from leading Academic institutions.

Learning Outcomes:

At the end of the unit, students will be able to:

- Design a behavioral AI system for a video game(L6)
- Identify issues related to design of virtual reality (VR) and augmented reality (AR) experiences deployed in a health-care context(L3)
- Explain the use of motion data from controllers to reduce the visible tremor of a Parkinson's patient in a virtual environment(L2)

Course outcomes

Upon completion of the course, the students should be able to:

- Explain how the humans interact with computers (L2)
- Apply technical and creative approaches to make successful applications and experiences. (L3)
- Design audio and video interaction paradigms (L6)
- Design Data visualization tools (L6)
- Apply VR/MR/AR in various fields in industry (L3)

Text book

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented & Virtual Realities", 1st edition, O'REILLY, 2019.

References

1. Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A05604b) DATA SCIENCE Open Elective-II (Common to CSE & IT)

Course Objectives

This course is designed to:

- Understand the approaches for handling data related problems
- Explore the mathematical concepts required for Data science
- Explain the basic concepts of data science.
- Elucidate various Machine Learning algorithms.
- Introduce Natural Language Processing and Recommender Systems

UNIT-I

Introduction to Data Science, A Crash Course in Python, Visualising Data.

Learning Outcomes:

At the end of the unit, students will be able to:

- Describe the importance of data analysis (L1).
- Identify the key connectors of Data Science (L4).
- Interpret and Visualize the data using bar charts, line charts and scatter plots (L3).

UNIT-II

Linear Algebra, Statistics, Probability, Hypothesis and Inference, Gradient Descent.

Learning Outcomes:

At the end of the unit, students will be able to:

- Identify the Correlation between two vectors (L4).
- Test a given hypothesis (L3).
- Compute mean, median and mode for the given data (L3).

UNIT-III

Getting Data, Working with Data, Machine Leaning, k-Nearest Neighbors, Naïve Bayes.

Learning Outcomes:

At the end of the unit, students will be able to:

• Compute dimensionality reduction using PCA (L3).

- Differentiate supervised and unsupervised learning methods (L4).
- Describe overfitting, under fitting, bias, variance and goodness of learning (L1).
- Solve classification problem using k-nearest neighbour classifier (L3).
- Apply Naïve Bayes classifier to solve decision making problem (L3).

UNIT-IV

Simple Linear Regression, Multiple Regression, Logistic Regression, Decision Trees, Neural Networks.

Learning Outcomes:

At the end of the unit, students will be able to:

- Describe gradient descent approach, maximum likelihood estimation and method of least squares (L1).
- Apply SVM to determine a hyperplane with maximum margin (L3).
- Determine decision tree for given data (L5).
- Describe Perceptron and Back Propagation (L3).

UNIT-V

Clustering, Natural Language Processing, Network Analysis, Recommender Systems.

Database and SQL, MapReduce

Learning Outcomes:

At the end of the unit, students will be able to:

- Determine Clusters in data using k-means and Hierarchical Clustering methods (L5).
- Apply basic SQL Operations using NotQuiteABase (L3).
- Compare User-Based and Item-Based Collaborative Filtering (L2).
- Describe Grammer and MapReduce (L1).

Course Outcomes:

After completion of this course the student would be able to

- Visualize the data using bar charts, line charts and scatter plots (L4).
- Analyse Correlation between two data objects (L4).
- Demonstrate feature selection and dimensionality reduction.(L2)
- Solve decision making problems using k-NN, Naïve Bayes, SVM and Decision.
 Trees (L3).
- Determine Clusters in data using k-means and Hierarchical Clustering methods (L3).
- Design basic SQL Operations using NotQuiteABase (L6)
- Demonstrate the way to use machine learning algorithms using python. (L2)

Text Books:

1. Data Science from Scratch, First Principles with Python - Joel Grus, O'Reilly, First Edition.

Reference Books:

- 1. The Data Science Handbook, Field Cady, WILEY.
- 2. An Introduction to Data Science, Jeffrey M. Stanton, Jeffrey Stanton, 2012

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A27604a) FOOD TOXICOLOGY OPEN ELECTIVE II

PREAMBLE

This text covers about toxins and their relation in food. Examination, identification and prevention of toxins.

Course Objectives

- To know the various toxins and their evaluation.
- To understand their tolerance and control measures.

UNIT – I

Principles of Toxicology: classification of toxic agents; characteristics of exposure; spectrum of undesirable effects; interaction and tolerance; biotransformation and mechanisms of toxicity. Evaluation of toxicity: risk vs. benefit: experimental design and evaluation: prospective and retrospective studies: Controls :Statistics (descriptive, inferential): animal models as predictors of human toxicity: Legal requirements and specific screening methods: LD50 and TD50: in vitro and in vitvo studies; clinical trials.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Classification of toxic agents; characteristics of exposure;
- Spectrum of undesirable effects; interaction and tolerance; biotransformation and mechanisms of toxicity.
- Evaluation of toxicity: risk vs. benefit: experimental design and evaluation:
- Prospective and retrospective studies: Controls: Statistics (descriptive, inferential): animal models as predictors of human toxicity:
- Legal requirements and specific screening methods: LD50 and TD50: in vitro and in vitvo studies; clinical trials.

UNIT - II

Natural toxins in food: natural toxins of importance in food- toxins of plant and animal origin; microbial toxins (e.g., bacterial toxins, fungal toxins and Algal toxins), natural occurrence, toxicity and significance, determination of toxicants in foods and their management.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Natural toxins in food: natural toxins of importance in food- toxins of plant and animal origin
- Microbial toxins (e.g., bacterial toxins, fungal toxins and algal toxins), natural occurrence, toxicity and significance
- Determination of toxicants in foods and their management

UNIT - III

Food allergies and sensitivities: natural sources and chemistry of food allergens; true/untrue food allergies; handling of food allergies; food sensitivities (anaphylactoid reactions, metabolic food disorders and idiosyncratic reactions); Safety of genetically modified food: potential toxicity and allergenisity of GM foods. Safety of children consumables.

Learning outcomes:

At the end of unit, students will be able to understand the following

- Natural sources and chemistry of food allergens; true/untrue food allergies; handling of food allergies
- Food sensitivities (anaphylactoid reactions, metabolic food disorders and idiosyncratic reactions)
- Potential toxicity and allergenisity of gm foods. Safety of children consumables.

UNIT – IV

Environmental contaminants and drug residues in food: fungicide and pesticide residues in foods; heavy metal and their health impacts; use of veterinary drugs (e.g. Malachite green in fish and β - agonists in pork); other contaminants in food, radioactive contamination of food, Food adulteration and potential toxicity of food adulterants.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Fungicide and pesticide residues in foods; heavy metal and their health impacts
- Use of veterinary drugs (e.g. Malachite green in fish and β- agonists in pork); other contaminants in food, radioactive contamination of food
- Food adulteration and potential toxicity of food adulterants.

UNIT - V

Food additives and toxicants added or formed during food processing: safety of food additives; toxicological evaluation of food additives; food processing generated toxicants: nitroso-compounds, heterocyclic amines, dietary Supplements and toxicity related to dose: common dietary supplements; relevance of the dose; possible toxic effects.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Safety of food additives; toxicological evaluation of food additives;
- Nitroso-compounds, heterocyclic amines, dietary supplements and toxicity related to dose
- Common dietary supplements; relevance of the dose; possible toxic effects.

Course Outcomes

By the end of course

• Student will gain knowledge on principles of toxicity and characteristics of toxins and their classification. Examination and prevention of toxins in foods and etc.

TEXT BOOKS

- 1. Helferich, W., and Winter, C.K "Food Toxicology", CRC Press, LLC. Boca Raton, FL. 2007.
- 2. Shibamoto, T., and Bjeldanes, L. "Introduction to Food Toxicology", 2009, 2nd Edition. Elsevier Inc., Burlington, MA.
- 3. Watson, D.H. "Natural Toxicants in Food", CRC Press, LLC. Boca Raton, FL1998.

REFERENCES

- 1. Duffus, J.H., and Worth, H.G. J. "Fundamental Toxicology", The Royal Society of Chemistry. 2006.
- 2. Stine, K.E., and Brown, T.M. "Principles of Toxicology", 2nd Edition. CRC Press. 2006.
- 3. Tönu, P. "Principles of Food Toxicology". CRC Press, LLC. Boca Raton, FL. 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A27604b) FOOD PLANT EQUIPMENT DESIGN OPEN ELECTIVE - II

PREAMBLE

This text focuses on materials used for food plant equipment and factors considered for design of various equipment.

Course Objectives:

- To understand the material properties and codes used.
- To know the design considerations.
- To study the design of evaporators, dryers, crystallizers and etc.

UNIT-I

Materials and properties: Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings, corrosion prevention linings equipment, choice of materials, material codes. Design considerations: Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor, temperature effects, radiation effects, effects of fabrication method, economic considerations

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings
- Corrosion prevention linings equipment, choice of materials, material codes
- Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor
- Temperature effects, radiation effects, effects of fabrication method, economic considerations

UNIT - II

Design of pressure and storage vessels: Operating conditions, design conditions and stress; Design of shell and its component, stresses from local load and thermal gradient, mountings and accessories. Design of heat exchangers: Design of shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of pressure and storage vessels includes operating conditions, design conditions and stress
- Design of shell and its component, stresses from local load and thermal gradient, mountings and accessories
- Design of heat exchangers like shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort

UNIT - III

Design of evaporators and crystallizers: Design of single effect and multiple effect evaporators and its components; Design of rising film and falling film evaporators and feeding arrangements for evaporators; Design of crystallizer and entrainment separator

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of evaporators like single effect and multiple effect evaporators and its components; rising film and falling film evaporators and feeding arrangements for evaporators;
- Design of crystallizer and entrainment separator

UNIT - IV

Design of agitators and separators: Design of agitators and baffles; Design of agitation system components and drive for agitation. Design of centrifuge separator; Design of equipment components, design of shafts, pulleys, bearings, belts, springs, drives, speed reduction systems. Design of freezing equipment: Design of ice-ream freezers and refrigerated display system

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of agitators and baffles like Design of agitation system components and drive for agitation.
- Design of centrifuge separator like equipment components, design of shafts, pulleys, bearings, belts, springs, drives, speed reduction systems.
- Design of freezing equipment like ice-ream freezers and refrigerated display system

UNIT – V

Design of dryers: Design of tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer. Design of extruders: Cold and hot extruder design, design of screw and barrel, design of twin screw extruder. Design of fermenters: Design of fermenter vessel, design problems

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Design of dryers like tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer
- Design of extruders like Cold and hot extruder design, design of screw and barrel, design of twin screw extruder.
- Design of fermenter vessel, design problems

Course Outcomes

By the end of the course, the students will

• acquires knowledge on theoretical aspects to be design considerations for a food plant equipment and designing of evaporators, separators, storage vessels and etc.

TEXT BOOKS

- 1. Antonio Lopez-Gomez, Gustavo V. Barbosa-Canovas, "Food plant design", CRC press 2005.
- 2. George D. Saravacos and Zacharias B. Maroulis, "Food Plant Economics", CRC Press 2007.

REFERENCES

- 1. Peters M., Timmerhaus K. & Ronald W., "Plant Design & Economics for Chemical Engineers", McGraw Hill.
- 2. James R Couper, "Process Engg. Economics (Chemical Industries) CRC Press 3. Aries & Newton, Chemical Engg. Cost Estimation", McGraw Hill.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(19A54604a) WAVELET TRANSFORMS AND ITS APPLICATIONS OPEN ELECTIVE-II

Course Objective:

This course provides the students to understand Wavelet transforms and its applications.

UNIT-I-

Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems - Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis - The Discrete Wavelet Transform The Discrete-Time and Continuous Wavelet Transforms.

Learning Outcomes:

Students will be able to

- Understand wavelets and wavelet expansion systems.
- Find wavelet transforms in continuous as well as discrete domains.

UNIT-II-

A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

Learning Outcomes:

Students will be able to

- Illustrate the multi resolution analysis, scaling function.
- Implement parseval theorem.

UNIT-III-

Filter Banks and the Discrete Wavelet Transform: Analysis - From Fine Scale to Coarse Scale-Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - Different Points of View.

Learning Outcomes:

Students will be able to

- Form fine scale to coarse scale analysis.
- Perform decimating synthesis.
- Find the lattices and lifting.

UNIT-IV

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform- Numerical Complexity of the Discrete Wavelet Transform.

Learning Outcomes:

Students will be able to

- Perform multi resolution versus time frequency analysis.
- Perform numerical complexity of discrete wavelet transforms.

UNIT-V

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Learning Outcomes:

Students will be able to

- Understand the orthogonal bases and Biorthogonal Bases.
- Find the Frames and Tight Frames using Fourier series.

Course Outcomes:

After the completion of course, students will be able to

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

TEXT BOOKS:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

REFERENCE BOOKS:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C

3 0 0 3

(19A52604a) SOFT SKILLS (OPEN ELECTIVE-II)

Course Objectives

- To develop awareness in students of the relevance and importance of soft skills
- To provide students with interactive practice sessions to make them internalize soft skills
- To develop Time management, Positive thinking & Decision making skills
- To enable to manage stress effectively
- To enable them to develop employability skills

SYLLABUS

UNIT - I

INTRODUCTION

Definition – Scope – Importance – Methods of improving soft skills – Limits – Analysis – Interpersonal and intrapersonal skills - Verbal and Non-verbal skills.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of soft skills
- Identify the methods of improving soft skills
- Analyze various soft skills in different situations
- Distinguish various soft skills
- Apply various soft skills in day to day life and in workplace

UNIT – II INTRAPERSONAL SKILLS

Knowing self/temperaments/traits - Johari windows - quotient skills(IQ, EQ, SQ), creativity, decision-making-Attitude - Confidence Building - Positive Thinking -Time Management - Goal setting.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand self and its temperament.
- Apply various techniques to know the self.

- Develop positive thinking
- Develop creative thinking and decision-making skills
- Apply self-knowing tools in day to day and professional life.

UNIT - III

INTERPERSONAL SKILLS

Leadership Skills – Negotiation skills – Team-building – Crisis Management – Event Management – Ethics and Etiquettes.

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of interpersonal skills
- Analyze various tactics in negotiation skills.
- Develop team building spirit.
- Develop crisis management
- Apply interpersonal skills through etiquettes.

UNIT - IV

VERBAL SKILLS

Importance of verbal skills in corporate climate, Listening skills –Mother Tongue Influence (MTI) - Speaking skills – Public speaking - Oral presentations - Writing skills –E-mail etiquettes – Memos - Indianism

Learning Outcomes:

At the end of the module, the learners will be able to

- Understand the importance of verbal skills in corporate climate.
- Explain the need of listening skills.
- Explore MTI and suggest remedies to avoid it.
- Interpret various contexts of speaking.
- Apply verbal skills in personal and professional life.

UNIT - V NON-VERBAL SKILLS

Importance of body language in corporate culture – body language-Facial expressions – eye contact – posture – gestures – Proxemics – Haptics – Dress Code – Paralanguage –Tone, pitch, pause& selection of words

Learning Outcomes:

At the end of the module, the learners will be able to

- Comprehend the importance of non-verbal communication.
- Expound the need of facial expressions, postures and gestures.
- Analyze proxemics, haptics etc.
- Understand the importance of dress code.
- Apply various techniques to use para language

Course Outcomes

- Recognize the importance of verbal and non verbal skills
- Develop the interpersonal and intrapersonal skills
- Apply the knowledge in setting the SMART goals and achieve the set goals
- Analyze difficult situations and solve the problems in stress-free environment
- Create trust among people and develop employability skills

Text Books

- 1. Meenakshi Raman & Shalini Upadhyay "Soft Skills", Cengage Learning, 2018.
- 2. S. Balasubramaniam, "Soft Skills for Interpersonal Communication", Orient Black Swan, 2017.

References

- 1. Barun K. Mitra, "Personality Development and Soft Skills", –OXFORD Higher Education 2018.
- 2. AlkaWadkar, "Life Skills for Success", Sage Publications 2016.
- 3. Robert M Sheffield, "Developing Soft Skills", Pearson, 2010.
- 4. DianaBooher, "Communicate With Confidence", Tata McGrawhill, 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- III-II Sem

L T P C

 $0 \ 0 \ 3$

3

(19A51604a) CHEMISTRY OF POLYMERS AND ITS APPLICATIONS

Course Objectives:

- To understand the basic principles of polymers
- To synthesize the different polymeric materials and their characterization by various instrumental methods.
- To impart knowledge to the students about fundamental concepts of Hydro gels of polymer networks, surface phenomenon by micelles
- To enumerate the applications of polymers in engineering

Unit – I: Polymers-Basics and Characterization

Basic concepts: monomers, repeat units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: condensation, addition, radical chain, ionic and coordination and copolymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution Measurement of molecular weight: end group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Learning Outcomes:

At the end of this unit, the students will be able to

- Classify the polymers (L3)
- Explain polymerization mechanism (L2)
- Differentiate addition, condensation polymerizations (L2)
- Describe measurement of molecular weight of polymer (L2)

Unit – II : Synthetic Polymers

Addition

and condensation polymerization processes – Bulk, Solution, Suspension and Emulsion polymerization.

Preparation and significance, classification of polymers based on physical properties, Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications.

Preparation of Polymers based on different types of monomers, Olefin polymers, Diene polymers, nylons, Urea - formaldehyde, phenol - formaldehyde and melamine Epoxy and Ion exchange resins. Characterization of polymers by IR, NMR, XRD.

Learning Outcomes:

At the end of this unit, the students will be able to

- Differentiate Bulk, solution, Suspension and emulsion polymerization (L2)
- Describe fibers and elastomers (L2)
- Identify the thermosetting and thermo polymers (L3)
- Characterize the properties of polymers by IR, NMR, XRD etc.,

Unit – III : Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEAK.

Learning Outcomes:

At the end of this unit, the students will be able to

- Describe the properties and applications of polymers (L2)
- Interpret the properties of cellulose, lignin, starch, rosin, latex etc., (L2)
- Discuss the special plastics of PES, PAES, PEEK etc., (L3)
- Explain modified cellulosics (L2)

Unit-IV: Hydrogels of Polymer networks and Drug delivery

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, **Applications** of hydrogels in drug delivery.

Introduction to drug systems including, drug development, regulation, absorption and disposition, routes of administration and dosage forms. Advanced drug delivery systems and controlled release.

Learning Outcomes:

At the end of this unit, the students will be able to

- Identify types of polymer networks (L3)
- Describe methods involve in hydrogel preparation (L2)
- Explain applications of hydrogels in drug delivery (L2)
- Demonstrate the advanced drug delivery systems and controlled release (L2)

Unit – V : Surface phenomena

Surface tension, adsorption on solids, electrical phenomena at interfaces including electrokinetics, micelles, reverse micelles, solubilization. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

Learning Outcomes:

At the end of this unit, the students will be able to

- Demonstrate electrical phenomena at interfaces including electrokinetics, miselles, reverse micelles etc., (L2)
- Explain photoelectron spectroscopy (L2)
- Discuss ESCA and Auger spectroscopy to the study of surfaces (L3)
- Differentiate micelles and reverse micelles (L2)

Course Outcomes

At the end of the course, the student will be able to:

- Understand the state of art synthesis of Polymeric materials
- Understand the hydro gels preparation, properties and applications in drug delivery system.
- Characterize polymers materials using IR, NMR, XRD.
- Analyze surface phenomenon fo micelles and characterise using photoelectron spectroscopy, ESCA and Auger spectroscopy.

References:

- 1. A Text book of Polymer science, Billmayer
- 2. Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
- 3. Advanced Organic Chemistry, B.Miller, Prentice Hall
- 4. Polymer Chemistry G.S.Mishra
- 5. Polymer Chemistry Gowarikar
- 6. Physical Chemistry Galston
- 7. Drug Delivery- Ashim K. Misra

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)–III-II L T P C 3 0 0

HUMANITIES ELECTIVE-I

3

(19A52602a) ENTREPRENEURSHIP & INCUBATION

COURSE OBJECTIVES:

The objective of this course is

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Syllabus

UNIT-I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Understand the concept of Entrepreneur and Entrepreneurship in India
- Know Entrepreneurship process and emergence of Entrepreneurship
- Analyze the differences between Entrepreneur and Intrapreneur
- Develop a creative mind set and personality
- Understand recent trends in Entrepreneurship across the globe

UNIT-II

Starting the New Venture - Generating business idea – Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Know the process of starting a new venture
- Analyze the sources of new methods in generating business idea
- Evaluate market feasibility, financial feasibility and technical feasibility
- Design and draw business plans in project preparation and prepare project reports

UNIT-III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance - Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey- Institutions in aid of entrepreneurship development

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the various sources of finance to start a new venture
- Contrast & compare between Long term & Short term finance sources
- Analyze the role of banks and other financial institutions in promoting entrepreneurship in India
- Evaluate the need and importance of MSMEs in the growth of country

UNIT-IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants – Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Understand the role of government in promoting women entrepreneurship
- Know various incentives, subsidies and grants available to women entrepreneurs
- Analyze the role of export-oriented units
- Know about the tax concessions available for Women entrepreneurs
- Prepare to face the issues and challenges.

UNIT-V

Fundamentals of Business Incubation - Principles and good practices of business incubation-Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Learning Outcomes:

At the end of the Unit, the learners will be able to:

- Understand the importance of business incubation
- Apply brilliant ideas in the process of business incubation
- Analyze the process of business incubation/incubators.
- Contrast & Compare between business incubation and business incubators.
- Design their own business incubation/incubators as viable-business unit.

Course Outcomes:

At the end of the course, students will be able to

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

TEXT BOOKS

- D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective –
 Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit : login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

REFERENCES

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.Janakiramand M.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-RESOURCES

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- 3. http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

B.Tech (ECE)— III-II

L T P C 3 0 0 3

(19A52602b) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objectives:

The objective of this course is

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, inputoutput relationship for optimizing production and cost
- To know the various types of Market Structures & pricing methods and its strategies
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on Accounting and to explain the process of preparing Financial statements

Syllabus

UNIT I -

INTRODUCTION TO MANAGERIAL ECONOMICS DEMAND

Managerial Economics – Definition – Nature & Scope - Contemporary importance of Managerial Economics - Demand Analysis - Concept of Demand - Demand Function - Law of Demand - Elasticity of Demand - Significance - Types of Elasticity - Measurement of Elasticity of Demand - Demand Forecasting - Factors governing Demand Forecasting - Methods of Demand Forecasting - Relationship of Managerial Economics with Financial Accounting and Management.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the nature and scope of Managerial Economics and its importance
- Understand the concept of demand and its determinants
- Analyze the Elasticity and degree of elasticity
- Evaluate Demand forecasting methods
- Design the process of demand estimation for different types of demand

UNIT-II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function – Least-cost combination - Short-run and Long-run Production Function - Isoquants and Isocosts, MRTS - Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale – **Cost & Break Even Analysis** - Cost concepts and 255 Page

Cost behavior - Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems) - Managerial significance and limitations of Break-Even Analysis.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the production function, Input-Output relationship and different cost concepts
- Apply the least-cost combination of inputs
- Analyze the behavior of various cost concepts
- Evaluate BEA for real time business decisions
- Develop profit appropriation for different levels of business activity

UNIT -III

INTRODUCTION TO FORMS OF BUSINESS ORGANIZATIONS AND MARKETS

Market structures - Forms of Business Organizations - Sole Proprietorship - Partnership - Joint Stock Companies - Public Sector Enterprises-Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition - Monopoly - Monopolistic Competition - Oligopoly - Price-Output Determination - Pricing Methods and Strategies.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the structure of markets, features of different markets and forms of business organizations
- Apply the price output relationship in different markets
- Analyze the optimum output levels to maximize profit in different markets
- Evaluate price-output relationship to optimize cost, revenue and profit
- Interpret Pricing Methods and Strategies

UNIT-IV

CAPITAL AND CAPITAL BUDGETING Concept of Capital - Significance - Types of Capital - Components of Working Capital - Sources of Short-term and Long-term Capital - Estimating Working capital requirements - Cash Budget - **Capital Budgeting** - Features of Capital Budgeting Proposals - Methods and Evaluation of Capital Budgeting Projects - Pay Back Method - Accounting Rate of Return (ARR) - Net Present Value (NPV) - Internal Rate Return (IRR) Method (simple problems)

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the concept of capital budgeting and its importance in business
- Contrast and compare different investment appraisal methods
- Analyze the process of selection of investment alternatives using different appraisal methods

- Evaluate methods of capital budgeting for investment decision making and for maximizing returns
- Design different investment appraisals and make wise investments

UNIT -V

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Accounting Concepts and Conventions - Introduction Double-Entry Book Keeping, Journal, Ledger, Trial Balance - Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Know the concept, convention and significance of accounting
- Apply the fundamental knowledge of accounting while posting the journal entries
- Analyze the process and preparation of final accounts and financial ratios
- Evaluate the financial performance of an enterprise by using financial statements

Data Books Required:

Present Value Factors table

Course Outcomes:

At the end of the course, students will be able to

- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets
- Apply concepts of production, cost and revenues for effective business decisions
- Students can analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques
- Prepare the accounting statements and evaluate the financial performance of business entity.

TEXT BOOKS:

- 1. Varshney & Maheswari: "Managerial Economics", Sultan Chand, 2013.
- 2. Aryasri: "Business Economics and Financial Analysis", 4th edition, MGH, 2019

REFERENCES:

- 1. Ahuja Hl "Managerial economics" 3rd edition, Schand, ,2013
- 2. S.A. Siddiqui and A.S. Siddiqui: "Managerial Economics and Financial Analysis", New Age International, 2013.

- 3. Joseph G. Nellis and David Parker: "Principles of Business Economics", 2nd edition, Pearson, New Delhi.
- 4. Domnick Salvatore: "Managerial Economics in a Global Economy", Cengage, 2013.

B.Tech (ECE)- III-II

L T P C

 $0 \quad 0$

(19A52602c) BUSINESS ETHICS AND CORPORATE GOVERNANCE

Course Objectives:

The objectives of this course are

- To make the student understand the principles of business ethics
- To enable them in knowing the ethics in management
- To facilitate the student role in corporate culture
- Impart knowledge about the fair trade practices
- Encourage the student in knowing them about the corporate governance

Syllabus

BUSINESS ETHICS AND CORPORATE GOVERNANCE

UNIT -I

Introduction – Meaning - Nature and Scope – Loyalty and Ethical Behaviour, Values across Cultures; Business Ethics – Ethical Practices inManagement. Types of Ethics – Characteristics – Factors influencing, Business Ethics – Importance of Business Ethics – Arguments for and against business ethicsBasics of business ethics Corporate Social Respons ibility – Issues of Management – Crisis Management

Learning Outcomes:

After completion of this unit student will

- Understand the meaning of loyalty and ethical Behavior
- Explain various types of Ethics
- Know about the factors influencing business ethics
- Understand the corporate social responsibility of management

UNIT-II

ETHICS IN MANAGEMENT

Introduction – Ethics in HRM – Marketing Ethics – Ethical aspects of Financial Management-Technology Ethics and Professional ethics. The Ethical Value System – Universalism, Utilitarianism, Distributive Justice, Social Contracts, Individual Freedom of Choice, Professional Codes; Culture and Ethics – Ethical Values in different Cultures, Culture and Individual Ethics.

Learning Outcomes:

After completion of this unit student will

- Understand the meaning of Marketing Ethics
- Analyze Differentiate between Technical ethics and professional ethics
- Know about the ethical value system
- Understand the Code and culture

UNIT-III

ROLE OF CORPORATE CULTURE IN BUSINESS

Meaning – Functions – Impact of corporate culture – cross cultural issues in ethics, Emotional Honesty – Virtue of humility – Promote happiness – karma yoga – proactive – flexibility and purity of mind. The Ethical Value System – Universalism, Utilitarianism, Distributive Justice, Social Contracts, Individue Freedom of Choice, Professional Codes; Culture and Ethics – Ethical Values in different Cultures, Culture and Individual Ethics.

Learning Outcomes:

After completion of this unit student will

- Understand the corporate culture in business
- Analyze Ethical Value System Know about the ethical value system
- Know Universalism, Utilitarianism, Distributive Justice
- Differentiate Ethical Values in different Cultures

UNIT-IV

Law and Ethics – Relationship between Law and Ethics, Other Bodies in enforcing Ethical Business Behavior, Impact of Laws on Business Ethics; Social Responsibilities of Business – Environmental Protection, Fair Trade Practices, Fulfilling all National obligations under various Laws, Safeguarding Health and wellbeing of Customers.

Learning Outcomes:

After completion of this unit student will

- Understand Law and Ethics
- Analyze Social Responsibilities of Business
- Know Environmental Protection and Fair Trade Practices
- Implementing National Safeguarding Health and wellbeing of Customers

UNIT -V

CORPORATE GOVERNANCE

Meaning – scope - Issues, need, corporate governance code, transparency & disclosure, role of auditors, board of directors and shareholders; Global issues of governance, accounting and regulatory frame work, corporate scams, committees in India and abroad, corporate social responsibility composition of BODs - Cadbury Committee - various committees - reports on corporate governance - Benefits and Limitations

of Corporate Governance with living examples.

Learning Outcomes:

After completion of this unit student will

- Understand corporate governance code
- Analyze role of auditors, board of directors and shareholders
- Know accounting and regulatory frame work
- Implementing corporate social responsibility

Course Outcomes:

At the end of the course, students will be able to

- Understand business ethics and ethical practices in management.
- Understand the role of ethics in management
- Apply the knowledge in cross cultural ethics
- Analyze law and ethics
- Evaluate corporate governance

TEXT BOOKS:

- 1. Murthy CSV: "Business Ethics and Corporate Governance", HPH
- 2. Bholananth Dutta, S.K. Podder "Corporation Governance", VBH.

REFERENCE BOOKS:

- 1. Dr. K. Nirmala, KarunakaraReaddy: "Business Ethics and Corporate Governance", HPH
- 2. H.R.Machiraju: "Corporate Governance"
- 3. K. Venkataramana, "Corporate Governance", SHBP.
- 4. N.M.Khandelwal: "Indian Ethos and Values for Managers"

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C

3 0 0 3

(19A52602d) ENTERPRISE RESOURCE PLANNING

Course Objectives:

The objectives of this course are

- To provide a contemporary and forward-looking on the theory and practice of
- Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Syllabus

UNIT-I

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

Learning Outcomes:

After completion of this unit student will

- Understand the concept of ERP
- Explain various Business modeling
- Know the contemporary technology like SCM, CRM
- Understand the OLAP

UNIT-II

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Designmaking Capability

Learning Outcomes:

After completion of this unit student will

- Understand the Advantages of ERP
- Explain the challenges associated with ERP System
- Analyze better customer satisfaction
- Differentiate Improved Information Accuracy and Design-making Capability

UNIT-III

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

Learning Outcomes:

After completion of this unit student will

- Understand the implementation of ERP life cycle
- Explain the challenges associated with implementing ERP system
- Analyze the need of re-engineering
- Know the recent trends in team training testing and go-live

UNIT-IV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

Learning Outcomes:

After completion of this unit student will

- Understand the business process reengineering
- Explain the challenges associated with BPR
- Analyze the need of process redesign
- Differentiate between process to be redesign and measuring existing process

UNIT-V

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Learning Outcomes:

After completion of this unit student will

- Understand the role of IT
- Explain the challenges in Designing and building a prototype of the new process
- Analyze the need of MIS

• Differentiate between DSS and EIS

Course outcomes:

At the end of the course, students will be able to

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

TEXT BOOKS:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

REFERENCE BOOKS:

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. "ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II L T P C

3 0 0 3

(19A52602e) SUPPLY CHAIN MANAGEMENT

Course Objectives:

The objectives of this course are

- To provide Knowledge on logistics and supply chain management
- To enable them in designing the distribution network
- To train the students in knowing the supply chain Analysis
- Impart knowledge on Dimensions of logistic
- To know the recent trends in supply chain management

Syllabus

UNIT-1

Introduction to Supply Chain Management

Supply chain - objectives - importance - decision phases - process view -competitive and supply chain strategies - achieving strategic fit – supply chain drivers - obstacles – framework - facilities -inventory-transportation-information-sourcing-pricing.

Learing Outcomes:-

After completion of this unit student will

- Understand the meaning and objectives of supply chain management
- Explain supply chain drivers
- Know the steps involved in SCM frame work
- Understand transportation information and pricing

UNIT-2

Designing the distribution network

Role of distribution - factors influencing distribution - design options - e-business and its impact - distribution networks in practice -network design in the supply chain - role of network -factors affecting the network design decisions modeling for supply chain. Role of transportation - modes and their performance - transportation infrastructure and policies - design options and their trade-offs tailored transportation.

Learning Outcomes:-

After completion of this unit student will

• Understand the different distribution network

- Explain the factors influencing network design in the supply chain
- Know the Role of transportation
- Analyze design options and their trade-offs

UNIT-3

Supply Chain Analysis.

Sourcing - In-house or Outsource - 3rd and 4th PLs - supplier scoring and assessment, selection - design collaboration - Procurement process - Sourcing planning and analysis. Pricing and revenue management for multiple customers, perishable products, seasonal demand, bulk and spot contracts.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of supply chain Analysis
- Explain design collaboration
- Know procurement process -sourcing planning and analysis
- Understand seasonal demand, bulk and spot contracts

UNIT-4

Dimensions of Logistics

A macro and micro dimension - logistics interfaces with other areas - approach to analyzing logistics systems - logistics and systems analysis - techniques of logistics system analysis - factors affecting the cost and importance of logistics. Demand Management and Customer Service Outbound to customer logistics systems - Demand Management -Traditional Forecasting - CPFRP - customer service - expected cost of stock outs - channels of distribution.

Learning Outcomes:-

After completion of this unit student will

- Understand dimensions of logistics
- Explain logistics interfaces with other areas
- Know techniques of logistics system analysis
- Understand Demand Management

UNIT-5

Recent Trends in Supply Chain Management-Introduction, New Developments in Supply Chain Management, Outsourcing Supply Chain Operations, Co-Maker ship, The Role of E-Commerce in Supply Chain Management, Green Supply Chain Management, Distribution Resource Planning, World Class Supply Chain Management

Learning Outcomes:-

After completion of this unit student will

- Understand the recent trend in supply chain management
- Explain The Role of E-Commerce in Supply Management
- Know Green Supply Chain Management
- Understand Distribution Resource Planning

Course Outcomes:

At the end of the course, students will be able to

- Understand the strategic role of logistic and supply chain management in the cost reduction and offering best service to the customer
- Understand Advantages of SCM in business
- Apply the knowledge of supply chain Analysis
- Analyze reengineered business processes for successful SCM implementation
- Evaluate Recent trend in supply chain management

TEXT BOOKS:

- 1. Sunil Chopra and Peter Meindl, Supply Chain Management "Strategy, Planning and Operation", 3rd Edition, Pearson/PHI, 2007.
- 2. Supply Chain Management by Janat Shah Pearson Publication 2008.

REFERENCE BOOKS:

- 1. A Logistic approach to Supply Chain Management Coyle, Bardi, Longley, Cengage Learning, 1/e
- 2. Donald J Bowersox, Dand J Closs, M Bixby Coluper, "Supply Chain Logistics Management", 2nd edition, TMH, 2008.
- 3. Wisner, Keong Leong and Keah-Choon Tan, "Principles of Supply Chain Management A Balanced Approach", Cengage Learning, 1/e
- 4. David Simchi-Levi et al, "Designing and Managing the Supply Chain" Concepts

B.Tech (ECE)- III-II Sem

L T P C

0 0 31.5

(19A04602P) DIGITAL SIGNAL PROCESSING LAB

Course Objectives:

- Students can learn the basics of using DSP chips to perform real-time digital signal processing.
- Ability to apply knowledge of mathematics, science and engineering: Construction of tools for visualizing the basic concepts of discrete signal representation such as Fourier transforms, discrete time representations.
- Students will learn numerous programming tools for design and implementations of filtering algorithms.
- Understand the concept of Multi-rate signal processing and sample rate conversion.
- Develop and Implement DSP algorithms in software using CCS with DSP floating point Processor.

Conduct any eight experiments from part-A and any four experiments from part-B

List of Experiments:

PART-A

The following experiments shall be conducted using MATLAB / Lab View / C Programming/ Equivalent software.

- 1. Generation of sinusoidal waveform / signal based on recursive difference equations.
- 2. Find DFT / IDFT of given discrete time signal.
- 3. Find frequency response of a system given in transfer function/ differential equation form.
- 4. Implementation of FFT of given Sequence.
- 5. Design and implementation of IIR filter using bilinear transformation and impulse invariant method.
- 6. Design and implementation of IIR Butterworth (LP/HP) filter.
- 7. Design and implementation of IIR Chebyshev(LP/HP) filter.
- 8. Design and implementation of FIR with low pass filter using any three windowing techniques. Plot its magnitude and phase responses.
- 9. Design and implementation of FIR filter with high passfilter using any three windowing techniques. Plot its magnitude and phase responses.
- 10. Design and implementation of FIR filter with band pass / band stopfilter using any three windowing techniques. Plot its magnitude and phase responses.

PART-B

The following experiments shall be conducted using (TI / Analog Devices / Motorola / Equivalent DSP processors).

- 11. Study the architecture of DSP chips TMS 320C 5X/6X Instructions.
- 12. Find DFT / IDFT of given discrete time signal.
- 13. Implementation of FFT of given Sequence.
- 14. Design and implementation of IIR Butterworth / Chebyshev (LP/HP) filter.
- 15. Design and implementation of FIR with low pass / high pass filter using any three windowing techniques. Plot its magnitude and phase responses.

Course Outcomes

- Ability to design-test, to verify, to evaluate, and to benchmark a real-time DSP system.
- Ability to calculate discrete time domain and frequency domain of signals using discrete Fourier series and Fourier transform.
- Ability to design, using MATLAB-based filter design techniques, FIR and IIR digital filters and Determine the frequency response of filters.
- Implementation of basic signal processing algorithms such as convolution, difference equation implementation and application of them in the construction of FIR and IIR filters.
- Design DSP based real time processing systems to meet desired needs of the society.

B.Tech (ECE)- III-II Sem

LTPC

0 31.5

(19A04601P) MICROPROCESSORS AND MICROCONTROLLERS LAB

Course Objectives:

- Write ALP for arithmetic and logical operations in 8086
- Familiarize with MASM, Embedded C & Code composer studio
- Write and execute programs in 8086, 8051 and ARM Cortex M0

Conduct all the experiments:

List of Experiments:

Intel 8086 (16 bit Micro Processor)

- 1. Perform simple arithmetic operations using different addressing modes.
- 2. Sort an array of binary numbers.
- 3. Code Conversion (Eg. ASCII to Packed BCD form).
- 4. Addition of an array of BCD numbers stored in packed form.
- 5. Multiplying two 3x3 matrices and print on DOS
- 6. Identification & displaying the activated key using DOS & BIOS function calls.

Intel 8051 (8 bit Microcontroller)

- 1. Detection of key closure (connected to a port line) by polling technique.
- 2. Delay generation using i) Nested loop & ii) Timers.
- 3. Counting of external event occurrence through port line

ARM Cortex M0 – NXP LPC Xpress/1115

- 1. Introduction to the Keil MDK-ARM tool, C and Assembly coding Processing text in assembly language
- 2. Configure GPIO for Digital input and output
- 3. Study of mixed assembly and C programming Calling a C function from assembly and Calling an assembly function from C

Course Outcomes:

- Execution of different programs for 8086, 8051 in Assembly Level Language using MASM Assembler
- Design and implement some specific real time applications.

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 0

(19A99501) MANDATORY COURSE: CONSTITUTION OF INDIA

COURSE OBJECTIVES: The objective of this course is

- To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and Election Commission of India.
- To understand the central-state relation in financial and administrative control

Syllabus

UNIT-I

Introduction to Indian Constitution – Constitution – Meaning of the term - Indian Constitution-Sources and constitutional history - Features – Citizenship – Preamble - Fundamental Rights and Duties - Directive Principles of State Policy.

Learning Outcomes:-

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History and features of Indian constitution
- Learn about Preamble, Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union - Federalism - Centre-State relationship - President's Role, power and position - PM and Council of ministers - Cabinet and Central Secretariat -Lok Sabha - Rajya Sabha - The Supreme Court and High Court - Powers and Functions

Learning Outcomes:-

After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government

- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration - Governor - Role and Position -CM and Council of ministers - State Secretariat-Organization Structure and Functions

Learning Outcomes:-

After completion of this unit student will

- Understand the structure of state government
- Analyze the role of Governor and Chief Minister
- Explain the role of State Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

Local Administration - District's Administration Head - Role and Importance - Municipalities - Mayor and role of Elected Representatives -CEO of Municipal Corporation Pachayati Raj - Functions— PRI —Zilla Parishath - Elected officials and their roles — CEO,Zilla Parishath - Block level Organizational Hierarchy - (Different departments) - Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning Outcomes:-

After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration's role and importance
- Analyze the role of Mayor and elected representatives of Municipalities
- Learn about the role of Zilla Parishath block level organization

UNIT-V

Election Commission - Election Commission- Role of Chief Election Commissioner and Election Commissionerate - State Election Commission -Functions of Commissions for the welfare of SC/ST/OBC and Women

Learning Outcomes:-

After completion of this unit student will

- Know the role of Election Commission
- Contrast and compare the role of Chief Election commissioner and Commissionerate
- Analyze the role of state election commission
- Evaluate various commissions viz SC/ST/OBC and women

Course Outcomes:

At the end of the course, students will be able to

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local selfgovernment
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.

TEXT BOOKS

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. Subash Kashyap, "Indian Constitution", National Book Trust

REFERENCES:

- 1. J.A. Siwach, "Dynamics of Indian Government & Politics".
- 2. H.M.Sreevai, "Constitutional Law of India", 4th edition in 3 volumes (Universal Law Publication)
- 3. J.C. Johari, "Indian Government and Politics", Hans India
- 4. M.V. Pylee, "Indian Constitution", Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi

E-RESOURCES:

- 1.nptel.ac.in/courses/109104074/8
- 2.nptel.ac.in/courses/109104045/
- 3.nptel.ac.in/courses/101104065/
- 4.www.hss.iitb.ac.in/en/lecture-details
- 5.www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A04701T) MICROWAVE ENGINEERING AND OPTICAL COMMUNICATIONS

Course Objectives:

- To understand the wave propagation in waveguides, principle of operation of optical sources, detectors, microwave active and passive devices.
- To apply the boundary conditions of the waveguides to solve for field expressions in waveguides.
- To derive the field expressions for different modes of the waveguides, and Scattering matrix for passive microwave devices.
- To differentiate Linear bean tubes and crossed field tubes in terms of operation and performance.
- To remember various types of fibers, modes, configurations and signal degradations.
- To analyze signal degradation in optical fibers and compare the performance of various optical sources and detectors.

UNIT I:

Waveguides (Microwave Transmission lines): Introduction, Rectangular waveguides, Field expressions for TE and TM modes, Wave propagation in the guide, Phase and group velocities, Power transmission and attenuation, Waveguide current and mode excitation, Circular waveguide – TE and TM modes, Wave propagation, waveguide resonators – problem solving.

Learning Outcomes:

After completing this Unit, students will be able to

- Know the importance of waveguides (L1)
- Derive field expressions for different modes of propagation in the waveguides(L3).
- Understand the concept of wave propagation in the guides (L1)
- Problem solving to find the parameters like cutoff frequency, phase and group velocities etc. in waveguides (L2)

UNIT II:

Passive Microwave Devices: Introduction to scattering parameters and their properties, Terminations, Variable short circuit, Attenuators, Phase shifters, Hybrid Tees (H-plane, E-plane, Magic Tees), Hybrid ring, Directional Couplers – Bethe hole and Two hole Couplers, Microwave propagation in Ferrites, Microwave devices employing Faraday rotation – Isolator, Circulator, Deriving Scattering matrix for Microwave passive devices.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand principle of operation of all passive microwave devices (L1)
- Know the importance of Scattering parameters and their properties (L1)
- Derive the Scattering matrix for the microwave devices (L3)
- Apply the Scattering matrix to understand the working of passive devices and solve problems (L2)

UNIT III:

Microwave Amplifiers and Oscillators:

Microwave Tubes: (i) Linear Beam Tubes – Two cavity Klystron amplifier -velocity modulation, bunching process, output power, Reflex Klystron oscillator, power output and efficiency, Travelling Wave Tube (TWT) – Bunching process and amplification process (Qualitative treatment only).

(ii) Crossed Field Tubes – Magnetron oscillator, pi-mode operation, power output and efficiency, Hartree Condition, Mode jumping in Magnetron, Principle of operation of Cross Field Amplifier (CFA).

Microwave Semiconductor Devices: Gunn Oscillator – Principle of operation, Characteristics, Two valley model, IMPATT, TRAPATT diodes, Parametric Amplifier.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand principle of operation of Microwave Tubes and semiconductor devices (L1)
- Derive the expressions power output and efficiency of all microwave devices (L3)
- Differentiate Linear bean tubes and crossed field tubes in terms of operation and performance (L5)

UNIT IV:

Optical Communications:

Overview of Optical Fiber Communications, optical fibers – Structures, Optical fiber modes and configurations, Signal degradation in optical fibers – Signal attenuation, absorption, scattering losses, Bending Losses, Core and Cladding losses, Signal distortion in optical waveguides, Information capacity determination, Group delay, waveguide dispersion, Inter model dispersion.

Learning Outcomes:

After completing this Unit, students will be able to

- Remember the optical fiber types, modes, configurations, and signal degradation types (L1)
- Analyze the signal degradation in optical fibers (L4)

UNITV:

Optical Sources and Detectors: Introduction, LEDs – structure – Light source, Quantum efficiency, Modulation of an LED, LASER diodes, Source to Fiber power launching, LASER diode to fiber coupling, LED coupling to single mode fibers, Fiber, Splicing, Optical Fiber connectors, Photo diodes – Principle of Photo diodes, Avalanche Photodiodes, Photo detector noise, detector response time, Comparison of Photo diodes.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the working principle of optical sources, detectors and power coupling (L2)
- Compare the performance of various optical source and detectors (L4)

Course Outcomes:

- Understand the wave propagation in waveguides, principle of operation of optical sources, detectors, microwave active and passive devices. Also remember various types of fibers, modes, configurations and signal degradations
- Apply the boundary conditions of the waveguides to solve for field expressions in waveguides.
- Derive the field expressions for different modes of the waveguides, and Scattering matrix for passive microwave devices. Analyze signal degradation in optical fibers and compare the performance of various optical sources and detectors
- Differentiate Linear bean tubes and crossed field tubes in terms of operation and performance.

TEXT BOOKS:

- 1. Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford Publications, Third Edition, 2003. (For Unit 1)
- 2. R. E. Collin, "Foundations for Microwave Engineering", Wiley Student Edition, Second Edition, 2009. (For Units 2, and 3)
- 3. Samuel Y. Liao, "Microwave Devices and Circuits", PHI publications, Third Edition, 1997. (For Units 2, and 3)
- 4. Gerd Keiser, "Optical Fiber Communications", McGraw Hill, Third Edition, 2000. (For Units 4, and 5)

REFERENCES:

- 1. Om. P. Gandhi, "Microwave: Engineering and Applications", Kai Fa Book Company, 1981.
- 2. Reich H. J., et al, "Microwave Principles", MIT Press, 1972.
- 3. F E Terman, "Electronic and Radio Engineering", McGraw Hill, 4th Edition, 1984.

B.Tech (ECE)– IV-I Sem

L T P C

3

3

(19A04702T) VLSI DESIGN

Course Objectives:

- To identify the design for testability methods for combinational & sequential CMOS Circuits.
- To understanding of CMOS fabrication flow, technology scaling, sheet resistance, square capacitance and propagation delays in CMOS circuits.
- To apply the design Rules and draw layout of a given logic circuit and basic circuit concepts to MOS circuits.
- To analyze the behaviour of amplifier circuits with various loads. Analyze the behaviour of static and dynamic logic circuits. Analyze the various test generation methods for static and dynamic CMOS circuits.
- To Design MOSFET based logic circuit, Amplifier circuits using MOS transistors and MOSFET based logic circuits using various logic styles like static and dynamic CMOS.

UNIT-I:

Introduction and Basic Electrical Properties of MOS Circuits: VLSI Design Flow, Introduction to IC technology, Fabrication process: nMOS, pMOS and CMOS. I_{ds} versus V_{ds} Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, and through one or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latch-up in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and BiCMOS technology.

MOS Layers, Stick Diagrams, Design Rules and Layout, Layout Diagrams for MOS circuits

Learning Outcomes:

After completing this Unit, students will be able to

- Understand CMOS fabrication flow and technology scaling (L1).
- Apply the design Rules and draw layout of a given logic circuit (L2).
- Design MOSFET based logic circuits (L4).

UNIT-II:

Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, Some area Capacitance Calculations, The Delay Unit, Inverter Delays, Driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of layers.

Scaling of MOS Circuits: Scaling models and scaling factors, Scaling factors for device parameters, Limitations of scaling, Limits due to sub threshold currents, Limits on logic levels and supply voltage due to noise and current density. Switch logic, Gate logic.

Learning Outcomes:

After completing this Unit, students will be able to

- Apply basic circuit concepts to MOS circuits (L2).
- Estimate the sheet resistance, square capacitance and propagation delays in CMOS circuits (L3)

UNIT-III:

Basic building blocks of Analog IC design

Regions of operation of MOSFET, Modelling of transistor, body bias effect, biasing styles, single stage amplifier with resistive load, single stage amplifier with diode connected load, Common Source amplifier, Common Drain amplifier, Common Gate amplifier, current sources and sinks.

Learning Outcomes:

After completing this Unit, students will be able to

- Analyze the behavior of amplifier circuits with various loads (L3).
- Design amplifier circuits using MOS transistors (L4).

UNIT-IV:

CMOS Combinational and sequential logic circuit design

Static CMOS Design: Complementary CMOS, Ratioed Logic, Pass-Transistor Logic, **Dynamic CMOS Design:** Dynamic Logic-Basic Principles, Speed and Power Dissipation of Dynamic Logic, Issues in Dynamic Design, Cascading Dynamic Gates, Choosing a Logic Style, Gate Design in the Ultra Deep-Submicron Era, Latch Versus Register, Latch based design, timing decimation, positive feedback, instability, Metastability, multiplexer based latches, Master-Slave Based Edge Triggered Register, clock to q delay, setup time, hold time, reduced clock load master slave registers, Clocked CMOS register. Cross coupled NAND and NOR, SR Master Slave register, Storage mechanism, pipelining

Learning Outcomes:

After completing this Unit, students will be able to

- Analyze the behaviour of static and dynamic logic circuits (L3).
- Design MOSFET based logic circuits using various logic styles like static and dynamic CMOS (L4)

UNIT-V:

CAD Tools for Design and Simulation, Aspects of Design Tools, Test and Testability-System Partitioning, Layout and Testability, Reset/Initialization, Design for Testability, Testing Combinational Logic, Testing Sequential Logic, Practical Design for Test (OFT) Guidelines, Scan Design Techniques, Built-In-Self-Test (BIST), Future Trends.

Learning Outcomes:

After completing this Unit, students will be able to

- Identify the design for testability methods for combinational & sequential CMOS circuits (L1).
- Analyze the various test generation methods for static and dynamic CMOS circuits (L3).

Course Outcomes:

- Identify the design for testability methods for combinational & sequential CMOS circuits. Understand CMOS fabrication flow, technology scaling, sheet resistance, square capacitance and propagation delays in CMOS circuits.
- Apply the design Rules and draw layout of a given logic circuit and basic circuit concepts to MOS circuits.
- Analyze the behavior of amplifier circuits with various loads, static and dynamic logic circuits, various test generation methods for static and dynamic CMOS circuits.
- Design MOSFET based logic circuit, Amplifier circuits using MOS transistors and MOSFET based logic circuits using various logic styles like static and dynamic CMOS

TEXT BOOKS:

- 1. Kamran Eshraghian, "Essentials of VLSI Circuits and Systems", Douglas and A. Pucknell and SholehEshraghian, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2003
- 3. Jan M. Rabaey, "Digital Integrated Circuits", AnanthaChandrakasan and Borivoje Nikolic, Prentice-Hall of India Pvt.Ltd, 2nd edition, 2009.

REFERENCES:

1. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, reprint 2009.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A04703a) SATELLITE COMMUNICATIONS (Professional Elective III)

Course Objectives:

- To understand the basic concepts of satellite communications, orbital mechanics and launchers, various subsystems of a satellite and earth station, multiple access techniques, low earth orbit and geo-stationary satellite systems.
- To apply frequency allocation standards, reliability techniques, multiple access techniques power test methods to satellite systems.
- To analyze satellite navigation and global positioning system.
- To design Uplink and Downlink of a satellite.

UNIT- I

Introduction: Origin of Satellite Communications, Historical Back-ground, Basic Concepts of Satellite Communications, Frequency Allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

Orbital Mechanics and Launchers: Orbital Mechanics, Look Angle determination, Orbital Perturbations, Orbit determination, Launches and Launch vehicles, Orbital Effects in Communication Systems Performance.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the basic concepts of satellite communications, orbital mechanics and launchers (L1).
- Excel in basic knowledge of orbital mechanics and launches for the satellite communication (L1).
- Apply the standards pertaining to frequency allocation for satellites (L2).

UNIT-II

Satellite Subsystems: Altitude and Orbit Control System, Telemetry, Tracking, Command and Monitoring, Power Systems, Communication Subsystems, Satellite Antennas, Equipment Reliability and Space Qualification.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand various subsystems of a satellite (L1).
- Describe the electronic hardware systems associated with the satellite subsystem and earth station (L1)

• Apply reliability techniques to check the reliability for space qualification of equipment (L2).

UNIT- III

Satellite Link Design: Basic Transmission Theory, System Noise Temperature and G/T Ratio, Design of Down Links, Up Link Design, Design of Satellite Links for Specified C/N, System Design Examples.

Multiple Access: Frequency Division Multiple Access (FDMA), Intermodulation, Calculation of C/N, Time Division Multiple Access (TDMA), Frame Structure, Examples, Satellite Switched TDMA Onboard Processing, DAMA, Code Division Multiple Access (CDMA), Spread Spectrum Transmission and Reception.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand various multiple access techniques (L1)
- Apply various multiple access techniques for satellite communications (L2)
- Apply frequency allocation standards, reliability techniques, multiple access techniques(L2)
- Analyze link budget of satellite signal for proper communication(L3)
- Design Uplink and Downlink of a satellite (L4)

UNIT-IV

Earth Station Technology: Introduction, Transmitters, Receivers, Antennas, Tracking Systems, Terrestrial Interface, Primary Power Test Methods.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand various subsystems of an earth station (L1).
- Apply power test methods to earth stations (L2).
- Choosing different kinds of transmitter and receiver antennas to provide Uplink and Down Link Frequency(L5)

UNIT- V

Low Earth Orbit and Geo-Stationary Satellite Systems: Orbit Considerations, Coverage and Frequency Consideration, Delay & Throughput Considerations, System Considerations, Operational NGSO Constellation Designs.

Satellite Navigation & Global Positioning System: Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers and Codes, Satellite Signal Acquisition, GPS

Navigation Message, GPS Signal Levels, GPS Receiver Operation, GPS C/A Code Accuracy, Differential GPS.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the concepts of low earth orbit and geo-stationary satellite systems (L1).
- Demonstrate the impacts of GPS, Navigation, NGSO constellation design for tracking and launching (L3).
- Analyze satellite navigation and global positioning system (L3).

Course Outcomes

• Understand the basic concepts of satellite communications, orbital mechanics and launchers, various subsystems of a satellite and earth station, multiple access techniques

low earth orbit and geo-stationary satellite systems

- Apply frequency allocation standards, reliability techniques, multiple access techniques power test methods to satellite systems
- Analyze satellite navigation and global positioning system
- Design Uplink and Downlink of a satellite
- Choosing different kinds of transmitter and receiver antennas to provide Uplink and Down Link Frequency.

Text Books:

- 1. Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, "Satellite Communications", Wiley Publications, 2nd Edition, 2003.
- 2. Wilbur L. Pritchard, Robert A Nelson and Henri G. Suyderhoud, "Satellite Communications Engineering", 2nd Edition, Pearson Publications, 2003.

References:

- 1. M. Richharia, "Satellite Communications: Design Principles" –BS Publications, 2nd Edition, 2003.
- 2. D.C Agarwal, "Satellite Communication", Khanna Publications, 5th Ed.
- 3. K.N. Raja Rao, "Fundamentals of Satellite Communications", PHI, 2004
- 4. Dennis Roddy, "Satellite Communications", McGraw Hill, 4th Edition, 2009.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A04703b) DIGITAL TV ENGINEERING

(Professional Elective III)

Course Objectives:

- To understand standards, principles of transmitters, radio-frequency systems, antennas and antenna patters, process of radio-wave propagation and measurement techniques for digital T V transmission.
- To apply channel coding and modulation techniques, fundamentals of transmission lines, principles of antennas and radio-wave propagation to digital T V transmission.
- To analyse noise and interference effects on signals, power combiners, transmission line parameters, antenna parameters, and perturbations signals undergo in radio-wave propagation in digital T V transmission.

UNIT-I:

Digital Television Transmission Standards: ATSC terrestrial transmission standard, vestigial sideband modulation, DVB-T transmission standard, ISDB-T transmission standard, channel allocations, antenna height and power, MPEG-2.

Performance Objectives for Digital Television: System noise, external noise sources, transmission errors, error vector magnitude, eye pattern, interference, cochannel interference, adjacent channel interference, analog to digital TV, transmitter requirements.

Learning Outcomes:

After completing this Unit, students will be able to

- Understanding various digital T V standards followed world-wide (L2).
- Analysing noise and interference effects on T V signals (L4).

UNIT-II:

Channel Coding and Modulation for Digital Television: Data synchronization, randomization/scrambling, forward error correction, interleaving, inner code, frame sync insertion, quadrature modulation, 8 VSB, bandwidth, error rate, COFDM, flexibility, bandwidth.

Transmitters for Digital Television: Precorrection and equalization, up conversion, precise frequency control, RF amplifiers, solid-state transmitters, RF amplifier modules, power supplies, power combiners, Wilkinson combiner, ring combiner, Starpoint combiner, cooling, automatic gain or level control, ac distribution, transmitter control, tube transmitters, tube or solid-state transmitters, performance quality, retrofit of analog transmitters for DTV.

Learning Outcomes:

After completing this Unit, students will be able to

- Understanding the principles of digital T V transmitters (L2).
- Applying channel coding and modulation techniques to digital T V transmission (L3).
- Analysing various types of power combiners (L4).

UNIT-III:

Radio-Frequency Systems for Digital Television: Constant-impedance filter, output filters, elliptic function filters, cavities, channel combiners.

Transmission Line for Digital Television: Fundamental parameters, efficiency, effect of VSWR, system AERP, rigid coaxial transmission lines, dissipation, attenuation, and power handling, higher-order modes, peak power rating, frequency response, standard lengths, corrugated coaxial cables, wind load, waveguide, bandwidth, waveguide attenuation, power rating, frequency response, size trade-offs, waveguide or coax pressurization.

Learning Outcomes:

After completing this Unit, students will be able to

- Understanding various types of radio-frequency systems for digital T V transmission (L2).
- Applying fundamentals of transmission lines for digital T V transmission (L3).
- Analysing transmission line parameters for digital T V transmission (L4).

UNIT-IV:

Transmitting Antennas for Digital Television: Antenna patterns, elevation pattern, mechanical stability, null fill, azimuth pattern, slotted cylinder antennas, gain and directivity, power handling, antenna impedance, bandwidth and frequency response, multiple-channel operation, types of digital television broadcast antennas, antenna mounting.

Learning Outcomes:

After completing this Unit, students will be able to

- Understanding various types of antennas and patters (L2).
- Applying principles of antennas for digital T V transmission (L3).
- Analysing antenna parameters for digital T V transmission (L4).

UNIT-V:

Radio-Wave Propagation: Free-space propagation, distance to the radio horizon, refraction, multipath, ground reflections, surface roughness, effect of earth's curvature, Fresnel zones, linear distortions, diffraction, fading, desired signal, field tests, Charlotte, North Carolina,

Chicago, Illinois, Raleigh, North Carolina.

Test and Measurement for Digital Television: Power measurements, average power measurement, calorimetry, power meters, peak power measurement, measurement uncertainty, testing digital television transmitters.

Learning Outcomes:

After completing this Unit, students will be able to

- Understanding the process of radio-wave propagation and measurement techniques as applied to digital T V systems (L2).
- Applying the principles of radio-wave propagation for digital T V transmission (L3).
- Analyzing perturbations signals undergo in radio-wave propagation (L4).

Course Outcomes:

- Understanding standards, principles of transmitters, radio-frequency systems, antennas and antenna patters, process of radio-wave propagation and measurement techniques for digital T V transmission (L2).
- Applying channel coding and modulation techniques, fundamentals of transmission lines, principles of antennas and radio-wave propagation to digital T V transmission (L3).
 - Analysing noise and interference effects on signals, power combiners, transmission lineparameters, antenna parameters, and perturbations signals undergo in radio-wave propagation in digital T V transmission(L4).

Text Book:

1. Gerald W. Collins, "Fundamentals of Digital Television Transmission", John Wiley, 2001.

Reference Book:

1. R. R. Gulati, "Modern Television Practice, Principles, Technology and servicing", 2nd edition, New Age International Publishers, 2001.

B.Tech (ECE) – IV-I Sem

L T P C

3

0 0

(19A04703c) EMBEDDED SYSTEMS

(Professional Elective III)

Course Objectives:

- To introduce major components of an embedded system
- To expose role of firmware, operating systems in correlation with hardware systems.
- To explain interfacing of various communication and I/O devices to an embedded system
- To demonstrate implementation of embedded systems for different applications

UNIT -I

Introduction to Embedded Systems: Definition of embedded system, embedded systems vs general computing systems, history of embedded systems, classification of embedded systems, major application areas of embedded systems, purpose of embedded systems, Processor and OS trends in embedded system.

Embedded hardware units and devices in a system, embedded software in a system and an overview of programming languages, skills required for an embedded system designer, examples of the embedded systems.

Learning Outcomes:

After completing this Unit, students will be able to

- Differentiate embedded system and general computing system (L2)
- Classify embedded systems based on performance, complexity and era in which they are evolved (L4)
- Discuss basic hardware and software units used in embedded systems (L3)

UNIT-II

Core of the embedded system, memory, sensors and actuators, communication interface, embedded firmware, other system components, Characteristics of an embedded system, Quality attributes of embedded systems.

Learning Outcomes:

After completing this Unit, students will be able to

- Summarize different factors to be considered in the selection of memory for an embedded system (L2)
- Describe role of sensors, actuators and their interfacing with I/O subsystems(L2)
- Explain role of embedded firmware in embedded system (L2)
- Understand characteristics describing an embedded system (L2)

• Discuss important quality attributes of the embedded system for online and offline modes (L5)

UNIT-III

I/O, Communication devices and Interrupt Service Mechanism: I/O types and examples, serial communication devices, parallel device ports, wireless devices, timer and counting devices, Interrupt-driven input and output, interrupt service routine concept, interrupt sources, hardware interrupts, software interrupts, interrupt-servicing mechanism, multiple interrupts, interrupt service threads as second-level interrupt handlers, context and the periods for context switching, interrupt latency, interrupt-service deadline, interrupt service mechanism form context-saving angle, direct memory access driven I/O, Device driver programming.

Learning Outcomes:

After completing this Unit, students will be able to

- Summarize pros and cons of interrupt driven data transfer (L2)
- Discuss hardware and software interrupts with examples (L3)
- Know how interrupts can be used to minimize latency (L3)
- Differentiate ISRs & device driver functions (L2)
- Describe uses of hardware and software assigned priorities in an interrupt service mechanism (L2)

UNIT-IV

Inter-process Communication (IPC): Multiple processes in an application, multiple threads in an application, tasks, task and thread states, tasks and data, distinction between function, ISR, IST and task by their characteristics, inter-process communication and synchronization, signals, concept of semaphores, disabling and enabling functions, shared data problem, queues and mailboxes, pipe and socket functions, remote procedure call functions.

Learning Outcomes:

After completing this Unit, students will be able to

- Describe mechanism to create multiple tasks (processes & threads),control task states and allocate system resources to the tasks (L2)
- Explain IPC functions to enable communication of signals, semaphores and messages from ISRs and tasks (L2)
- Discuss IPC functions for pipes, sockets and RPCs (L3)

UNIT-V

REAL-TIMEOPERATING SYSTEMS - Operating System Overview, Operating System - Functions, Types and Services of Operating Systems, Real-Time Operating System, RTOS overview, RTOS Task Scheduling, Keil RTX RTOS, RTOS on **Mbed** platform, **Mbed**RTOSAPI, Using **Mbed** RTOS API for your Project, Thread, Mutex and Semaphore.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain about operating system and RTOS (L2)
- Summarize different features of RTOS (L2)
- Build RTOS based embedded system using Keil RTX mbed platform (L6)

Course Outcomes:

- Identify hardware and software components of an embedded system.
- Choose appropriate embedded system architecture for the given application.
- Discuss quality attributes and characteristics of an embedded system.
- Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment.
- Design an RTOS based embedded system.

Text Books:

- 1. Shibu K V, "Introduction to Embedded Systems", 2nd edition, McGraw Hill Education, 2017.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", 3rd edition, McGraw Hill Education, 2017.

References:

- Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems Using Assembly and C", 2nd edition, Pearson Education India, 2007
- 2. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", 3rdEdition Cengage Learning, 2012.
- 3. David. E. Simon, "An Embedded Software Primer" 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A04703d) IMAGE PROCESSING

(Professional Elective III)

Course Objectives:

- To introduce fundamentals of Image Processing.
- To expose various intensity transformations in spatial and frequency domains.
- To impart concepts of wavelets and various coding techniques for image compression.
- To dissimilate various segmentation techniques for images.
- To teach various color models and to introduce the concepts of color image segmentation.

UNIT I

Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition, image sampling and quantization, basic relationships between pixels – neighbourhood, adjacency, connectivity, distance measures.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain the basic building blocks of image processing(L2)
- Define image processing parameters such as adjacency and distance measures (L1)

UNIT II

Image Enhancements and Filtering- Gray level transformations, histogram equalization and specifications, pixel-domain smoothing filters – linear and order-statistics, pixel-domain sharpening filters – first and second derivative, two-dimensional DFT and its inverse, frequency domain filters – low-pass and high-pass.

Learning Outcomes:

After completing this Unit, students will be able to

- Compare image enhancement methods in spatial and frequency domains (L5)
- Apply frequency Domain filtering techniques for image enhancement (L3)

UNIT-III

Image Segmentation, Detection of discontinuities, edge linking and boundary detection, thresholding – global and adaptive, region-based segmentation.

Learning Outcomes:

After completing this Unit, students will be able to

- Describe various Image segmentation techniques (L2)
- Illustrate detection of discontinuities in an image (L2)

UNIT-IV

Wavelets and Multi-resolution image processing- Uncertainty principles of Fourier Transform, Time-frequency localization, continuous wavelet transforms, wavelet bases and multi-resolution analysis, wavelets and Sub-band filter banks.

Image Compression, -Redundancy, inter-pixel and psycho-visual; Loss less compression – predictive, entropy; Lossy compression- predictive and transform coding; Discrete Cosine Transform; Still image compression standards – JPEG and JPEG-2000.

Learning Outcomes:

After completing this Unit, students will be able to

- Describe various transform techniques for lossy compression (L2)
- Apply various coding techniques for lossless compression (L3)

UNIT V

Color Image Processing-Color models–RGB, YUV, HSI; Color transformations– formulation, color complements, color slicing, tone and color corrections; Color image smoothing and sharpening; Color Segmentation.

Learning Outcomes:

After completing this Unit, students will be able to

- Describe various color models for color image processing (L2)
- Apply various techniques for color image smoothing, sharpening and segmentation (L3)

Course Outcomes:

- Analyze various types of images mathematically.
- Compare image enhancement methods in spatial and frequency domains.
- Demonstrate various segmentation algorithms for given image.
- Justify DCT and wavelet transform techniques for image compression.
- Describe various color models for color image processing.

Text Books:

- 1. R.C. Gonzalez and R.E. Woods, "Digital Image Processing", 2nd Edition, Pearson Education, 2008.
- 2. Anil Kumar Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 2nd edition 2004.

References:

- 1. Rafael C. Gonzalez, Richard E woods and Steven L. Eddins, "Digital Image processing using MATLAB", Tata McGraw Hill, 2010.
- 2. Milan Sonka, Vaclav Hlavac, Roger Boule, "Image Processing, Analysis, and Machine Vision", 3rd Edition, Cengage Learning, 2016.
- 3. S Jayaraman, S Esakkirajan, T Veerakumar, "Digital Image processing", Tata McGraw Hill.
- 4. William K. Pratt, "Digital Image Processing", John Wiley, 3rd Edition, 2004.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A04703e) ADVANCED DIGITAL SIGNAL PROCESSING

(Professional Elective III)

Course Objectives:

- To understand the sampling rate conversion and summarize multirate DSP.
- To describe the various linear filtering techniques and its applications to DSP.
- To applyand estimate parametric and non-parametric power spectrum estimation.
- To analyze the finite word length effects in fixed- and floating-point DSP systems.
- To acquire the knowledge on applications of multi rate digital signal processing.

UNIT I:

Multirate Digital Signal Processing: Introduction, Decimation by a Factor D, Interpolation by a Factor I, Sampling RateConversion by a Rational Factor I/D, Filter Design and Implementation for Sampling-Rate Conversion, Direct-Form FIR Filter Structures, Polyphase Filter Structures, Time-Variant Filter Structures, Multistage Implementation of Sampling-Rate Conversion, Sampling-Rate Conversion of Bandpass Signals, Decimation and Interpolation by Frequency Conversion, Modulation-Free Method for Decimation and Interpolation, Sampling-Rate Conversion by an Arbitrary Factor, First-Order Approximation, Second-Order Approximation (Linear Interpolation).

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the conversion of multiple sampling rates and Multirate signal processing in the digital domain. (L2)
- Design a sampling rate conversion by interpolation and decimation and their effects on frequency spectrum. (L6)

UNIT II:

Linear Prediction and Optimum Linear Filters:

Innovations Representation of a Stationary Random Process, Relationships Between the Filter Parameters and the Autocorrelation Sequence, Forward Linear Prediction, Backward Linear Prediction, The Optimum Reflection Coefficients for the Lattice Forward and Backward Predictors, Relationship of an AR Process to Linear Prediction, The Levinson-Durbin Algorithm, AR Lattice Structure, ARMA Processes and Lattice-Ladder Filters, Wiener Filters for Filtering and Prediction, FIR Wiener Filter, IIR Wiener Filter, Noncausal Wiener Filter.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the concepts and design of optimum filters for linear prediction. (L2)
- Solve the linear equations and analyze the optimum filters to estimate the signals corrupted by noise. (L4)

UNIT III:

Nonparametric Methods for Power Spectrum Estimation: Estimation of Spectra from Finite-Duration Observations of Signals, Estimation of the Autocorrelation and Power Spectrum of Random Signals, Use of the DFT in Power Spectrum Estimation, Bartlett Method, Welch Method, Blackman and Tukey Method, Performance Characteristics of Nonparametric Power Spectrum Estimators.

Parametric Methods for Power Spectrum Estimation: Relationships Between the Autocorrelation and the Model Parameters, The Yule-Walker Method for the AR Model Parameters, The Burg Method for the AR Model Parameters, Unconstrained Least-Squares Method for the AR Model Parameters, Sequential Estimation Methods for the AR Model Parameters, Selection of AR Model Order, MA Model for Power Spectrum Estimation, ARMA Model for Power Spectrum Estimation.

Learning Outcomes:

After completing this Unit, students will be able to

- Analyze various methods for estimating the power spectrum of discrete-time signals.
 (L4)
- Differentiate parametric and non-parametric methods for power spectrum estimation. (L5)

UNIT IV:

Analysis of Finite Word length Effects: Quantization Process and Errors, Quantization of Fixed-point Numbers, Quantization of Floating-point Numbers, Analysis of Coefficient Quantization Effects, Dynamic Range Scaling, Limit cycles in IIR digital filters, Round of errors in FFT algorithms.

Learning Outcomes:

After completing this Unit, students will be able to

- Ability to understand the finite word length effects in filter design, effect of quantization errors. (L3)
- Differentiate in fixed- and floating-point numbers. (L5)

UNIT V:

Applications of Digital Signal Processing: Dual Tone Multi-Frequency Signal Detection, Spectral Analysis of Sinusoidal Signals, Spectral Analysis of Non stationary Signals, Spectral Analysis of Random Signals, Musial Sound Processing, Discrete-Time Analytic Signal Generation, Subband Coding of Speech and Audio Signals, Over Sampling A/D Converter, Over Sampling D/A Converter.

Learning Outcomes:

After completing this Unit, students will be able to

- Apply the knowledge and implement different applications of sampling rate conversion in multirate signal processing systems. (L3)
- Describe the applications of DSP to real-time requirements. (L5)

Course Outcomes:

- Understand the sampling rate conversion, interpolation and decimation for signal processing applications also need of optimum linear filtering and its applications.
- Apply and explore the real-time applications to multirate DSP systems.
- Analyze the parametric and non-parametric methods for power spectrum estimation.
- Evaluate the finite word length effects in filter design such as FIR, IIR.

Text books:

- 1. J G Proakis, D G Manolokis, "Digital Signal Processing Principles, Algorithms and Applications" 3rd Edition, Prentice Hall.
- 2. Sanjit K Mitra, "Digital Signal Processing A Computer Based Approach", 2nd Edition, Tata Mc graw Hill Publications.

References:

- 1. A V Oppenhiem, R W Schafer, "Discrete-Time Signal Processing", Pearson Education.
- 2. S. M. Kay, "Modern spectral Estimation Techniques" PHI, 1997.

B.Tech (ECE)— IV-I

L T P C

3 0 0 3

(19A01704a) AIR POLLUTION AND CONTROL OPEN ELECTIVE-III

Course Objectives:

- To identify the sources of air pollution
- To know the composition and structure of atmosphere
- To know the pollutants dispersion models
- To understand the working of air pollution control equipments
- To identify the sources of noise pollution and their controlling methods

UNIT I

Introduction: sources, effects on – ecosystems, characterization of atmospheric pollutants, air pollution episodes of environmental importance. Indoor Air Pollution– sources, effects.

Learning Outcomes:

After completing this Unit, students will be able to

• To understand the character of atmospheric pollutants and their effects

UNIT II

Meteorology - composition and structure of the atmosphere, wind circulation, solar radiation, lapse rates, atmospheric stability conditions, wind velocity profile, Maximum Mixing Depth (MMD), Temperature Inversions, Wind rose diagram.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the composition and structure and structure of atmosphere
- To understand the maximum mixing depth and windrose diagram

UNIT III

General characteristics of stack emissions, plume behaviour, heat island effect. Pollutants dispersion models – description and application of point, line and areal sources. Monitoring of particulate matter and gaseous pollutants –respirable, non-respirable and nano - particulate matter. CO, CO2, Hydrocarbons (HC), SOX and NOX, photochemical oxidants.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the general characteristics of stack emissions and their behavior
- To understand the monitoring of particulate matter and gaseous pollutants

UNIT IV

Air Pollution Control equipment for particulate matter & gaseous pollutants—gravity settling chambers, centrifugal collectors, wet collectors, fabric filters, electrostatic precipitator (ESP). — Adsorption, Absorption, Scrubbers, Condensation and Combustion.

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the various air pollution control equipments

UNIT V

Noise - sources, measurements, effects and occupational hazards. Standards, Noise mapping, Noise attenuation equations and methods, prediction equations, control measures, Legal aspects of noise.

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the noise sources, mapping, prediction equations etc.,

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify the sources of air pollution
- Understand the composition and structure and structure of atmosphere.
- Know about the general characteristics of stack emissions and their behavior
- Know about the general characteristics of stake emission and their behavior
- Know about the noise sources, mapping, prediction equations etc.,

REFERENCES:

- 1. WarkK., Warner C.F., and Davis W.T., "Air Pollution Its Origin and Control", Harper & Row Publishers, New York.
- 2. Lee C.C., and Lin S.D., "Handbook of Environmental Engineering Calculations", McGraw Hill, New York.
- 3. Perkins H.C., "Air Pollution", McGraw Hill.
- 4. Crawford M., "Air Pollution Control Theory", TATA McGraw Hill.
- 5. Stern A.C., "Air Pollution", Vol I, II, III.
- 6. Seinfeld N.J.,, "Air Pollution", McGraw Hill.
- 7. Stern A.C. Vol. V, "Air Quality Management".
- 8. M N Rao and HVN Rao, Air Pollution" Tata McGraw Hill publication

B.Tech (ECE)– IV-I

LTPC $0 \quad 0$

3

(19A01704b) BASICS OF CIVIL ENGINEERING OPEN ELECTIVE-III

Course Objectives:

- To identify the traditional materials that are used for building constructions
- To know the principles of building planning
- To know the causes of dampness in structures and its preventive measures
- To know about the low cost housing techniques
- To know the basic principles of surveying

UNIT I

Traditional materials: Stones- Types of stone masonry -Brick-types of brick masonry- lime Cement – Timber – Seasoning of timber - their uses in building works

Learning Outcomes:

After completing this Unit, students will be able to

To understand the characteristics of different building materials.

UNIT II

Elements of building planning- basic requirements-orientation-planning for energy efficiencyplanning based on utility-other requirements.

Learning Outcomes:

After completing this Unit, students will be able to

• To understand the principles of planning in buildings

UNIT III

Dampness and its prevention: Causes of dampness- ill effects of dampness-requirements of an ideal material for damp proofing-materials for damp proofing –methods of damp proofing.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the causes of dampness in buildings and its ill effects
- To know about the general characteristics of ideal material for damp proofing

UNIT IV

Cost effective construction techniques in mass housing schemes: Minimum standards – Approach to cost effective mass housing schemes- cost effective construction techniques.

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the various cost effective techniques in mass housing schemes.

UNIT V

Introduction to Surveying: Object and uses of surveying- Primary divisions in surveying-Fundamental principles of surveying- Classification of surveying-plans and maps-scales-types of graphical scales- units and measurements

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the objects of surveying and its classification.

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify the traditional building materials that are used in building construction.
- Plan the buildings based on principles of planning.
- Identify the sources of dampness and its ill effects on buildings and its prevention.
- Know the cost effective construction in mass housing schemes.
- Know the importance of surveying in planning of the buildings.

Text books:

- 1. S.S.Bhavikatti, "Basic civil engineering", New age international publishers.
- 2. S.S.Bhavikatti, "Building Construction:, Vikas Publishing house, New Delhi.
- 3. G.C.Sahu and Joygopal jena, "Building materials and Construction", McGraw Hill Education.

Reference books:

1. N.Subramanian, "Building Materials testing and sustainability", Oxford university press.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A02704a) RENEWABLE ENERGY SYSTEMS

OPEN ELECTIVE-III

Course Objectives:

At the end of the course the student will be able to

- Identify various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Distinguish between solar thermal and solar PV systems
- Interpret the concept of geo thermal energy and its applications.
- Understand the use of biomass energy and the concept of Ocean energy and fuel cells.

UNIT-I

Solar Energy

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

Learning Outcomes:

At the end of the course the student will be able to

- To understand about solar thermal parameters
- To distinguish between flat plate and concentrated solar collectors
- To know about thermal storage requirements
- To know about measurement of solar radiation

UNIT – II

PV Energy Systems

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the concept of PV effect in crystalline silicon and their characteristics
- Understand other PV technologies
- To know about electrical characteristics of PV cells & modules
- To know about grid connected PV systems

UNIT - III

Wind Energy

Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

Learning Outcomes:

After completing this Unit, students will be able to

- To understand basics of wind energy conversion and system
- To distinguish between VAWT and HAWT systems
- To understand about design considerations
- To know about site selection considerations of WECS

UNIT - IV

Geothermal Energy

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

Learning Outcomes:

After completing this Unit, students will be able to

- Understand the Geothermal energy and its mechanism of production and its applications
- Analyze the concept of producing Geothermal energies
- To learn about disadvantages and advantages of Geo Thermal Energy Systems
- To know about various applications of GTES

UNIT-V

Miscellaneous Energy Technologies

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration

Fuel cell: Principle of working of various types of fuel cells and their working, performance and limitations.

Learning Outcomes:

After completing this Unit, students will be able to

- Analyze the operation of tidal energy
- Analyze the operation of wave energy
- Analyze the operation of bio mass energy
- Understand the principle, working and performance of fuel cell technology
- Apply these technologies to generate power for usage at remote centres

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- To distinguish between various alternate sources of energy for different suitable application requirements
- To differentiate between solar thermal and PV system energy generation strategies
- To understand about wind energy system
- To get exposed to the basics of Geo Thermal Energy Systems
- To know about various diversified energy scenarios of ocean, biomass and fuel cells

Text Books:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

References:

- 1. S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008
- 2. B H Khan, "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria & Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

B.Tech (ECE) – IV-I Sem

L T P C

3 0 0 3

(19A02704b) ELECTRIC VEHICLE ENGINEERING OPEN ELECTIVE-III

Course Objectives:

After completing this Unit, students will be able to

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

UNIT-I

Introduction to EV Systems and Parameters

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, inwheel drives, EV parameters: Weight, size, force and energy, performance parameters.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about past, present and latest technologies of EV
- To understand about configurations of EV systems
- To distinguish between EV parameters and performance parameters of EV systems
- To distinguish between single and multiple motor drive EVs
- To understand about in-wheel EV

UNIT-II

EV and Energy Sources

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

Learning Outcomes:

After completing this Unit, students will be able to

- To know about various types of EV sources
- To understand about e-mobility
- To know about environmental aspects of EV

To distinguish between conventional and recent technology developments in EV systems

UNIT-III

EV Propulsion and Dynamics

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about what is meant by propulsion system
- To understand about single and multi motor EV configurations
- To get exposed to current and recent applications of EV
- To understand about load factors in vehicle dynamics
- To know what is meant acceleration in EV

UNIT-IV

Fuel Cells

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

Learning Outcomes:

After completing this Unit, students will be able to

- To know about fuel cell technology of EV
- To know about basic operation of FCEV
- To know about characteristics and sizing of EV with suitable example
- To get exposed to concept of Hybrid Electric Vehicle using fuel cells
- To know about the comparison of various hybrid EV systems

UNIT-V

Battery Charging and Control

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electro mechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Learning Outcomes:

After completing this Unit, students will be able to

- To understand about basic requirements of battery charging and its architecture
- To know about charger functions
- To get exposed to wireless charging principle
- To understand about block diagram, modelling of electro mechanical systems of EV
- To be able to design various compensation requirements

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- To understand and differentiate between conventional and latest trends in Electric Vehicles
- To know about various configurations in parameters of EV system
- To know about propulsion and dynamic aspects of EV
- To understand about fuel cell technologies in EV and HEV systems
- To understand about battery charging and controls required of EVs

TEXT BOOKS:

- 1. C.C Chan, K.T Chau: "Modern Electric Vehicle Technology", Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

REFERENCE BOOKS:

- 1. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals", CRC Press 2005.
- 2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2015.

B.Tech (ECE)– IV-I Sem

L T P C

3 0 0 3

(19A03704a) FINITE ELEMENT METHODS OPEN ELECTIVE-III

Course Objectives:

- Familiarize basic principles of finite element analysis procedure.
- Explain theory and characteristics of finite elements that represent engineering structures.
- Apply finite element solutions to structural, thermal, dynamic problem.
- Learn to model complex geometry problems and solution techniques.

UNIT - I

Introduction to finite element methods for solving field problems, Stress and equilibrium, Boundary conditions, Strain-Displacement relations, Stress- strain relations for 2D and 3D Elastic problems. Potential energy and equilibrium, The Rayleigh-Ritz method, Formulation of Finite Element Equations.

One dimensional problems: Finite element modeling coordinates and shape functions. Assembly of global stiffness matrix and load vector. Finite element equations, Treatment of boundary conditions, Quadratic shape functions.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand the concept of nodes and elements.(12)
- Understand the general steps of finite element methods.(12)
- Understand the role and significance of shape functions in finite element formulations (12)
- Formulate and solve axially loaded bar problems. (16)

UNIT - II

Analysis of trusses: Stiffness Matrix for plane truss element. Stress Calculations and Problems.

Analysis of beams: Element Stiffness Matrix for two noded, two degrees of freedom per node beam element and simple problems.

Learning Outcomes:

At the end of the unit, the student will be able to

• Explain the use of the basic finite elements for structural applications using truss and beam. (12)

• Formulate and analyze truss and beam problems. (16)

UNIT - III

Finite element modeling of two dimensional stress analysis - constant strain trianglesquadrilateral element-treatment of boundary conditions. Estimation of load Vector, Stresses. Finite element modeling of Axi-symmetric solids subjected to axi-symmetric loading with triangular elements. Two dimensional four noded Isoparametric elements and problems.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the formulation of two dimensional elements (Triangular and Quadrilateral Elements). (L2)
- Apply the formulation techniques to solve two dimensional problems using triangle and quadrilateral elements. (L3)
- Formulate and solve axisymmetric problems.(L6)

UNIT - IV

Steady state heat transfer analysis: One dimensional analysis of slab and fin, two dimensional analysis of thin plate.

Analysis of a uniform shaft subjected to torsion loading.

Learning Outcomes:

At the end of the unit, the student will be able to

- Explain the application and use of the Finite Element Methods for heat transfer problems. (L2)
- Formulate and solve heat transfer problems. (L6)
- Analyse the

UNIT V

Dynamic analysis: Formulation of finite element model, element –mass matrices, evaluation of Eigen values and Eigen vectors for a stepped bar truss.

3D Problems: Finite Element formulation- Tetrahedron element-Stiffness matrix.

Learning Outcomes:

At the end of the unit, the student will be able to

- Understand problems involving dynamics using Finite Element Methods.
- Evaluate the Eigen values and Eigen Vectors for steeped bar.
- Develop the stiffness matrix for tetrahedron element.

Course Outcomes:

Upon successful completion of this course you should be able to

- Understand the concepts behind variational methods and weighted residual methods in FEM.
- Identify the application and characteristics of FEA elements such as bars, beams, and isoparametric elements, and 3-D element.
- Develop element characteristic equation procedure and generation of global stiffness equation will be applied.
- Able to apply Suitable boundary conditions to a global structural equation, and reduce it to a solvable form.
- Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, heat transfer and fluid flow.

TEXT BOOKS

- 1. Chandraputla, Ashok &Belegundu, "Introduction to Finite Element in Engineering", Prentice Hall.
- 2. S.S.Rao, "The Finite Element Methods in Engineering", 2nd Edition, Elsevier Butterworth Heinemann 2011.

REFERENCE BOOKS

- 1. J N Reddy, "An introduction to the Finite Element Method", McGraw Hill, New York, 1993.
- 2. R D Cook, D S Malkus and M E Plesha, "Concepts and Applications of Finite Element Analysis", 3rd Edition, John Wiley, New York, 1989.
- 3. K J Bathe, "Finite Element Procedures in Engineering Analysis", Prentice-Hall, Englewood Cliffs, 1982.
- 4. T J R Hughes, "the Finite Element Method, Prentice", Hall, Englewood Cliffs, NJ, 1986.
- 5. C Zienkiewicz and R L Taylor, "the Finite Element Method", 3rd Edition. McGraw-Hill, 1989.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A03704b) PRODUCT MARKETING OPEN ELECTIVE-III

Course Objectives:

- Introduce the basic concepts of Product marketing.
- Familiarize with market information systems and research
- Understand the nature and importance of industrial market
- Discuss the major stages in new product development
- Identify the factors affecting pricing decisions

UNIT I:

Introduction (7 Hours)

Historical development of marketing management, Definition of Marketing, Core marketing concepts, Marketing Management philosophies, Micro and Macro Environment, Characteristics affecting Consumer behaviour, Types of buying decisions, buying decision process, Classification of consumer products, Market Segmentation Concept of Marketing Myopia. Importance of marketing in the Indian Socio economic system.

Learning Outcomes:

At the end of this student, the student will be able to

- Define Marketing. (L1)
- Discuss marketing philosophies. (L2)
- Sketch the buying decision process. (L3)
- Understand the importance of marketing in the Indian socio economic system. (L2)

UNIT II:

Marketing of Industrial Products (6 Hours)

Components of marketing information system—benefits & uses marketing research system, marketing research procedure, Demand Estimation research, Test marketing, Segmentation Research - Cluster analysis, Discriminate analysis. Sales forecasting: objective and subjective methods. Nature and importance of the Industrial market, classification of industrial products, participants in the industrial buying process, major factors influencing industrial buying behavior, characteristics of industrial market demand. Determinants of industrial market demand Buying power of Industrial users, buying motives of Industrials users, the industrial buying process, buying patterns of industrial users.

Learning Outcomes:

At the end of this student, the student will be able to

- Identify the components of marketing information system. (L2)
- List the advantages and uses of marketing research system. (L1)
- Demonstrate sales forecasting. (L3)
- Explain the major factors influencing industrial buying behaviour. (L2)

UNIT III:

Product Management And Branding (7 Hours)

The concept of a product, features of a product, classification of products, product policies – product planning and development, product line, product mix – factors influencing change in product mix, product mix strategies, meaning of "New – product; major stages in new – product development product life cycle. Branding: Reasons for branding, functions of branding features of types of brands, kinds of brand name.

Learning Outcomes:

At the end of this student, the student will be able to

- Indentify the factors influencing change in product mix. (L2)
- Sketch various stages in product life cycle. (L2)
- Recall the features of a product and product policies. (L1)
- Demonstrate on features, functions and reasons of branding. (L3)

UNIT IV:

Pricing And Pacakaging (7Hours)

Importance of Price, pricing objectives, factors affecting pricing decisions, procedure for price determination, kinds of pricing, pricing strategies and decisions Labeling: Types, functions advantages and disadvantages, Packaging: Meaning, growth of packaging, function of packaging, kinds of packaging.

Learning Outcomes:

At the end of this student, the student will be able to

- List the factors affecting pricing decisions. (L1)
- Explain the procedure for price determination. (L2)
- Employ Pricing strategies and decisions. (L3)
- Understand the functions of labelling and packaging. (L2)

UNIT V:

Product Promotion (6Hours)

Importance of Price, pricing objectives, factors affecting pricing decisions, procedure for price determination, kinds of pricing, pricing strategies and decisions. Advertising and sales promotion: Objectives of advertisement function of advertising, classification of advertisement copy, advertisement media – kinds of media, advantages of advertising. Objectives of sales promotion, advantages sales promotion. Personal Selling: Objectives of personal selling, qualities of good salesman, types of salesman, major steps in effective selling

Learning Outcomes:

At the end of this student, the student will be able to

- Discuss the procedures for price determination. (L2)
- Explain the objectives of advertisement function of advertising. (L2)
- List the advantages and disadvantages of advertising. (L1)
- Describe the major steps in effecting selling. (L2)

Course Outcomes:

At the end of the course, the student will be able to

- Understand basic marketing management concepts and their relevance to business development. (L2)
- Prepare a questionnaire for market research. (L5)
- Design marketing research plan for business organizations. (L5)
- Optimize marketing mix to get competitive advantage. (L4)

Text Books:

- 1. Philip Kotler, "Principles of Marketing", Prentice Hall.
- 2. Philip Kotler, "Marketing Management", Prentice Hall.

Reference Books:

- 1. Wiliam J Stanton, "Fundamentals of Marketing", McGraw Hill
- 2. R.S.N. Pillai and Mrs.Bagavathi, "Marketing", S. Chand & Co. Ltd
- 3. Rajagopal, "Marketing Management Text & Cases", Vikas Publishing House

B.Tech (ECE)– IV-I Sem

L T P C

3 0 0 3

(19A04704a) INTRODUCTION TO MICROCONTROLLERS & APPLICATIONS OPEN ELECTIVE-III

Course Objectives:

This course will enable students to:

- Describe the Architecture of 8051 Microcontroller and Interfacing of 8051 to external memory.
- Write 8051 Assembly level programs using 8051 instruction set.
- Describe the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051.

UNIT – I

8051 Microcontroller:

Microprocessor Vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture- Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

Learning Outcomes:

At the end of this student, the student will be able to

- Understand the importance of Microcontroller and acquire the knowledge of Architecture of 8051 Microcontroller. (L1)
- Analyze interface required memory of RAM & ROM. (L3)

UNIT - II

Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples to usethese instructions.

Learning Outcomes:

At the end of this student, the student will be able to

- Explain different types instruction set of 8051. (L1)
- Develop the 8051 Assembly level programs using 8051 instruction set. (L3)

UNIT - III

8051 Stack, Stack and Subroutine instructions. Simple Assembly language program examples to use subroutine instructions.8051 Timers and Counters – Operation and

Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode-2 on a port pin.

Learning Outcomes:

At the end of this student, the student will be able to

- Describe Stack and Subroutine of 8051. (L1)
- Design Timer /counters using of 8051. (L4)

UNIT-IV

8051 Serial Communication- Basics of Serial Data Communication, RS- 232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.**8051 Interrupts**. 8051 Assembly language programming to generate an external interrupt using a switch.

Learning Outcomes:

At the end of this student, the student will be able to

- Acquire knowledge of Serial Communication and develop serial port programming.
 (L1)
- Develop an ALP to generate an external interrupt using a switch. (L3)

UNIT - V

8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Interfacing with relays and opto isolators, Stepper Motor Interfacing, DC motor interfacing, PWM generation using 8051.

Learning Outcomes:

At the end of this student, the student will be able to

- Apply and Interface simple switches, simple LEDs, ADC 0804 and LCD to using 8051 I/O ports. (L2)
- Design Stepper Motor and f motor interfacing of 8051. (L4)

Course outcomes:

- Understand the importance of Microcontroller and Acquire the knowledge of Architecture of 8051 Microcontroller.
- Apply and Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to using 8051 I/O ports.
- Develop the 8051 Assembly level programs using 8051 instruction set.
- Design the Interrupt system, operation of Timers/Counters and Serial port of 8051.

TEXT BOOKS:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", PHI, 2006 / Pearson, 2006.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning.

REFERENCE BOOKS:

- 1. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.

B.Tech (ECE) – IV-I Sem

L T P C

3 0 0 3

(19A04704b) PRINCIPLES OF DIGITAL SIGNAL PROCESSING OPEN ELECTIVE-III

Course Objectives:

- To explain about signals and perform various operations on it.
- To understand discrete time signals and systems.
- To solve Laplace transforms and z-transforms for various signals.
- To find Discrete Fourier Transform of a sequence by using Fast Fourier Transform.
- To design and realize IIR and FIR filters.

UNIT-I:

INTRODUCTION TO SIGNALS

Classification of Signals: Analog, Discrete, Digital, Deterministic & Random, Periodic & Aperiodic, Even & Odd, Energy & Power signals. Basic operations on signals: Time shifting, Time scaling, Time reversal, Amplitude scaling and Signal addition. Elementary Signals: Unit step, Unit ramp, Unit parabolic, Impulse, Sinusoidal function, Exponential function, Gate function, Triangular function, Sinc function and Signum function.

Learning Outcomes:

At the end of this student, the student will be able to

- Define basic signals and its operations, Classify discrete time signals and systems. (L1)
- Understand various basic operations on signals (L1)

UNIT – II:

DISCRETE TIME SIGNALS ANDSYSTEMS

Discrete Time Signals: Elementary discrete time signals, Classification of discrete time signals: power and energy signals, even and odd signals. Simple manipulations of discrete time signals: Shifting and scaling of discrete-time signals.

Discrete Time Systems: Input-Output description of systems, Block diagram representation of discrete time systems, Linear Constant Coefficient Difference Equations, Classification of discrete time systems: linear and nonlinear, time-invariant and variant systems, causal and non causal, stable and unstable systems.

Learning Outcomes:

At the end of this student, the student will be able to

- Define basic signals and its operations, Classify discrete time signals and systems. (L1)
- Understand various basic operations on signals (L1)

UNIT-III:

LAPLACE TRANSFORMS AND Z-TRANSFORMS

Laplace Transforms: Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of Region of Convergence (ROC), Constraints on ROC for various classes of signals, Properties of Laplace transforms.

Z-Transforms: Concept of Z-transform of a discrete sequence, Region of convergence in Z-Transform, constraints on ROC for various classes of signals, inverse Z-transform, properties of Z-Transforms.

Learning Outcomes:

At the end of this student, the student will be able to

- Understand the basic concepts of Laplace and Z transforms (L1)
- Apply the transform techniques to solve the problems (L2)

UNIT - IV:

FAST FOURIER TRANSFORMS

Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Radix-2 Fast Fourier Transforms (FFT), Decimation in Time and Decimation in Frequency FFT Algorithms: radix-2 DIT-FFT, DIF-FFT, and Inverse FFT: IDFT-FFT.

Learning Outcomes:

At the end of this student, the student will be able to

- Understand the importance of DTFT, DFT, FFT and their inverse transforms with respect to signals and systems (L1)
- Analyze the Decimation in time and frequency algorithms (L3)

UNIT - V:

IIR AND FIR DIGITAL FILTERS

IIR DIGITAL FILTERS: Analog filters approximations: Butterworth and Chebyshev, Design of IIR digital filters from analog filters. Realization of IIR filters: Direct form-I, cascade form and parallel form.

FIR DIGITAL FILTERS: Characteristics of FIR digital filters, frequency response. Design of FIR digital filters using window techniques: Rectangular window, Triangular or Bartlett window, Hamming window, Hanning window, Blackman window. Realization of FIR filters: Linear phase and Lattice structures.

Learning Outcomes:

At the end of this student, the student will be able to

- Understand the importance of IIR and FIR digital Filters (L1)
- Realize IIR filters and analyze various windowing techniques in FIR filters (L2)
- Design IIR and FIR filters (L4)

Course outcomes:

- Define basic signals and its operations, Classify discrete time signals and systems.
- Solve Laplace Transform and z-Transform for various signals, Calculate DFT of a given sequence by using Fast Fourier Transform.
- Analyze the continuous and discrete signals and systems
- Design and realize IIR and FIR filters from the given specifications.

TEXT BOOKS:

- 1. B. P. Lathi, "Signals, Systems and Communications", BS Publications, 2008.
- 2. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications", 4th edition, Pearson Education/PHI, 2007.
- 3. A.V. Oppenheim and R.W. Schaffer, "Discrete Time Signal Processing", 2nd edition., PHI.

REFERENCES:

- 1. A.V. Oppenheim, A.S. Will sky and S.H. Nawab, "Signals and Systems", PHI, 2nd Edition, 2013.
- 2. A. Anand Kumar, "Signals and Systems", PHI Publications, Third Edition, 2013
- 3. P. Ramesh Babu. "Digital Signal Processing".
- 4. Andreas Antoniou, "Digital signal processing", Tata McGraw Hill, 2006.
- 5. R S Kaler, M Kulkarni, Umesh Gupta, "A Text book on Digital Signal processing" –I K International Publishing House Pvt. Ltd.
- 6. M H Hayes, Schaum's Outlines, "Digital Signal Processing", Tata Mc-Graw Hill, 2007.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A05704a) FUNDAMENTALS OF GAME DEVELOPMENT

(Common to CSE & IT)

Course Objectives:

This course is designed to:

- Get familiarized with the various components in a game and game engine.
- Explore the leading open source game engine components.
- Elaborate on game physics.
- Introduce to the game animation.
- Expose to network-based gaming issues.

Unit – 1: Introduction to Game

What is a Game? The Birth of Games, The Rise of Arcade Games, The Crash and Recovery, The Console Wars, Online Games and Beyond.

The Game Industry: Game Industry Overview, Game Concept Basics, Pitch Documentation, pitching a Game to a Publisher, Managing the developer-Publisher Relationship, Legal Agreements, Licenses, Console Manufacturers Approval.

Roles on the Team: Production, Art, Engineering, Design, Quality Assurance Testing, Team Organization, Corporate.

Learning Outcomes:

After completing this Unit, students will be able to

- Demonstrate online games and beyond. [L2]
- Outline the process carried out in the Game Industry [L2]
- Inspect the roles on the Team[L4]

Unit – 2: Teams

Project Leadership, Picking Leads, Team Building, Team Buy-in and Motivation.

Effective Communication: Written Communication, Oral Communication, Nonverbal Communication, Establishing Communication Norms, Communication Challenges.

Game Production Overview: Production Cycle, Preproduction, Production, Testing, Postproduction.

Learning Outcomes:

After completing this Unit, students will be able to

- Build a team and pick a leader. [L6]
- Develop Effective communication. [L3]
- Outline the Game Production cycle [L2]

Unit – 3: Game Concept

Introduction, Beginning the Process, Defining the Concept, Game Programming Basics, Prototyping, Risk Analysis, Pitch Idea, Project Kickoff.

Characters, setting, and Story: Story Development, Gameplay, Characters, Setting, Dialogue, Cinematics, Story Documentation.

Game Requirements: Define Game Features, Define Milestones and Deliverables, Evaluate Technology, Define Tools and Pipeline, Documentation, Approval, Game Requirements Outline

Learning Outcomes:

After completing this Unit, students will be able to

- Design a game. [L6]
- Demonstrate the game play. [L2]
- Identify the Game requirements [L3]

Unit – 4 : Game Plan

Dependencies, Schedules, Budgets, Staffing, Outsourcing, Middleware, Game Plan Outline.

Production Cycle: Design Production Cycle, Art Production Cycle, Engineering Production Cycle, Working Together.

Voiceover and Music: Planning for Voiceover, choosing a Sound Studio, Casting Actors, Recording Voiceover, Voiceover Checklist, Planning for Music, Working with a Composer, Licensing Music.

Learning Outcomes:

After completing this Unit, students will be able to

- Outline the Game plan. [L2]
- Define the production cycle. [L1]
- Make use of voiceover and music in game development. [L3]

Unit – 5: Localization

Creating International Content, Localization-Friendly Code, Level of Localization, Localization Plan, Testing, Localization Checklist.

Testing and Code Releasing: Testing Schedule, Test Plans, Testing Pipeline, Testing Cycle, External Testing, Determining Code Release, Code Release Checklist, Gold Masters, Postmortems.

Marketing and Public Relations: Software Age Ratings, Working with Marketing, Packaging, Demos, Marketing Assets, Game Builds, Working with Public Relations, Asset Deliverable Checklist.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain the importance of localization. [L2]
- Summarize Testing and code releasing [L2]
- Illustrate Marketing and public relations. [L2]

Course Outcomes:

Upon completion of the course, the students should be able to:

- Design games for commercialization (L6)
- Predict the trends in game development (L5)
- Design Game Plan and production cycle (L6)
- Dramatize the game playing environment (L4)

Text Book:

1. Heather Maxwell Chandler, and Rafael Chandler, "Fundamentals of Game Development", Jones & Bartlett Learning, 2011.

References:

- 1. Flint Dille and John Zuur Platten, The Ultimate guide to Video Game Writing, Loan Eagle publisher, 2008.
- 2. Adams, Fundamentals of Game Design, 3rd edition, Pearson Education India, 2015.

B.Tech (ECE)- IV-I Sem

L T P C

3 0 0 3

(19A05704b) CYBER SECURITY (Common to CSE & IT)

Course Objectives:

This course is designed to:

- Understand essential building blocks andbasic concepts of cyber security
- Explore Web security and Network security
- Explain the measures for securing the networks and cloud
- Understand privacy principles and policies
- Describe the legal issues and ethics in computer security

UNIT I

Introduction: Introduction to Computer Security, Threats, Harm, Vulnerabilities, Controls, Authentication, Access Control, and Cryptography, Authentication, Access Control, Cryptography.

Programs and Programming: Unintentional (Non-malicious) Programming Oversights, Malicious Code—Malware, Countermeasures.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain Vulnerabilities, threats and. Counter measures for computer security[L2]
- Interpret the design of the malicious code [L2]

UNIT II

Web Security: User Side, Browser Attacks, Web Attacks Targeting Users, Obtaining User or Website Data, Email Attacks.

Operating Systems Security: Security in Operating Systems, Security in the Design of Operating Systems, Rootkit.

Learning Outcomes:

After completing this Unit, students will be able to

- Outline the attacks on browser, Web and email. [L2]
- Explain the security aspects of Operating Systems. [L3]

UNIT III

Network Security: Network Concepts, Threats to Network Communications, Wireless Network Security, Denial of Service, Distributed Denial-of-Service Strategic Defenses:

Security Countermeasures, Cryptography in Network Security, Firewalls, Intrusion Detection and Prevention Systems, Network Management .

Cloud Computing and Security: Cloud Computing Concepts, Moving to the Cloud, Cloud Security Tools and Techniques, Cloud Identity Management, Securing IaaS.

Learning Outcomes:

After completing this Unit, students will be able to

- Identify the network security threats and attacks. [L3]
- Design the Counter measures to defend the network security attacks. [L6]
- Analyze the security tools and techniques for Cloud computing [L4]

UNIT IV

Privacy: Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Data Mining, Privacy on the Web, Email Security, Privacy Impacts of Emerging Technologies, Where the Field Is Headed.

Management and Incidents: Security Planning, Business Continuity Planning, Handling Incidents, Risk Analysis, Dealing with Disaster.

Learning Outcomes:

After completing this Unit, students will be able to

- Interpret the need for Privacy and its impacts of Emerging Technologies. [L2]
- Explain how to handle incidents and deal with Disaster. [L2]

UNIT V

Legal Issues and Ethics: Protecting Programs and Data, Information and the Law, Rights of Employees and Employers, Redress for Software Failures, Computer Crime, Ethical Issues in Computer Security, Incident Analysis with Ethics, Emerging Topics: The Internet of Things, Economics, Computerized Elections, Cyber Warfare.

Learning Outcomes:

After completing this Unit, students will be able to

- Adapt legal issues and ethics in computer security. [L6]
- Elaborate on the Emerging topics. [L6]

Course Outcomes:

Upon completion of the course, the students should be able to:

• Illustrate the broad set of technical, social & political aspects of Cyber Securityand

- security management methods to maintain security protection (L2)
- Assess the vulnerabilities and threats posed by criminals, terrorist and nation statesto nationalinfrastructure (L5)
- Identify the nature of secure software development and operating systems (L3)
- Demonstrate the role security management in cyber security defense (12)
- Adapt the legal and social issues at play in developing solutions.(L6)

Text Books:

- 1) Pfleeger, C.P., Security in Computing, Prentice Hall, 2010, 5thedition.
- 2) Schneier, Bruce. Applied Cryptography, Second Edition, John Wiley & Sons,1996

Reference Books:

- 1) Rhodes-Ousley, Mark. Information Security: The Complete Reference, Second Edition, Information Security Management: Concepts and Practice, McGraw-Hill, 2013.
- 2) Whitman, Michael E. and Herbert J. Mattord. Roadmap to Information Security for IT and Infosec Managers. Boston, MA: Course Technology,2011.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C 3 0 0 3

(19A27704a) CORPORATE GOVERNANCE IN FOOD INDUSTRIES OPEN ELECTIVE III

PREAMBLE

This text focuses on corporate governance, business ethics and emerging trends in food industries.

Course Objectives

• To understand the concepts of corporate governance in view of food industry

UNIT – I

Corporate Governance- A Conceptual Foundation: Concept, nature, issues and importance of corporate governance, origin and development of corporate governance, concept of corporate management, Different models of corporate governance, corporate governance in family business, corporate governance failure with examples.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Concept, nature, issues and importance of corporate governance
- origin and development of corporate governance, concept of corporate management
- Different models of corporate governance
- corporate governance in family business, corporate governance failure with examples

UNIT - II

Role Players: Role of various players viz. Role of shareholders their rights and responsibilities, Role of board of directors in corporate governance- executive and non executive directors, independent and nominee directors, Role of Auditors, audit committee, media.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Role of shareholders their rights and responsibilities
- Role of board of directors in corporate governance- executive and non executive directors, independent and nominee directors

• Role of Auditors, audit committee, media.

UNIT - III

Corporate governance in India and the Global Scenario: Corporate Governance practices /codes in India, UK, Japan, USA. Contributions of CII-recommendations on corporate governance by different committees in India, SEBI guidelines, Kumar Manglam Birla Committee, Naresh Chandra committee Report, OECD Principles, Cadbury Committee

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Corporate Governance practices /codes in India, UK, Japan, USA.
- Contributions of CII-recommendations on corporate governance by different committees in India, SEBI guidelines,
- Have detail study of committees like Kumar Manglam Birla Committee, Naresh Chandra committee Report, OECD Principles, Cadbury Committee

UNIT - IV

Emerging trends: Emerging Trends and latest developments in Corporate Governance. Corporate Governance initiative in India and Abroad, Corporate Governance Rating- Role of rating agencies in corporate governance. ICRA Corporate governance rating method for examining the quality and effectiveness of corporate governance.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Emerging Trends and latest developments in Corporate Governance.
- Corporate Governance initiative in India and Abroad,
- Corporate Governance Rating- Role of rating agencies in corporate governance
- ICRA Corporate governance rating method for examining the quality and effectiveness of corporate governance.

UNIT - V

Business ethics and corporate governance. Social responsibility and corporate governance. Corporate governance and value creation. Political economy of corporate governance.

Learning Outcomes:

At the end of unit, students will be able to understand the following

• Business ethics and corporate governance.

- Social responsibility and corporate governance.
- Corporate governance and value creation.
- Political economy of corporate governance.

Course Outcomes:

By the end of the course, the students will

- Attain knowledge on system of corporate governance in food industries.
- Get to know about business ethics and values.

TEXT BOOKS

- 1. Subhash Chandra Das, "Corporate Governance in India", PHI Pvt. Ltd., New Delhi(2008),
- 2. Dennis Campbell, "Susan Woodley TrendsandDevelopments In Corporate Governance". (2004)

REFERENCES

- 1. Jayati Sarkar. "Corporate Governance in India". Sage Publications, New Delhi, 2012.
- 2. Vasudha, Joshi "Corporate Governance The Indian Scenario". Foundations Books Pvt. Ltd. New Delhi. 2012,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C

3 0 0 3

(19A27704b) PROCESS TECHNOLOGY FOR CONVENIENCE & RTE FOODS OPEN ELECTIVE III

PREAMBLE

This text focuses on various aspects and technologies involved in processing of convenience and Read-to-eat foods.

Course Objectives:

- To understand the importance and demand for convenience foods in present day scenario
- To learn the various technical aspects of convenience and Read-to-eat foods.

UNIT – I

Overview of grain-based snacks: whole grains – roasted, toasted, puffed, popped and flakes Coated grains-salted, spiced and sweetened Flour based snack– batter and dough based products; savoury and farsans; formulated chips and wafers, papads.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Role of cereal based ingredients in snacks industries.
- Various technologies and equipments involved in Snacks industries

UNIT - II

Technology for fruit and vegetable based snacks: chips, wafers, papads etc. Technology of ready to eat fruits and vegetable based food products like, sauces, fruit bars, glazed candy etc. Technology of ready to eat canned value added fruits/vegetables and mixes and ready to serve beverages etc.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Role of Fruits and vegetables in convenience products.
- Processing of various Fruit and vegetable based products.

UNIT - III

Technology of ready- to- eat baked food products, drying, toasting roasting and flaking, coating, chipping. Extruded snack foods: Formulation and processing technology, colouring, flavouring and packaging. Technology for coated nuts – salted, spiced and sweetened products- chikkis, Sing bhujia.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Various methods involved in processing of ready to eat baked products
- Various methods involved in processing of extruded snack foods
- Technology involved in processing different coated nuts

UNIT IV

Technology for ready-to-cook food products- different puddings and curried vegetables etc. Technology for ready-to-cook and ready to eat meat and meat food products. Technology for preparation of instant cooked rice, carrot and other cereals based food products.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Technology involved in processing different ready to cook food products
- Technology involved in processing different ready to cook and ready to eat meat and meat products
- Technology involved in processing different instant cooked cereal products

UNIT - V

Technology of ready to eat instant premixes based on cereals, pulses etc. Technology for RTE puffed snack- sand puffing, hot air puffing, explosion puffing, gun puffing etc. Technology for preparation of traditional Indian dairy products.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Technology involved in processing different ready to eat instant premixes based on cereals and pulses and etc.
- Technology involved in processing different RTE puffed snacks
- Technology involved in processing different traditional dairy products

Course Outcomes:

By end of the course students will understand

• Technology for processing ready to eat and ready cook different products and equipment used for manufacturing of RTE products

TEXT BOOKS

- 1. Edmund WL. "Snack Foods Processing". AVI Publ.
- 2. Kamaliya M.K and Kamaliya K.B. 2001. Vol.1 and 2, "Baking Science and Industries", M.K.Kamaliya Publisher, Anand.

REFERENCES

- 1. Frame ND. "Technology of Extrusion Cooking". Blackie Academic1994. .
- 2. Gordon BR. "Snack Food", AVI Publ, 1997.
- 3. Samuel AM. "Snack Food Technology", AVI Publ. 1976.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-I

L T P C

3 0 0 3

(19A54704a) NUMERICAL METHODS FOR ENGINEERS OPEN ELECTIVE-III (ECE, CSE, IT & CIVIL)

Course objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

UNIT-I:

Solution of Algebraic & Transcendental Equations:

Introduction-Bisection method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

Learning Outcomes:

Students will be able to

- Calculate the roots of equation using Bisection method and Iterative method.
- Calculate the roots of equation using Regula falsi method and Newton Raphson method.
- Solve the system of algebraic equations using Gauss Jordan method and Gauss Siedal method.

UNIT-II:

Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

Learning Outcomes:

Students will be able to

- understand curve fitting
- understand fitting of several types of curves

UNIT-III:

Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae. Gauss forward and backward formula, Stirling's formula, Bessel's formula.

Learning Outcomes:

Students will be able to

- Understand the concept of interpolation.
- Derive interpolating polynomial using newton's forward and backward formulae.
- Derive interpolating polynomial using lagrange's formulae.
- Derive interpolating polynomial using gauss forward and backward formulae.

UNIT-IV:

Numerical Integration

Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule

Learning Outcomes:

Students will be able to

- Solve integral equations using Simson's 1/3 and Simson's 3/8 rule.
- Solve integral equations using Trapezoidal rule.

UNIT-V:

Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Learning Outcomes:

Students will be able to

- Solve initial value problems to ordinary differential equations using Taylor's method.
- Solve initial value problems to ordinary differential equations using Euler's method and Runge Kutta methods.

Course Outcomes:

After the completion of course, students will be able to

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

Text Books:

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna publishers.
- 2. Ronald E. "Probability and Statistics for Engineers and Scientists", Walpole, PNIE.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India

Reference Books:

- 1. B.V.Ramana, "Higher Engineering Mathematics", Mc Graw Hill publishers.
- 2. Alan Jeffrey, "Advanced Engineering Mathematics", Elsevier.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-I

L T P C

3

3

(19A51704a) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- And also characterisae the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Unit I:

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, co-precipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

Learning Outcomes:

At the end of this unit, the students will be able to

- Classify the nanostructure materials (L2)
- Describe scope of nano science and technology (L2)
- Explain different synthetic methods of nano materials (L2)
- Identify the synthetic methods of nanomaterial which is suitable for preparation of particular material (L3)

UNIT-II

Top-Down approach:- Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

Learning Outcomes:

At the end of this unit, the students will be able to

- Describe the top down approach (L2)
- Explain aerosol synthesis and plasma arc technique (L2)
- Differentiate chemical vapour deposition method and electrodeposition method (L2)
- Discuss about high energy ball milling (L3)

UNIT-III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterilas, BET method for surface area analysis, dynamic light scattering for particle size determination.

Learning Outcomes:

At the end of this unit, the students will be able to

- Discuss different technique for characterization of nanomaterial (L3)
- Explain electron microscopy techniques for characterization of nanomaterial (L3)
- Describe BET method for surface area analysis (L2)
- Apply different spectroscopic techniques for characterization (L3)

UNIT-IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self-assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain synthesis and properties and applications of nanaomaterials (L2)
- Discuss about fullerenes and carbon nanotubes (L3)
- Differentiate nanomagnetic materials and thermoelectric materials (L2)
- Describe liquid crystals (L2)

UNIT.V

Engineering Applications of Nanomaterials

Learning Outcomes:

At the end of this unit, the students will be able to

- Illustrate applications of nanaomaterials (L2)
- Discuss the magnetic applications of nanomaterials (L3)
- list the applications of non-linear optical materials (L1)

• Describe the applications fullerenes, carbon nanotubes (L2)

Course Outcome

At the end of the course, the student will be able to:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

TEXT BOOKS:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2. Textbook of Nanoscience and nanotechnology:** B S Murty, P Shankar, Baldev Rai, BB Rath and James Murday, Univ. Press, 2012.

REFERENCE BOOKS:

- **1.** Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin & Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- **3. Nanomaterials Chemistry**, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– IV-I

L T P C

3 0 0 3

HUMANITIES ELECTIVE-II

(19A52701a) ORGANISATIONAL BEHAVIOUR

Course Objectives:

The objectives of this course are

- To make the student understand about the organizational behavior
- To enable them to develop self motivation, leadership and management
- To facilitate them to become powerful leaders
- Impart knowledge about group dynamics
- To make them understand the importance of change and development

Syllabus

UNIT-I

Organizational Behavior - Introduction to OB - Meaning and definition, scope - Organizing Process - Making organizing effective - Understanding Individual Behavior - Attitude - Perception - Learning - Personality Types

Learning Outcomes:

After completion of this unit student will

- Understand the concept of Organizational Behavior
- Contrast and compare Individual & Group Behavior and attitude
- Analyze Perceptions
- Evaluate personality types

UNIT-II

Motivation and Leading - Theories of Motivation - Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Leading - Leading Vs Managing

Learning Outcomes:

After completion of this unit student will

- Understand the concept of Motivation
- Understand the Theories of motivation
- Explain how employees are motivated according to Maslow's Needs Hierarchy
- Compare and contrast leading and managing

UNIT-III

Leadership and Organizational Culture and Climate - Leadership - Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management - Evaluating Leader - Women and Corporate leadership.

Learning Outcomes:

After completion of this unit student will

- Know the concept of Leadership
- Contrast and compare Traits theory and Managerial Grid
- Know the difference between Transactional and Transformational Leadership
- Evaluate the qualities of good leaders
- Emerge as the good leader

UNIT - IV

Group Dynamics - Types of groups - Determinants of group behavior - Group process - Group Development - Group norms - Group cohesiveness - Small Groups - Group decision making - Team building - Conflict in the organization - Conflict resolution

Learning Outcomes:

After completion of this unit student will

- Know the concept of Group Dynamics
- Contrast and compare Group behavior and group development
- Analyze Group decision making
- Know how to resolve conflicts in the organization

UNIT - V

Organizational Change and Development - Organizational Culture - Changing the Culture - Change Management - Work Stress Management - Organizational management - Managerial implications of organization's change and development

Learning Outcomes:

- After completion of this unit student will
- Know the importance of organizational change and development
- Apply change management in the organization
- Analyze work stress management
- Evaluate Managerial implications of organization

Course outcomes:

At the end of the course, students will be able to

- Understand the nature and concept of Organizational behavior
- Apply theories of motivation to analyze the performance problems
- Analyze the different theories of leadership
- Evaluate group dynamics
- Develop as powerful leader

TEXT BOOKS:

1. Luthans, Fred, "Organisational Behaviour", McGraw-Hill, 12 Th edition 2011 2. P Subba Rao, Organisational Behaviour, Himalya Publishing House 2017

REFERENCES BOOKS:

- 1. McShane, "Organizational Behaviour", TMH 2009
- 2. Nelson, "Organisational Behaviour", Thomson, 2009.
- 3. Robbins, P.Stephen, Timothy A. Judge, "Organisational Behaviour", Pearson 2009.
- 4. Aswathappa, "Organisational Behaviour", Himalaya, 2009

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-I

L T P C 3 0 0 3

(19A52701b) MANAGEMENT SCIENCE

Course objectives:

The objectives of this course are

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training & Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Syllabus

UNIT- I

NTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - **Organisational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Understand the concept of management and organization
- Apply the concepts & principles of management in real life industry.
- Analyze the organization chart & structure for an enterprise.
- Evaluate and interpret the theories and the modern organization theory.

UNIT II

OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Statistical Quality Control- Deming's contribution to Quality.

Material Management - Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management - **Marketing Management -** Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Understand the core concepts of Management Science and Operations Management
- Apply the knowledge of Quality Control, Work-study principles in real life industry.
- Evaluate Materials departments & Determine EOQ
- Analyze Marketing Mix Strategies for an enterprise.
- Create and design advertising and sales promotion

UNIT III

HUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning — Nature - Managerial and Operative functions - Evolution of HRM - Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept - Methods of Performance Appraisal — Placement - Employee Induction - Wage and Salary Administration

Learning Outcomes:

At the end if the Unit, the learners will

- Understand the concepts of HRM in Recruitment, Selection, Training & Development
- Apply Managerial and operative Functions
- Analyze the need of training
- Evaluate performance appraisal
- Design the basic structure of salaries and wages

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management -** Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

Learning Outcomes:

At the end of the Unit, the learners will be able to

- Understand Mission, Objectives, Goals & strategies for an enterprise
- Apply SWOT Analysis to strengthen the project
- Analyze Strategy formulation and implementation
- Evaluate PERT and CPM Techniques
- Creative in completing the projects within given time

UNIT V

CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) - Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept - Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Reengineering and Bench Marking - Balanced Score Card - Knowledge Management.

Learning Outcomes:

At the end if the Unit, the learners will be able to

- Understand modern management techniques
- Apply Knowledge in Understanding in modern
- Analyze CRM, MRP, TQM
- Evaluate Six Sigma concept and SCM

Course Outcomes:

At the end of the course, students will be able to

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

TEXT BOOKS:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

REFERENCES:

- 1. Koontz & Weihrich, "Essentials of Management", 6^{th} edition, TMH, 2005.
- 2. Thomas N.Duening & John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- 3. Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
- 4. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)— IV-I

L T P C

 $0 \ 0 \ 3$

(19A52701c) BUSINESS ENVIRONMENT

Course Objectives:

The objectives of this course are

- To make the student understand about the business environment
- To enable them in knowing the importance of fiscal and monitory policy
- To facilitate them in understanding the export policy of the country
- Impart knowledge about the functioning and role of WTO
- Encourage the student in knowing the structure of stock markets

Syllabus

UNIT - I

An Overview of Business Environment – Types of Environment - Internal & External - Micro and Macro environment - Competitive structure of industries - Environmental analysis - Scope of business - Characteristics of business - Process & limitations of environmental analysis.

Learning Outcomes:

After completion of this unit student will

- Understand the concept of Business environment
- Explain various types of business environment
- Know about the environmental analysis of business
- Understand the business process

UNIT – II

FISCAL POLICY - Public Revenues - Public Expenditure - Public debt - Development activities financed by public expenditure - Evaluation of recent fiscal policy of Government of India - Highlights of Budget - **MONETARY POLICY** - Demand and Supply of Money – RBI - Objectives of monetary and credit policy - Recent trends - Role of Finance Commission.

Learning Outcomes:

After completion of this unit student will

- Understand the concept of public revenue and public Expenditure
- Explain the functions of RBI and its role
- Analyze the Monitory policy in India
- Know the recent trends and the role of Finance Commission in the development of our country

• Differentiate between Fiscal and Monitory Policy

UNIT - III

INDIA'S TRADE POLICY - Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank - **BALANCE OF PAYMENTS** – Structure & Major components - Causes for Disequilibrium in Balance of Payments - Correction measures.

Learning Outcomes:

After completion of this unit student will

- Understand the role of Indian international trade
- Understand and explain the need for Export and EXIM Policies
- Analyze causes for Disequilibrium and correction measure
- Differentiate between Bilateral and Multilateral Trade Agreements

UNIT - IV

WORLD TRADE ORGANIZATION - Nature and Scope - Organization and Structure - Role and functions of WTO in promoting world trade - Agreements in the Uruguay Round - TRIPS, TRIMS, and GATT - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

Learning Outcomes:

After completion of this unit student will

- Understand the role of WTO in trade
- Analyze Agreements on trade by WTO
- Understand the Dispute Settlement Mechanism
- Compare and contrast the Dumping and Anti-dumping Measures.

UNIT - V

MONEY MARKETS AND CAPITAL MARKETS - Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI - Stock Exchanges - Investor protection and role of SEBI.

Learning Outcomes:

After completion of this unit student will

• Understand the components of Indian financial system

- Know the structure of Money markets and Capital markets
- Analyze the Stock Markets
- Apply the knowledge in future investments
- Understand the role of SEBI in investor protection.

Course Outcomes:

At the end of the course, students will be able to

- Understand various types of business environment.
- Understand the role of WTO
- Apply the knowledge of Money markets in future investment
- Analyze India's Trade Policy
- Evaluate fiscal and monitory policy
- Develop a personal synthesis and approach for identifying business opportunities

TEXT BOOKS:

- 1. Francis Cherunilam (2009), "International Business": Text and Cases, Prentice Hall of India.
- 2. K. Aswathappa, "Essentials of Business Environment": Texts and Cases & Exercises 13th Revised Edition.HPH2016.

REFERENCE BOOKS:

- 1. K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.
- 2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.
- 3. Chari. S. N (2009), International Business, Wiley India.
- 4. E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – IV-I L T P C

3 0 0 3

(19A52701d) STRATEGIC MANAGEMENT

Course objectives:

The objectives of this course are

- To introduce the concepts of strategic management and understand its nature in
- competitive and organizational landscape
- To provide an understanding of internal and external analysis of a firm/individual
- To provide understanding of strategy formulation process and frame work
- Impart knowledge of Corporate culture
- Encourage the student in understanding SWOT analysis BCG Matrix

Syllabus

UNIT: I

Introduction of Strategic Management: meaning, nature, importance and relevance. The Strategic Management Process: – Corporate, Business and Functional Levels of strategy. Vision, mission and purpose –Business definition, objectives and goals – Stakeholders in business and their roles in strategic management. Balance scorecard.

Learning Outcomes:

After completion of this unit student will

- Understand the meaning and importance of strategic management
- Explain Strategic Management Process and Corporate, Business
- Know about the Business definition, objectives and goals
- Understand Stakeholders their roles in strategic management

UNIT: II

External and Internal Analysis: The Strategically relevant components of a Company's External Environment Analysis, Industry Analysis - Porter's Five Forces model – Industry diving forces – Key Success Factors. Analyzing a company's resources and competitive position

Learning Outcomes:

After completion of this unit student will

- Understand the components of a Company's environment
- Explain External Environment Analysis, Industry Analysis

- Know how to analyze industry competition through the Porter's Five Forces model
- Analyze Key Success Factors in a company's competitive position

UNIT: III

Competitive Strategies: Generic Competitive Strategies: Low cost, Differentiation, Focus. Grand Strategies: Stability, Growth (Diversification Strategies, Vertical Integration Strategies, Mergers, Acquisition & Takeover Strategies, Strategic Alliances & Collaborative Partnerships), Retrenchment, Outsourcing Strategies. Tailoring strategy to fit specific industry – Life Cycle Analysis - Emerging, Growing, Mature & Declining Industries.

Learning Outcomes:

After completion of this unit student will

- Understand the Competitive Strategies
- Explain Stability, Growth Mergers, Acquisition & Takeover Strategies
- Know about the Retrenchment, Outsourcing Strategies
- Differentiate Life Cycle Analysis, Mature & Declining Industries

UNIT: IV

Strategy Implementation and control - Strategy implementation; Organization Structure – Matching structure and strategy. Behavioral issues in implementation – Corporate culture – Mc Kinsey's 7s Framework. Functional issues – Functional plans and policies – Financial, Marketing, Operations, Personnel, IT.

Learning Outcomes:

After completion of this unit student will

- Understand the Organization Structure
- Explain Matching structure and strategy
- Know about the Corporate culture
- Analyze Functional plans and policies

Unit: V

Strategy Evaluation: Strategy Evaluation – Operations Control and Strategic Control-Relationship between a Company's Strategy and its Business Model.- SWOT analysis – Value Chain Analysis – Benchmarking- Portfolio Analysis: BCG Matrix – GE 9 Cell Model.

Learning Outcomes:

After completion of this unit student will

- Understand the Operations Control and Strategic Control
- Explain Company's Strategy and its Business Model
- Know about the SWOT analysis

• Analyze BCG Matrix and GE 9 Cell Model

Course Outcomes:

At the end of the course, students will be able to

- Understand the relevance and importance of strategic management
- Explain industry driving forces
- Analyze the competitive strategy
- Evaluate strategy implementation and control
- Create SWOT Analysis

Suggested Text Books and References

TEXT BOOKS:

- 1. Arthur A. Thompson Jr., AJ Strickland III, John E Gamble, "Crafting and Executing Strategy", 18th edition, Tata McGraw Hill, 2012.
- 2. Subba Rao P, "Business Policy and Strategic Management" HPH

REFERENCES:

- 1. Robert A. Pitts & David Lei, "Strategic Management: Building and Sustaining Competitive Advantage" 4th edition, Cengage Learning.
- 2. Hunger, J. David, "Essentials of Strategic Management" 5th edition, Pearson.
- 3. Ashwathappa, "Business Environment for Strategic Management", HPH.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-I

L T P C 3 0 0 3

(19A52701e) E-BUSINESS

Course Objectives:

- To provide knowledge on emerging concept on E-Business related aspect.
- To understand various electronic markets models which are trending in India
- To give detailed information about electronic payment systems net banking.
- To exact awareness on internet advertising, market research strategies and supply chain management.
- To understand about various internet protocols-security related concept.

SYLLABUS

UNIT - I

Electronic Business: Definition of Electronic Business - Functions of Electronic Commerce (EC) - Advantages of E-Commerce - E-Commerce and E-Business Internet Services Online Shopping-Commerce Opportunities for Industries.

Learning Outcomes:

After completion of this unit student will

- Understand the concept of E-Business
- Contrast and compare E-Commerce E-Business
- Analyze Advantages of E-Commerce
- Evaluate opportunities of E-commerce for industry

UNIT – II

Electronic Markets and Business Models:E-Shops-E-Malls E-Groceries - Portals - Vertical Portals-Horizontal Portals - Advantages of Portals - Business Models-Business to Business(B2B)-Business to Customers(B2C)-Business to Government(B2G)-Auctions-B2B Portals in India

Learning Outcomes:

After completion of this unit student will

- Understand the concept of business models
- Contrast and compare Vertical portal and Horizontal portals
- Analyze Advantages of portals
- Explain the B2B,B2C and B2G model

UNIT - III

Electronic Payment Systems: Digital Payment Requirements-Designing E-payment System-Electronic Fund Transfer (EFT)-Electronic Data Interchange (EDT)-Credit Cards-Debit Cards-E-Cash-Electronic Cheques -Smart Cards-Net Banking-Digital Signature.

Learning Outcomes:

After completion of this unit student will

- Understand the Electronic payment system
- Contrast and compare EFT and EDT
- Analyze debit card and credit card
- Explain the on Digital signature

UNIT - IV

E-Security: Internet Protocols - Security on the Internet –Network and Website Security – Firewalls –Encryption – Access Control – Secure Electronic transactions.

Learning Outcomes:

After completion of this unit student will

- Understand E-Security
- Contrast and compare security and network
- Analyze Encryption
- Evaluate electronic transitions

UNIT - V

E-Marketing: Online Marketing – Advantages of Online Marketing – Internet Advertisement – Advertisement Methods – Conducting Online Online Market Research — Data mining and Marketing Research Marketing Strategy On the Web – E-Customer Relationship Management(e-CRM) –E- Supply Chain Management.(e-SCM) –New Trends in Supply Chain Management.

Learning Outcomes:

After completion of this unit student will

- Understand the concept of online marketing
- Analyze advantages of online marketing
- Compare the e-CRM and e-SCM
- Explain the New trends in supply chain management

Course Outcomes:

- They will be able to identify the priority of E-Commerce in the present globalised world.
- Will be able to understand E-market-Models which are practicing by the organization
- Will be able to recognize various E-payment systems & importance of net banking.
- By knowing E-advertisement, market research strategies, they can identify the importance of customer role.
- By understanding about E-security, they can ensure better access control to secure the information.

TEXT BOOKS:

- 3. C.S.V Murthy "E-Commerce", Himalaya publication house, 2002.
- 4. P.T.S Joseph, "E-Commerce", 4th Edition, Prentice Hall of India 2011

REFERENCES:

- 5. KamaleshKBajaj, DebjaniNa, "E-Commerce", 2nd Edition TataMcGrwHills 2005
- 6. Dave Chaffey "E-Commerce E-Management", 2ndEdition, Pearson, 2012.
- 7. Henry Chan, "E-Commerce Fundamentals and Application", Raymond Lee, Tharm Wiley India 2007
- 8. S. Jaiswall "E-Commerce", Galgotia Publication Pvt Ltd 2003.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C 0 0 3 1.5

(19A04701P) MICROWAVE AND OPTICAL COMMUNICATIONS LAB

Note: All the experiments shall be conducted and there is no choice. Microwave Engineering:

- 1. Set up the Full Microwave bench and know the importance of each block. Identify the pin configuration of Reflex Klystron with the help of its power supply cable connected from the power supply unit. Also identify the Microwave signal coupling from Klystron Oscillator to the waveguide.
- 2. Make use of the bench set up and conduct the experiment to find mode characteristics of Reflex Klystron: (i) Repeller voltage vs output power (ii) Repeller voltage vs Frequency.
- 3. Measurement of Frequency and wavelength of generated Microwave signal using Reflex Klystron oscillator.
- 4. Verify the negative resistance characteristics of Gunn oscillator using the Microwave bench set up with Gunn oscillator set up.
- 5. Find the Scattering matrix of E-plane, H-plane, and Magic Tees experimentally.
- 6. Make use of Microwave bench setup to find VSWR and impedance of an unknown load that is connected at the end of the bench set up. Make use of VSWR meter for the measurement of VSWR of a given load.
- 7. Determine directivity, insertion loss and coupling factor of a given Directional Coupler experimentally.
- 8. Making use of Microwave bench set up, find the radiation characteristics in both the planes and determine HPBW and directivity of a pyramidal horn antenna.

Optical Communication:

- 9. Conduct the experiment to draw the DC characteristics of LED and Photo diode.
- 10. Make use of Fiber optic kit to determine the **numerical aperture** and **bending losses** of a given optical fiber (transmission line).
- 11. Establish an optical link between transmitter and receiver and determine the signal strength at the receiver. Give the comments about the experiment by transmitting (i) **analog signal** (ii) **digital signal.**
- 12. Attenuation measurement in Fibers for various lengths.

Course Outcomes:

- Understand the mode characteristics of Reflex Klystron oscillator and negative resistance characteristics of Gunn Oscillator.
- Determine the Scattering matrix of given passive device experimentally and verify the same theoretically. Also determine numerical aperture and bending losses of a given optical fiber
- Analyze the radiation characteristics to find the directivity and HPBW of a given antenna.
- Establish optical link between transmitter and receiver **experimentally** to find attenuation and signal strength of the received signal.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-I Sem

P C 0

3

1.5

(19A04702P) VLSI DESIGN LABORATORY

Objectives:

- To understand and develop HDL source code for the given problem/experiment
- To analyze the obtained results of the given experiment/problem
- To simulate the given circuit with suitable simulator and verify the results
- To understand how to use FPGA/CPLD hardware tools in the lab
- To design and implement the experiments using FPGA/CPLD hardware tools

List of Experiments:

PART (A): FPGA Level Implementation (Any Seven Experiments)

Note 1: The students need to develop VHDL Source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.

Note 2: All the experiments need to be implemented on the latest FPGA/CPLD Hardware in the Laboratory.

1. Realization of Logic gates

Design and Implementation of the following

- 2. 4-bit ripple carry and carry look ahead adder using behavioral, dataflow and structural modelling
 - a) 16:1 mux through 4:1 mux
 - b) 3:8 decoder realization through 2:4 decoder
- 3. 8:3 encoder
- 4. 8-bit parity generator and checker
- 5. Flip-Flops
- 6. 8 bit synchronous up-down counter
- 7. 4bit sequence detector through Mealy and Moore state machines.

EDA Tools/Hardware Required:

- 1. EDA Tool that supports FPGA Programming including Xilinx Vivado / Altera (Intel) / Cypress / Equivalent Industry Standard tool along with corresponding FPGA Hardware.
- 2. Desktop Computer with appropriate Operating system that supports the EDA tools.

PART (B): Back-end Level Design and Implementation (Any Five Experiments)

Note: The students need to design the following experiments at schematic level using CMOS logic and verify the functionality. Further students need to draw the corresponding layout and verify the functionality including parasites. Available state of the art technology libraries can be used while simulating the design using Industry standard EDA Tools.

Design and Implementation of the following

- 1. Universal Gates
- 2. an Inverter
- 3. Full Adder
- 4. Full Subtractor
- 5. Decoder
- 6. D-Flip-Flop

EDA Tools/Hardware Required:

- 1. Mentor Graphics Software / Cadence/Synopsys/Tanner or Equivalent Industry Standard Software/CAD Tool.
- 2. Desktop Computer with appropriate Operating system that supports the EDA tools.

Course Outcomes:

- Understand how to use FPGA/CPLD hardware tools in the lab.
- Develop HDL source code for the given problem/experiment, and simulate the given circuit with suitable simulator and verify the results.
- Analyze the obtained results of the given experiment/problem.
- Design and implement the experiments using FPGA/CPLD hardware tools.

List of Experiments

PART (A): Any Seven Experiments

Note 1: The students need to develop VHDL Source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.

Note 2: All the experiments need to be implemented on the latest FPGA/CPLD Hardware in the Laboratory.

- 1. Realization of Logic gates
- 2. Design and Implementation of 4-bit ripple carry and carry look ahead adder using behavioral, dataflow and structural modelling
- 3. Design and Implementation of
 - a. 16:1 mux through 4:1 mux
 - b. 3:8 decoder realization through 2:4 decoder
- 4. Design and Implementation of 8:3 encoder
- 5. Design and Implementation of 8-bit parity generator and checker
- 6. Design and Implementation of different Flip-Flops
- 7. Design and Implementation of 8 bit synchronous up-down counter
- 8. Design and Implementation of 4bit sequence detector through Mealy and Moore state machines.

Equipment/Software required:

- 1. FPGA Programming Software like Xilinx Vivado / Altera (Intel) / Cypress / Equivalent Industry Standard Software
- 2. FPGA Hardware like Xilinx / Altera (Intel) / Cypress / Equivalent Industry Standard Hardware
- 3. Personal computer system with necessary software to run the programs and Implement.

PART (B): Any Five Experiments

Note: The students need to design the schematic diagrams using CMOS logic and to draw the layout diagrams, to perform the following experiments using 130nm technology with the Industry standard EDA Tools.

- 1. Design and Implementation of Universal Gates
- 2. Design and Implementation of an Inverter
- 3. Design and Implementation of Full Adder
- 4. Design and Implementation of Full Subtractor
- 5. Design and Implementation of Decoder
- 6. Design and Implementation of D-Latch

Software Required:

- 1. Mentor Graphics Software / Cadence/Synopsys/Tanner or Equivalent Industry Standard Software/CAD Tool.
- b. Personal computer system with necessary software to run the programs and to implement.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04801a) ADVANCED 3G AND 4G WIRELESS MOBILE COMMUNICATIONS

Professional Elective - IV

Course Objectives:

- To understand the concepts of wireless communications and standards (L1).
- To apply a wireless technique to solve engineering problem (L2).
- To analyze working of wireless technologies (L3).
- To evaluate a wireless technique in a given situation (L4).
- To plan a wireless system for deployment (L5).

UNIT-I:

Introduction to 3G and 4G standards.

Teletraffic Theory:

Introduction to teletraffic theory, Cellular traffic modelling and blocking probability.

Large Scale Path Loss:

Introduction to wireless propagation models, Ground reflection model, Okumura model, Hata model, Link budget analysis,Log normal shadowing.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the concept of a standard, teletraffic and signal loss model (L1).
- Apply a model to study the signal losses (L2).
- Analyzethe suitability of a model to a given situation (L3).
- Evaluate a model in a given situation (L4).
- Plan a wireless system for deployment (L5).

UNIT-II:

Small Scale Fading and Multipath:

Fading in wireless channel, Rayleigh fading, BER in wired and wireless channels. Wireless channel and delay spread, Coherence bandwidth of wireless channel, ISI and Doppler in wireless channel, Doppler spectrum and Jake's model.

Diversity Techniques:

Introduction to diversity techniques, MRC for multi-antenna system, BER with diversity, Spatial diversity and diversity order.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the concept of fading and diversity (L1).
- Apply a diversity technique to improve BER (L2)
- Compare various diversity techniques (L3)
- Evaluate channel model in a given situation (L4)

UNIT-III:

Code Division Multiple Access

Introduction to CDMA, spread spectrum and LFSR. Generation and properties of PN sequences, Correlation of PN sequences and Jammer margin, CDMA advantages and RAKE receiver, Multiuser CDMA downlink, Multiuser CDMA uplink and asynchronous CDMA, CDMA near-far problem.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the concept of PN sequence (L1).
- Apply CDMA in a multiuser environment (L2).
- Analyze near-far problem (L3).
- Evaluate CDMA technique in a multiuser environment (L4).

UNIT-IV:

Multiple Input Multiple Output Systems:

Introduction to MIMO, MIMO system model, Zero-forcing receiver, MIMO MMSE receiver, Introduction to SVD, SVD based optimal MIMO transmission and capacity, OSTBCs, V-blast receiver, MIMO beam forming.

Orthogonal Frequency Division Multiplexing:

Introduction to OFDM, Multicarrier modulation, IFFT sampling for OFDM, OFDM schematic, Cyclic prefix, OFDM based parallelization, OFDM examples.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the concept of MIMO and OFDM (L1).
- Apply MIMO/ OFDM techniques in a given situation (L2).
- Analyze working of MIMO/ OFDM systems (L3).
- Evaluate aMIMO/ OFDM techniques in a given situation (L4).

UNIT-V:

MIMO-OFDM:

Introduction to MIMO-OFDM, Impact of carrier frequency offset in OFDM, PAPR in OFDM systems, Introduction to SC-FDMA.

3G and **4G** Standards:

WCDMA, LTE/ LTE Advanced and WiMAX.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand 3G and 4G standards and the combined concept of MIMO-OFDM (L1).
- Apply MIMO-OFDM techniques in a given situation (L2).
- Analyze working of MIMO-OFDM systems (L3).
- Evaluate aMIMO-OFDM techniques in a given situation (L4).

Course Outcomes:

At the end of the course, the student should be able to

- Understand the concepts of wireless communications and standards (L1).
- Apply a wireless technique to solve engineering problem (L2).
- Analyze working of wireless technologies (L3).
- Evaluate a wireless technique in a given situation (L4).
- Plan a wireless system for deployment (L5).

REFERENCES:

- 1. Aditya K. Jagannatham, "Principles of Modern Wireless Communications Systems Theory and Practice", McGraw-Hill International, 2015.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", 2ndEdition, PHI, 2004.
- 3. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communications", Cambridge University Press.
- 4. Andrea Goldsmith, "Wireless Communications", Cambridge University Press.
- 5. Ezio Biglieri, "MIMO Wireless Communications", Cambridge University Press.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04801b) INTRODUCTION TO INTERNET OF THINGS

Professional Elective – IV

Course Objectives:

- To present interconnection and integration of the physical world and the cyber space.
- To demonstrate applications of Internet of Things
- To educate building blocks and characteristics of Internet of Things
- To introduce communication protocols used in Internet of Things
- To impart knowledge on design & develop IoT devices

UNIT-I

Introduction & Concepts: Introduction to Internet of Things, physical design of IoT, logical design of IoT, IoT enabling Technologies, IoT levels.

Learning Outcomes:

At the end of the unit, student shall be able to

- Explain characteristics, protocols, functional blocks of IoT (L2)
- Explain physical and logical design of IoT (L2)
- Categorize different levels of IoT (L4)

UNIT -II

Domain Specific IOTs: Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health & Life Style.

Learning Outcomes:

At the end of the unit, student shall be able to

- Categorize different domains where IoT can be applied (L4)
- Select physical design components for real time applications (L3)

UNIT -III

M2M & System Management with NETCONF-YANG: M2M, Difference between IOT andM2M, SDN and NFV for IOT, Software defined Networking, Network FunctionVirtualization, Need for IOT Systems Management, Simple Network Management Protocol, Limitations of SNMP, Network Operator Requirements, NETCONF, YANG, IOT Systemsmanagement with NETCONF-YANG.

Learning Outcomes:

At the end of the unit, student shall be able to

- Describe concept of M2M and differentiate it with IoT (L2)
- Explain about SDN and NFV for IoT (L2)
- Examine NETCONF and YANG modelling language for IoT (L4)

UNIT -IV

Internet of Things Systems - Logical Design using Python: Introduction, Motivation for using Python, Installing Python, Python Data Types & Data Structures, Control Flow, Functions, Modules, Packages, File Handling, Date/ Time Operations, Classes, Python Packages of Interest for IoT.

Learning Outcomes:

At the end of the unit, student shall be able to

- Explain the data manipulation and file handling using Python (L2)
- Apply various Python packages of interest for IoT (L3)

UNIT-V

IOT Physical Devices & Endpoints: What is an IOT Device, Exemplary Device, Board, Linux on Raspberry Pi, Interfaces, and Programming with Python; Python web application framework – Django, Designing a Restful web API.

Learning Outcomes:

At the end of the unit, student shall be able to

- Discuss about Django and RESTful web API with respect to IoT (L5)
- Design IoT applications using Raspberry Pi (L6)

Course Outcomes:

- Examine the application areas of IoT (L4)
- Illustrate revolution of Internet in Mobile Devices, Cloud & Sensor Networks (L2)
- Examine communication protocols used in IoT (L4)
- Make use of python programming to implement Internet of Things (L3)
- Design IoT applications using Raspberry Pi (L6)

TEXT BOOKS:

1. Vijay Madisetti, ArshdeepBahga, "Internet of Things A Hands-On- Approach", 2014.

REFERENCES:

- 1. Matt Richardson & Shane Wallace, Getting Started with Rasperry Pi, O'Reilly (SPD), 2014.
- 2. Adrian McEwen, "Designing the Internet of Things", Wiley Publishers, 2013
- 3. Daniel Kellmereit, "The Silent Intelligence: The Internet of Things", 2013

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04801c) FUZZY SETS, LOGIC AND SYSTEMS & APPLICATIONS

(Professional Elective IV)

Course Objectives:

- To introduce fuzzy sets, logic and systems from an engineering perspective.
- To provide solid foundation of fundamental concepts of fuzzy logic, systems and its applications.
- To teach about the concept of fuzziness involved in various systems.
- To expose to the concepts of neural networks.
- To explain how neuro-fuzzy concepts can be used for solving real world problems.

UNIT – I

Introduction to Neuro–Fuzzy and Soft Computing, Fuzzy Sets, Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and parameterization, Fuzzy set properties, Arithmetic operations on fuzzy numbers, complement, T-norm and S-norm on fuzzy sets, parameterized T-norm and parameterized S-norm.

Learning Outcomes:

At the end of the unit, student shall be able to

- Explain important features of Neuro Fuzzy and Soft Computing (L2)
- Familiarize with basic definitions, notations and operations of fuzzy sets(L2)

UNIT - II

Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning, Fuzzy Inference Systems – Introduction, Mamdani Fuzzy Models, – Sugeno Fuzzy Models, Tsukamoto Fuzzy Models, Input Space Partitioning and Fuzzy modeling

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand concepts of Extension Principle and Fuzzy Relations (L2)
- Investigate different schemes of fuzzy reasoning(L3)
- Compare strengths and weaknesses of different fuzzy inference systems(L4)
- Compare different ways of partitioning the input space(L4)
- Understand features and problems of fuzzy modelling(L2)

UNIT - III

Neural networks: Adaptive networks, Introduction, architecture, backpropagation for feedforward networks, perceptrons, adaline, backpropagation for multilayer perceptrons, radial basis function networks, unsupervised learning, introduction, competitive learning networks, kohenen self-organizing networks

Learning Outcomes:

At the end of the unit, student shall be able to

- Explain architectures and learning procedures for adaptive networks(L2)
- Differentiate supervised and unsupervised learning (L2)
- Modelling problems with desired input-output data sets using supervised learning rules(L3)
- Analyze data without desired outputs using unsupervised learning(L4)

UNIT - IV

Neuro fuzzy modeling: Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Architecture, Hybrid Learning Algorithm, Learning Methods that Cross-fertilize ANFIS and RBFN, Coactive Neuro Fuzzy Modeling, Framework, Neuron Functions for Adaptive Networks, Neuro Fuzzy Spectrum

Learning Outcomes:

At the end of the unit, student shall be able to

- Explain architecture & features of ANFIS (L2)
- Demonstrate RBFN is functionally equivalent to ANFIS(L2)
- Understand the nature of Coactive neuro fuzzy inference system from neural network perspective(L2)
- Characterize neuro fuzzy models using neuro fuzzy spectrum(L4)

UNIT-V

ANFIS Applications: Printed Character Recognition, Inverse Kinematics Problems , Automobile Fuel Efficiency Prediction, Nonlinear system identification, Channel equalization.

Learning Outcomes:

At the end of the unit, student shall be able to

• Examine several applications of ANFIS to a variety of domains viz., pattern recognition, robotics, nonlinear systems and adaptive signal processing (L4)

Course Outcomes:

After completion of the course students will be able to

- Identify and describe Fuzzy Logic and Neural Network techniques in building intelligent machines(L3)
- Apply Neural Network & Fuzzy Logic models to handle uncertainty and solve engineering problems (L3)
- Recognize the feasibility of applying a Neuro-Fuzzy model for a particular problem(L5)

TEXT BOOKS:

1. Neuro-"Fuzzy and Soft Computing", J.S.R.Jang, C.T.Sun and E.Mizutani, PHI, 2004, Pearson Education.

REFERENCE BOOKS:

- 1. T.J. Ross: "Fuzzy Logic with Engineering Applications", 3rd Ed., Wiley India Pvt. Ltd., 2011.
- 2. Neural Networks, "Fuzzy Logic and Genetic Algorithms", S. Rajasekaran and G.A.V.Pai, PHI, 2003.
- 3. H.J. Zimmerman: Fuzzy Set Theory and its Application, 3rd Ed., Springer India Pvt. Ltd., 2006.
- 4. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", Prentice Hall, NewDelhi, 2004.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04801d) BIOMEDICAL SIGNAL PROCESSING

(Professional Elective IV)

Course Objectives:

- Describe the origin, properties and suitable models of important biological signals such as ECG and EEG.
- Interrelate the students mathematical and computational skills relevant to the field of biomedical signal processing.
- Introduce students to basic signal processing techniques in analyzing biological signals.
- Develop a thorough understanding on basics of ECG signal compression algorithms.
- Increase the student's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, challenges of the biomedical engineering.

UNIT- I:

Preliminaries:

Concept of Biological signals – Electrical, Mechanical, Chemical, Magnetic, Optical etc. Origin of electrical signal from Biological cell – Structure of Biological cell, Characteristics of Cell membrane, Distribution and movement of ions across the cell membrane, Generation of Biological cell Action Potential. Concept of Electrocardiogram (ECG), Electroencephalogram (EEG), Phonocardiogram (PCG), Electromyogram (EMG), Electroneurogram (ENG), Electrooculogram (EOG), Respiratory signals etc.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the origin, properties of biomedical signals like ECG, EEG, PCG, ENG and EOG signals. (L1)
- Analyze the structure and characteristics of various signals. (L3)

UNIT-II:

Signal Conditioning:

Band limiting of different Biological signals, Representation of biological signals in analog, discrete and digital forms. **Filtering for Removal of artifacts** - Statistical Preliminaries, Time domain filtering - Synchronized Averaging, Moving Average Filter to Integration, Derivative-based operator, **Frequency Domain Filtering** - FIR and IIR methods for implementing Notch, band selective filters, Weiner, Adaptive Filtering concepts.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand classical and modern filtering and compression techniques required for biomedical signal processing. (L1)
- Compare different filtering techniques. (L3)

Unit -III:

Electrocardiogram (ECG) Analysis:

Concepts of morphological and rhythm analysis, Different types of arrhythmias, Derivative based Approaches for QRS Detection, Pan Tompkins Algorithm, Concepts of detecting the P, T waves, PR, ST intervals, QRS duration, etc. Heart Rate Variability (HRV) study and its importance.

Learning Outcomes:

At the end of the unit, student shall be able to

- Apply filters to remove noise, signal compression techniques & averaging technique on biomedical signals and extract the features of ECG signals. (L2)
- Analyze the nature of biomedical signals and related concepts, and event detection techniques for ECG signals(L3)

UNIT-IV:

EEG, EMG signals Analysis:

Basics of EEG and EMG signals. Signal strength, Signal entropy in time and frequency domain, Correlation coefficient, Envelop Extraction, Root Mean Square value, Zero-crossing rate, Form factor, Periodogram, Minimum phase correspondent, Power Spectral Density concepts in analyzing EEG and EMG signals.

Learning Outcomes:

At the end of the unit, student shall be able to

- Apply filters to remove noise, signal compression techniques and averaging technique on biomedical signals and extract the features of EEG and EMG signals. (L2)
- Analyze the nature of biomedical signals and related concepts, and event detection techniques for EEG and EMG signals. (L3)

UNIT -V:

Modelling of Biomedical Systems:

Motor unit firing pattern, Cardiac rhythm, Formants and pitch of speech, Point process, Parametric system modelling, Autoregressive model, Autocorrelation method, Application to random signals, Computation of model parameters, Levinson-Durbin algorithm, Computation of gain factor, Covariance method, Spectral matching and parameterization, Model order selection, Relation between AR and Cepstral coefficients, ARMA model, Sequential estimation of poles and zeros.

Learning Outcomes:

At the end of the unit, student shall be able to

- Demonstrate an ability to integrate different concepts to develop new models that suits current trends of Industries and analyze its performance. (L2)
- Develop an interest to simulate the models and validate its functionality in real time systems. (L5)

Course Outcomes:

- Understand the origin, properties of biomedical signals like ECG, EEG, PCG, ENG, EOG signals, modern filtering techniques.
- Apply filters to remove noise, signal compression techniques & averaging technique on biomedical signals to extract the features of ECE, EEG and EMG signals.
- Analyze the nature of biomedical signals and related concepts, and event detection techniques for ECG, EEG, and EMG signals. Also compare different filtering techniques.
- Develop an interest to simulate the models and validate its functionality in real time systems.

TEXT BOOKS

- 1. R M Rangayyan "Biomedical Signal Analysis: A case Based Approach", IEEE Press, John Wiley & Sons. Inc, 2002.
- 2. Willis J. Tompkins, "Biomedical Digital Signal Processing", EEE, PHI, 2004.
- 3. D C Reddy "Biomedical Signal Processing: Principles and Techniques", Tata McGraw-Hill Publishing Co. Ltd, 2005.

REFERENCES:

- 1. Suresh R Devasahayam, "Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing", Springer, 3rd Edition, 2019.
- 2. J G Webster "Medical Instrumentation: Application & Design", John Wiley & Sons Inc., 2001.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04801e) ANALOG IC DESIGN

(Professional Elective IV)

Course Objectives:

The student will be able to

- Understand the behaviour of MOS Devices and Small-Signal & Large-Signal Modelling of MOS Transistor and Analog Sub-Circuits.
- Learn and understand CMOS Amplifiers like Differential Amplifiers, Cascode Amplifiers, Output Amplifiers, and Operational Amplifiers.
- Design and Develop the Analog CMOS Circuits for different Analog operations.

UNIT -I:

MOS Devices and Modelling: The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modelling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

Learning Outcomes:

At the end of the unit, student shall be able to

- Understand the behaviour of MOS Devices (L1)
- Analyze Small-Signal and Large-Signal Modelling of MOS Transistor (L3)

UNIT-II:

Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

Learning Outcomes:

At the end of the unit, student shall be able to

- Design current mirror circuits using MOSFETs (L4)
- Compare different Current mirror Circuits. (L5)

UNIT-III:

CMOS Amplifiers: Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

Learning Outcomes:

At the end of the unit, student shall be able to

- Analyze Analog circuits like Differential amplifiers, current amplifiers, inverters (L3)
- Design Amplifier circuits using MOSFETs (L4)

UNIT-IV:

CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

Learning Outcomes:

At the end of the unit, student shall be able to

- Implement Analog Circuits using Op Amps in real time applications. (L3)
- Model and simulate different MOS Devices using small signal Model. (L4)

UNIT-V:

Comparators: Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

Learning Outcomes:

At the end of the unit, student shall be able to

- Characterize two stage and open loop Comparators (L2)
- Design Comparator circuits using MOSFET (L4)

Course Outcomes:

- Understand the behaviour of MOS Devices.
- Characterize two stage and open loop Comparators.
- Analyze and derive Small-Signal and Large-Signal Modelling of MOS Transistors for analog applications like Differential amplifiers, current amplifiers, inverters.
- Design current mirror circuits using MOSFETs and CMOS amplifier circuits for real time amplification applications.
- Develop Op-Amp based analog circuits.

TEXT BOOKS:

- 1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition, Second Edition.
- 2. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

REFERENCES:

- 1. Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley India, Fifth Edition, 2010.
- 2. David A. Johns, Ken Martin, "Analog Integrated Circuit Design", Wiley Student Edition, 2013.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A01802a) DISASTER MANGEMENT OPEN ELECTIVE-IV

Course Objectives:

The objective of this course is to:

- Develop an understanding of why and how the modern disaster manager is involved with pre-disaster and post-disaster activities.
- Develop an awareness of the chronological phases of natural disaster response and refugee relief operations. Understand how the phases of each are parallel and how they differ
- Understand the 'relief system' and the 'disaster victim.'
- Describe the three planning strategies useful in mitigation.
- Identify the regulatory controls used in hazard management.
- Describe public awareness and economic incentive possibilities.
- Understand the tools of post-disaster management.

SYLLABUS

UNIT-I:

Natural Hazards And Disaster Management: Introduction of DM – Inter disciplinary -nature of the subject– Disaster Management cycle – Five priorities for action. Case study methods of the following: floods, draughts – Earthquakes – global warming, cyclones & Tsunamis – Post Tsunami hazards along the Indian coast – landslides.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the natural hazards and its management
- To understand about the global warming, cyclones and tsunamis

UNIT-II:

Man Made Disaster And Their Management Along With Case Study Methods Of The Following: Fire hazards – transport hazard dynamics – solid waste management – post disaster – bio terrotirism -threat in mega cities, rail and air craft's accidents, and Emerging infectious diseases & Aids and their management.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the fire hazards and solid waste management
- To understand about the emerging infectious diseases and aids their management.

UNIT-III:

Risk and Vulnerability: Building codes and land use planning – social vulnerability – environmental vulnerability – Macroeconomic management and sustainable development, climate change risk rendition – financial management of disaster – related losses.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the regulations of building codes and land use planning related to risk and vulnerability.
- To understand about the financial management of disaster and related losses

UNIT-IV:

Role Of Technology In Disaster Managements: Disaster management for infra structures, taxonomy of infra structure – treatment plants and process facilities-electrical substations-roads and bridges- mitigation programme for earth quakes –flowchart, geospatial information in agriculture drought assessment-multimedia technology in disaster risk management and training- transformable indigenous knowledge in disaster reduction.

Learning Outcomes:

After completing this Unit, students will be able to

- To know about the technological aspects of disaster management
- To understand about the factors for disaster reduction

UNIT-V:

Education and Community Preparedness: Education in disaster risk reduction-Essentials of school disaster education-Community capacity and disaster resilience-Community based disaster recovery -Community based disaster management and social capital-Designing resilience- building community capacity for action.

Learning Outcomes:

After completing this Unit, students will be able to

To impart the education related to risk reduction in schools and communities

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Affirm the usefulness of integrating management principles in disaster mitigation work
- Distinguish between the different approaches needed to manage pre-during and post-disaster periods
- Explain the process of risk management
- Relate to risk transfer

TEXT BOOKS

- 1. Rajib shah & R R Krishnamurthy "Disaster Management" Global Challenges and Local Solutions' Universities press. (2009),
- 2. Tushar Bhattacharya, "Disaster Science & Management" Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 3. Jagbir Singh "Disaster Management" Future Challenges and Opportunities' I K International Publishing House Pvt. Ltd. (2007),

REFERENCE BOOKS

1. Harsh. K. Gupta "Disaster Management edited", Universities press, 2003.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A01802b) GLOBAL WARMING AND CLIMATE CHANGES OPEN ELECTIVE-IV

Course Objectives:

The objective of this course is to:

- To know the basics, importance of global warming.
- To know the concepts of mitigation measures against global warming
- To know the impacts of climate changes

UNIT I

EARTH'S CLIMATE SYSTEM:

Introduction to environment, Ozone, ozone layer and its functions, Ozone depletion and ozone hole, Vienna convention and Montreal protocol, Green house gases and green house effect, Hydrological cycle and Carbon cycle, Global warming and its impacts

Learning Outcomes:

After completing this Unit, students will be able to

- To identity the importance of Ozone and effect of green house gases
- To know the effect of global warming

UNIT II

ATMOSPHERE & ITS COMPONENTS: Atmosphere and its layers-Characteristics of Atmosphere - Structure of Atmosphere - Composition of Atmosphere - Atmospheric stability - Temperature profile of the atmosphere - Temperature inversion and effects of inversion on pollution dispersion.

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the layers of atmosphere and their characteristics

UNIT III

IMPACTS OF CLIMATE CHANGE: Causes of Climate change - Change of Temperature in the environment - Melting of ice and sea level rise - Impacts of Climate Change on various sectors - Projected impacts for different regions, uncertainties in the projected impacts and risk of irreversible changes.

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the causes of climate change and its effects on various sectors.

UNIT IV

OBSERVED CHANGES AND ITS CAUSES: Climate change and Carbon credits-Clean Development Mechanism (CDM), CDM in India - Kyoto Protocol - Intergovernmental Panel on Climate Change (IPCC) - Climate Sensitivity - Montreal Protocol - United Nations Framework Convention on Climate Change (UNFCCC) - Global change in temperature and climate and changes within India

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the causes of climate change and carbon credits, effect of change in temperature and climate on india.

UNIT V

CLIMATE CHANGE AND MITIGATION MEASURES: CDM and Carbon Trading - Clean Technology, biodiesel, compost, biodegradable plastics - Renewable energy usage as an alternative - Mitigation Technologies and Practices within India and around the world - Non-renewable energy supply to all sectors - Carbon sequestration - International and regional cooperation for waste disposalbiomedical wastes, hazardous wastes, e-wastes, industrial wastes, etc.,

Learning Outcomes:

After completing this Unit, students will be able to

• To know about the clean technology, use of renewable energy, mitigation technologies and their practices.

Course Outcomes

Upon the successful completion of this course, the students will be able to:

- An ability to apply knowledge of mathematics, science, and engineering
- Design a system, component or process to meet desired needs with in realistic constraints such as economic ,environmental ,social ,political ,ethical ,health and safety , manufacturability and sustainability
- An ability to identify, formulate, and solve engineering problems

REFERENCE BOOKS

- 1. Dash Sushil Kumar, "Climate Change An Indian Perspective", Cambridge University Press India Private limited 2007.
- 2. Adaptation and mitigation of climate change-Scientific Technical Analysis. Cambridge University Press ,Cambridge,2006.
- 3. Atmospheric Science, J.M. Wallace and P.V. Hobbs, Elsevier / Academic Press 2006.
- 4. Jan C. van Dam, Impacts of "Climate Change and Climate Variability on ydrological Regimes", Cambridge university press ,2003.
- 5. David Archer, Global Warming: Understanding the Forecast, 2 nd ed. (Wiley, 2011
- 6. John Houghton, Global Warming: The Complete Briefing, 5th Edition, 2015, Cambridge Univ. Press. Useful

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II Sem L T P C 3 0 0 3

(19A02802a) IoT APPLICATIONS IN ELECTRICAL ENGINEERING

(OE-IV)

Course Objectives:

- To learn about a few applications of Internet of Things
- To distinguish between motion less and motion detectors as IoT applications
- To know about Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- To understand about applications of IoT in smart grid
- To introduce the new concept of Internet of Energy for various applications

UNIT-I:

Sensors

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

Learning Outcomes:

After completing this Unit, students will be able to

- To know about basic principles of sensors and their classification
- To learn about various motion less sensors
- To understand about Piezoelectric sensor applications to detect temperature, pressure etc.
- To understand about Capacitive sensors to detect temperature, force and pressure etc.
- To know about concepts of tactile sensors, for a few applications

UNIT-II:

Occupancy and Motion detectors

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

Learning Outcomes:

After completing this Unit, students will be able to

- To know about Capacitive occupancy
- To understand about Motion detectors
- To distinguish between Potentiometric, inductive and capacitive sensors for a few applications
- To learn about a few velocity and acceleration sensors
- To know about various flow sensors

UNIT-III:

MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

Learning Outcomes:

After completing this Unit, students will be able to

- To understand about the basic concept of MEMS
- To know about electrostatic actuation
- To learn about process design of MEMS based sensors
- To learn about process design of MEMS based actuators
- To distinguish between RF switches with respect to electric and magnetic sensors

UNIT-IV:

IoT for Smart grid

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

Learning Outcomes:

After completing this Unit, students will be able to

- To get exposure fundamental applications of IoT to Smart grid
- To learn about driving factors of IoT in Generation level
- To learn about driving factors of IoT in Transmission level
- To learn about driving factors of IoT in Distribution level
- To distinguish between metering level and monitoring applications
- To get introduced to the concept of Smart home

UNIT-V:

IoE: Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid

Learning Outcomes:

After completing this Unit, students will be able to

- To get exposed the new concept of internet of energy
- To learn about architecture of IoE
- To know about energy routines
- To learn about information sensing and processing issues
- To understand the use of energy internet as smart grid

Course Outcomes:

- To get exposed to recent trends in few applications of IoT in Electrical Engineering
- To understand about usage of various types of motionless sensors
- To understand about usage of various types of motion detectors
- To get exposed to various applications of IoT in smart grid
- To get exposed to future working environment with Energy internet

TEXT BOOKS:

- 1. Jon S. Wilson, "Sensor Technology Hand book", Newnes Publisher, 2004
- 2. Tai Ran Hsu, "MEMS and Microsystems: Design and manufacture", 1st Edition, Mc Grawhill Education, 2017
- 3. Ersan Kabalci and Yasin Kabalci, "From Smart grid to Internet of Energy", 1st Edition, Academic Press, 2019

REFERENCE BOOKS:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, "Internet of Things: Principles and Paradigms", Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, "Energy Harvesting Systems for IoT Applications": Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, "Internet of Things", Wiley, 2019

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-II Sem

L T P C

3 0 0 3

(19A02802b) SMART ELECTRIC GRID

(OE-IV)

Course Objectives:

- To learn about recent trends in grids as smart grid
- To understand about smart grid architecture and technologies
- To know about smart substations
- To learn about smart transmission systems
- To learn about smart distribution systems

UNIT-I:

Introduction to Smart Grid

Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions – Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid

Smart Grid Architecture: Components and Architecture of Smart Grid Design – Review of the proposed architectures for Smart Grid. The fundamental components of Smart Grid designs – Transmission Automation – Distribution Automation – Renewable Integration

Learning Outcomes:

After completing this Unit, students will be able to

- To understand basic definitions and architecture of Smart grid
- To learn about new technologies for smart grid
- To know about fundamental components of smart grid
- To understand key challenges of smart grid
- To understand the need for integration of Renewable energy sources

UNIT-II:

Smart grid Technologies

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

Learning Outcomes:

After completing this Unit, students will be able to

To know about basic characteristic features of smart grid technologies

- To understand about definition, types, building blocks of Microgrids
- To know about integration requirements, standards of renewable energy sources in Microgrids
- To understand Load frequency and reactive power control of Microgrid
- To understand about Microgrid through a case study

UNIT-III:

Smart Substations

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

Learning Outcomes:

After completing this Unit, students will be able to

- To know about protection, monitor and control devices in Smart substations
- To know about the importance of SCADA in substations
- To understand about interoperability and IEC 61850
- To know about role of substations in Smart grid
- To understand about Volt/VAR control equipment inside substation

UNIT-IV:

Smart Transmission

Energy Management systems, History, current technology, EMS for the smart grid, Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid, Synchro Phasor Measurement Units (PMUs)

Learning Outcomes:

After completing this Unit, students will be able to

- To know about Energy Management Systems in smart transmission systems
- To understand about WAMPC
- To know about role of transmission systems in Smart grid
- To know about Synchro Phasor Measurement units

UNIT-V:

Smart Distribution Systems

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR

control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Learning Outcomes:

After completing this Unit, students will be able to

- To know about DSCADA in Smart Distribution Systems
- To distinguish between current and advanced DMSs
- To know about occurrence of voltage fluctuations
- To understand about VAR control and equipment on distribution feeders
- To know about FDIR objectives and benefits

Course Outcomes:

- To be able to understand trends in Smart grids
- To understand the needs and roles of Smart substations
- To understand the needs and roles of Smart Transmission systems
- To understand the needs and roles of Smart Distribution systems
- To distinguish between SCADA and DSCADA systems in practical working environment

Text Books:

- 1. Stuart Borlase, "Smart Grids Infrastructure, Technology and Solutions", 1st edition, CRC Press, 2013
- 2. Gil Masters, "Renewable and Efficient Electric Power System", 2nd edition, Wiley–IEEE Press, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition, 2e, 2017.
- 2. T. Ackermann, "Wind Power in Power Systems", Hoboken, NJ, USA, John Wiley, 2e, 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – IV-II Sem L T P C 3 0 0 3

(19A03802a) ENERGY CONSERVATION AND MANAGEMENT OPEN ELECTIVE-IV

Course Objective:

- Familiarize present energy scenario, and energy auditing methods.
- Explain components of electrical systems, lighting systems and improvements in performance.
- Demonstrate different thermal systems, efficiency analysis, and energy conservation methods.
- Train on energy conservation in major utilities.
- Instruct principles of energy management and energy pricing.

UNIT I

Introduction: Energy – Power – Past & Present Scenario Of World; National Energy Consumption Data – Environmental Aspects Associated With Energy Utilization –Energy Auditing: Need, Types, Methodology And Barriers. Role Of Energy Managers. Instruments For Energy Auditing.

Learning Outcomes

At the end of this unit, the student will be able to

- Infer energy consumption patterns and environmental aspects of energy utilization. (12)
- Outline energy auditing requirements, tools and methods. (12)
- Identify the function of energy manager. (13)

UNIT II

Electrical Systems: Components Of EB Billing – HT And LT Supply, Transformers, Cable Sizing, Concept Of Capacitors, Power Factor Improvement, Harmonics, Electric Motors – Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types Of Lighting, Efficacy, LED Lighting And Scope Of Economy In Illumination.

Learning Outcomes

At the end of this unit, the student will be able to

- Outline components of electricity billing, transmission and distribution. (12)
- Analyze performance characteristics of transformers, capacitors, and electric motors. (14)
- Examine power factor improvements, and electric motor efficiency. (14)
- Evaluate lighting systems. (L4)

UNIT III

Thermal Systems: Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency Computation and Encon Measures. Steam: Distribution & Usage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories.

Learning Outcomes

At the end of this unit, the student will be able to

- Determine efficiency of boilers, furnaces and other thermal systems. (15)
- Recommend energy conservation measures in thermal systems. (15)
- Justify steam systems in energy conservation. (14)

UNIT IV

Energy Conservation In Major Utilities: Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration And Air Conditioning Systems – Cooling Towers – D.G. Sets.

Learning Outcomes

At the end of this unit, the student will be able to

- Explain energy conservation measures in major utilities. (12)
- Apply performance test criteria for fans, pumps, compressors, hvac systems. (13)
- Assess energy conservation in cooling towers and d.g. sets. (15)

UNIT V

Energy Management: Principles of Energy Management, Energy demand estimation, Organising and Managing Energy Management Programs, Energy pricing.

Learning Outcomes

At the end of this unit, the student will be able to

- Describe principles of energy management. (12)
- Assess energy demand and forecast. (15)
- Organize energy management programs. (16)
- Design elements of energy pricing. (16)

Course Outcomes:

At the end of this course, the student will be able to:

- Explain energy utilization and energy auditing methods.(12)
- Analyze electrical systems performance of electric motors and lighting systems.(14)
- Examine energy conservation methods in thermal systems.(14)
- Estimate efficiency of major utilities such as fans, pumps, compressed air systems, hvac and d.g. Sets. (14)

• Elaborate principles of energy management, programs, energy demand and energy pricing. (16)

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) Available At www.energymanagertraining.com, A Website Administered By Bureau Of Energy Efficiency (BEE), A Statutory Body Under Ministry Of Power, Government Of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design And Management For Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use Of Energy" Butterworths, London, 1982
- 4. Murphy. W.R. And G. Mc KAY, "Energy Management", Butterworths, London 1987.
- 5. Turner, W. C., Doty, S. and Truner, W. C., "Energy Management Hand book", 7th edition, Fairmont Press, 2009.
- 6. De, B. K., "Energy Management audit & Conservation", 2nd Edition, Vrinda Publication, 2010.
- 7. Smith, C. B., "Energy Management Principles", Pergamon Press, 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-II Sem

L T P C

3 0 0 3

(19A03802b) NON-DESTRUCTIVE TESTING OPEN ELECTIVE-IV

Course Objectives

- Introduce basic concepts of non destructive testing.
- Familiarize with characteristics of ultrasonic test, transducers, rejection and effectiveness.
- Describe concept of liquid Penetrant, eddy current and magnetic particle tests, its applications and limitations.
- Explain the principles of infrared and thermal testing, applications and honey comb and sandwich structures case studies.
- Impart NDE and its applications in pressure vessels, casting and welded constructions.

UNIT I

Introduction to non-destructive testing: Radiographic test, Sources of X and Gamma Rays and their interaction with Matter, Radiographic equipment, Radiographic Techniques, Safety Aspects of Industrial Radiography.

Learning outcomes:

At the end of this unit, the student will be able to

- Explain non destructive testing techniques (L2)
- Summarize the basic concepts of Radiographic test (L2)
- Outline the concepts of sources of X and Gamma Rays (L2)
- Explain the radiographic techniques (L2)
- Discuss the safety aspects of industrial radiography. (L4)

UNIT II

Ultrasonic test: Principle of Wave Propagation, Reflection, Refraction, Diffraction, Mode Conversion and Attenuation, Sound Field, Piezo-electric Effect, Ultrasonic Transducers and their Characteristics, Ultrasonic Equipment and Variables Affecting Ultrasonic Test, Ultrasonic Testing, Interpretations and Guidelines for Acceptance, Rejection - Effectiveness and Limitations of Ultrasonic Testing.

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the principle of ultrasonic test. (12)
- Analyze the performance of wave propagation, reflection, refraction, diffraction and sound field in ultrasonic test. (14)

- Discuss the characteristics of ultrasonic transducers. (14)
- Outline the limitations of ultrasonic testing. (12)

UNIT III

Liquid Penetrant Test: Liquid Penetrant Test, Basic Concepts, Liquid Penetrant System, Test Procedure, Effectiveness and Limitations of Liquid Penetrant Testing.

Eddy Current Test: Principle of Eddy Current, Eddy Current Test System, Applications of Eddy Current-Testing Effectiveness of Eddy Current Testing.

Magnetic Particle Test: Magnetic Materials, Magnetization of Materials, Demagnetization of Materials, Principle of Magnetic Particle Test, Magnetic Particle Test Equipment, Magnetic Particle Test Procedure, Standardization and Calibration, Interpretation and Evaluation, Effective Applications and Limitations of the Magnetic Particle Test.

Learning Outcomes:

At the end of this unit, the student will be able to

- Illustrate the procedure of Liquid Penetrant, eddy current and magnetic particle tests.(L2)
- Outline the limitations of Penetrant, eddy current and magnetic particle tests. (L2)
- Explain the effectiveness of Penetrant, eddy current and magnetic particle tests. (L2)
- Apply the applications of Magnetic particle test. (L3)

UNIT IV

Infrared And Thermal Testing: Introduction and fundamentals to infrared and thermal testing—Heat transfer —Active and passive techniques —Lock in and pulse thermography—Contact and non contact thermal inspection methods—Heat sensitive paints —Heat sensitive papers —thermally quenched phosphors liquid crystals —techniques for applying liquid crystals —other temperature sensitive coatings —Inspection methods —Infrared radiation and infrared detectors—thermo mechanical behavior of materials—IR imaging in aerospace applications, electronic components, Honey comb and sandwich structures—Case studies.

Learning Outcomes:

At the end of this unit, the student will be able to

- Discuss the fundamentals of thermal testing. (16)
- Explain the techniques of liquid crystals, active and passive. (12)
- Illustrate thermal inspection methods. (12)
- Outline the limitations of thermal testing. (12)
- Explain the applications of honey comb and sandwich structures. (12)

UNIT V

Industrial Applications of NDE: Span of NDE Activities Railways, Nuclear, Non-nuclear and Chemical Industries, Aircraft and Aerospace Industries, Automotive Industries, Offshore Gas and Petroleum Projects, Coal Mining Industry, NDE of pressure vessels, castings, welded constructions

Learning Outcomes:

At the end of this unit, the student will be able to

- Illustrate applications of NDE. (L2)
- Explain the applications of Railways, Nuclear and chemical industries. (L2)
- Outline the limitations and disadvantages of NDE. (L2)
- Explain the applications of NDA of pressure vessels, casting and welding constructions (L2)

Course Outcomes

At the end of the course, student will be able to

- Explain various methods of non-destructive testing. (13)
- Apply relevant non-destructive testing method different applications. (13)
- Explain the applications of railways, nuclear and chemical industries. (12)
- Outline the limitations and disadvantages of nde. (12)
- Explain the applications of nda of pressure vessels, casting and welding constructions (12)

TEXT BOOKS:

- 1. J Prasad, GCK Nair, "Non destructive test and evaluation of Materials", Tata mcgraw-Hill Education Publishers, 2008.
- 2. Josef Krautkrämer, Herbert Krautkrämer, "Ultrasonic testing of materials", 3rd edition, Springer-Verlag, 1983.
- 3. X. P. V. Maldague, "Non destructive evaluation of materials by infrared thermography", 1st edition, Springer-Verlag, 1993.

REFERENCES:

- 1. Gary L. Workman, Patrick O. Moore, Doron Kishoni, "Non-destructive, Hand Book, Ultrasonic Testing", 3rd edition, Amer Society for Nondestructive, 2007.
- 2. ASTM Standards, Vol 3.01, Metals and alloys

Social Relevant Projects

- 1. Solid waste conversion into energy (Gasification)
- 2. Plastic waste into fuel.
- 3. Bio-gas digester.
- 4. Development of mechanisms for farmers.

- 5. Smart irrigation for saving water.
- 6. Mechanized water segregation.
- 7. Applications of solar technologies for rural purpose.
- 8. Power generation from wind turbine.
- 9. Applications of drones for agriculture.
- 10. Solar drying.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-II Sem

L T P C

3 0 0 3

(19A04802a) INTRODUCTION TO IMAGE PROCESSING

OPEN ELECTIVE-IV

Course Objectives:

- To interpret fundamental concepts of digital image processing.
- To exemplify image enhancement.
- To interpret fundamental concepts of color image processing.
- To assess image compression techniques for digital images.
- To summarize segmentation for digital images.

UNIT-I:

INTRODUCTION TO DIGITAL IMAGE PROCESSING

Introduction: Digital image representation, Fundamental steps in image processing, Elements of digital image processing, Elements of visual perception, Simple image model, Sampling and Quantization, Basic relationships between pixels, Image transformations.

Applications: Medical imaging, Robot vision, Character recognition, Remote sensing.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the fundamental concepts of image processing, Sampling process and basis relationships between pixels (L1)
- Explain the elements of Digital Image Processing (L2)

UNIT-II:

IMAGE ENHANCEMENT

Need for image enhancement, Point processing, Histogram processing, Spatial filtering-Smoothing and Sharpening.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the need for enhancement process (L1)
- Explain the terminology involved in enhancement process (L2)

UNIT-III:

COLOR IMAGE PROCESSING

Colour fundamentals, Colour models, Color transformations, Pseudo colour image processing, Full colour image processing.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the need for enhancement process (L1)
- Explain the terminology involved in enhancement process (L2)

UNIT-IV:

IMAGE COMPRESSION

Redundancies, Fidelity criteria, Image compression model, Lossless compression: Huffman coding, Arithmetic coding. Lossy compression: Lossy Predictive Coding, JPEG Compression Standard.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the need for image compression (L1)
- Explain the image compression and various types of compression techniques

(L2)

UNIT-V:

IMAGE SEGMENTATION

Detection of discontinuities: point, line and edge detection, Edge linking and Boundary detections: Local Processing, Global processing via Hough transform, Thresholding, Region oriented segmentation: Region growing, Region splitting and merging.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the principle of image segmentation and its importance (L1)
- Explain the image compression and various types of compression techniques (L2)
- Analyze the various terminologies involved in image segmentation like edge, boundary detection etc. (L3)

Course Outcomes:

- Interpret fundamental concepts of digital and color image processing.
- Exemplify image enhancement.
- Analyze the various terminologies involved in image segmentation like edge, boundary detection etc. Assess image compression techniques for digital images.
- Summarize segmentation techniques for digital images.

TEXT BOOKS:

1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", 3rd Edition, Pearson Education, 2011.

REFERENCE BOOKS:

- 1. S Jayaraman, S Esakkirajan and T Veerakumar, "Digital Image Processing", TMH, 2011.
- 2. S. Sridhar, "Digital Image Processing", 2nd Edition, Oxford Publishers, 2016.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-II Sem

L T P C

3 0 0 3

(19A04802b) PRINCIPLES OF CELLULAR AND MOBILE COMMUNICATIONS OPEN ELECTIVE-IV

Course Objectives:

- To understand the concepts and operation of cellular systems.
- To apply the concepts of cellular systems to solve engineering problems.
- To analyse cellular systems for meaningful conclusions.
- To evaluate suitability of a cellular system in real time applications.
- To design cellular patterns based on frequency reuse factor.

UNIT-I:

Introduction to Cellular Mobile Systems

Why cellular mobile communication systems? A basic cellular system, Evolution of mobile radio communications, Performance criteria, Characteristics of mobile radio environment, Operation of cellular systems. Examples for analog and digital cellular systems.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concepts and operation of cellular systems (L1).
- Analyze the characteristics of mobile radio environment (L3).

UNIT-II:

Cellular Radio System Design

General description of the problem, Concept of frequency reuse channels, Cochannel interference reduction, Desired C/I ratio, Cell splitting and sectoring.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand the concept of frequency reuse and cochannel interference in cellular systems (L1).
- Apply the concept of cellular systems to solve engineering problems (L2).
- Analyze the design problems of cellular systems (L3).
- Design of cellular patterns based frequency reuse factor (L5).

UNIT-III:

Handoffs and Dropped Calls

Why handoffs and types of handoffs, Initiation of handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff and soft handoff, Cell-site handoff, Intersystem handoff. Introduction to dropped call rate.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand why handoff is required (L1).
- Apply handoff techniques to solve engineering problems (L2).
- Compare various types of handoffs (L3).

UNIT-IV:

Multiple Access Techniques for Wireless Communications

Introduction, Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Accessand Space Division Multiple Access.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand various types of multiple access techniques (L1).
 - Apply the concept of multiple access to solve engineering problems (L2).
 - Compare various types of multiple access techniques (L3).

UNIT-V:

Digital Cellular Systems

Global System for Mobile Systems, Time Division Multiple Access Systems, Code Division Multiple Access Systems. Examples for 2G, 3G and 4G systems. Introduction to 5G system.

Learning Outcomes:

At the end of the unit, the student should be able to

- Understand operation of various types of digital cellular systems (L1).
- Compare various types of digital cellular systems (L3).
- Evaluate suitability of a cellular system in real time applications (L4).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Course Outcomes:

At the end of the course, the student should be able to

- Understand the concepts and operation of cellular systems (L1)
- Apply the concepts of cellular systems to solve engineering problems (L2).
- Analyse cellular systems for meaningful conclusions, Evaluate suitability of a cellular system in real time applications (L3).
- Design cellular patterns based on frequency reuse factor (L4).

TEXT BOOKS:

- 1. William C. Y. Lee, "Mobile Cellular Telecommunications", 2ndEdition, McGraw-Hill International, 1995.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", 2ndEdition, PHI, 2004.

REFERENCES:

6. Aditya K. Jagannatham "Principles of Modern Wireless Communications Systems – Theory and Practice", McGraw-Hill International, 2015.

Blooms' Learning levels:

L1: Remembering and Understanding

L2: Applying

L3: Analyzing, Evaluating

L4: Designing, Creating

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A04802c) INDUSTRIAL ELECTRONICS OPEN ELECTIVE-IV

Course Objectives:

This course will enable students to:

- Describe semi-conductor devices (such as PN junction diode & Transistor) and their switching characteristics.
- Understand the characteristics of AC to DC converters.
- Understand about the practical applications Electronics in industries
- Describe the Ultrasonics and its application.

UNIT I

Scope of industrial Electronics, Semiconductors, Merits of semiconductors, crystallinestructure, Intrinsic semiconductors, Extrinsic semiconductors, current flow insemiconductor, Open-circuited p-n junction, Diode resistance, Zener diode, Photoconductors and junction photo diodes, Photo voltaic effect, Light emitting diodes(LED).

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the importance of Electronics and semiconductor devices in industry, operation of semiconductor devices (L1)
- Describe the working of semiconductor diodes (L1)

UNIT II

Introduction, The junction transistor, Conventions for polarities of voltages and currents,Open circuited transistor, Transistor biased in the active region, Current components in transistors, Currents in a transistor, Emitter efficiency, Transport factor and transistor-α,Dynamic emitter resistance, Transistor as an amplifier, Transistor construction, Lettersymbols for semiconductor Devices, Characteristic curves of junction transistor in common configuration, static characteristic curves of PNP junction transistor in common emitter configuration, The transistor in common collector Configuration.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the working of Transistor and its different configurations (L1)
- Describe the working of CE, CC, CB configurations (L1)

UNIT III

AC to DC converters- Introduction, Classification of Rectifiers, Half wave Rectifiers, Fullwave Rectifiers, Comparison of Half wave and full wave rectifiers, Bridge Rectifiers,Bridge Rectifier meter, Voltage multiplying Rectifier circuits, Capacitor filter, LC Filter,Metal Rectifiers, Regulated Power Supplies, Classification of Voltage Regulators, Shortperiod Accuracy of Regulators, Long period .Accuracy of Voltage Regulator, Principle ofautomatic voltage Regulator, Simple D.C. Voltage stabilizer using Zener diode, D.C. Voltage Regulators, Series Voltage Regulators, Complete series voltage regulatorcircuit, Simple series voltage regulator.

UNIT IV

Resistance welding controls: Introduction, Resistance welding process, Basic Circuitfor A.C. resistance welding, Types of Resistance welding, Electronic welding controlused in Resistance welding, Energy storage welding. **Induction heating:** Principle of induction heating, Theory of Induction heating merits of induction heating, Application of induction heating, High frequency power source of induction heating. **Dielectricheating:** Principle of dielectric heating, theory of dielectric heating, dielectric properties of typical materials, electrodes used in dielectric heating, method of coupling of electrodes to the R.F. generator, Thermal losses in Dielectric heating, Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the principle of operation of Resistance welding, Induction heating and Dielectric heating (L1)
- Apply the process of Resistance welding, Induction heating and Dielectric heating in the industry (L2)

UNIT V:

Ultrasonics: Introduction, Generation of Ultrasonic waves, Application of Ultrasonicwaves, Ultrasonic stroboscope, ultrasonic as means of communication, ultrasonic flawdetection, Optical image on non-homogeneities, ultrasonic study of structure of matter, Dispersive study of structure of matter, Dispersive and colloidal effect of Ultrasonic, Coagulating action of Ultrasonic, separation of mixtures by ultrasoni8c waves, cuttingand machining of hard materials by ultrasonic vibrations, Degassing of liquids byultrasonic waves, Physio-chemical effects of ultrasonics, chemical effects of ultrasonics, Thermal effects of Ultrasonics, soldering and welding by ultrasonics, Ultrasonic Drying

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the principle of operation of Ultrasonics and its applications (L1)
- Analyze the thermal effects of Ultrasonics, soldering and welding by ultrasonics, Ultrasonic Drying in the industry (L3)

Course Outcome:

- Understand the semi-conductor devices and their switching characteristics.
- Apply the Ultrasonic waves with different applications
- Analyze the thermal effects of Ultrasonics, soldering and welding by ultrasonics, Ultrasonic Drying in the industry, Interpret the characteristics of AC to DC converters,
- Develop the practical applications Electronics in industries.

TEXT BOOKS:

- 1. G. K. Mithal, "Industrial Electronics", Khanna Publishers, Delhi, 2000.
- 2. J.Gnanavadivel, R.Dhanasekaran, P.Maruthupandi, "Industrial Electronics", Anuradha Publications, 2011.

REFERENCE BOOKS:

- 1. F. D. Petruzulla, "Industrial Electronics", McGraw Hill, Singapore, 1996.
- 2. M. H. Rashid, "power Electronics Circuits, Devices and Application", PHI, 3rdedition, 2004.
- 3. G. M. Chute and R. D. Chute, "Electronics in Industry", McGraw Hill Ltd, Tokyo, 1995.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–IV-II L T P C

3 0 0 3

(19A04802d) ELECTRONIC INSTRUMENTATION OPEN ELECTIVE-IV

Course Objectives:

This course will enable students to:

- To introduce various measuring instruments and their functionality
- To teach various measurement metrics for performance analysis
- To explain principles of operation and working of different electronic instruments
- To familiarize the characteristics, operations, calibrations and applications of the different oscilloscopes and signal generators.
- To provide exposure to different types of transducers

UNIT - I

Measurement and Error: Definitions, Accuracy, Precision, Resolution and Significant Figures, Types of Errors, Measurement error combinations. (Text 2)

Ammeters: DC Ammeter, Multi-range Ammeter, The Ayrton Shunt or Universal Shunt, Requirements of Shunt, Extending of Ammeter Ranges, RF Ammeter (Thermocouple), Limitations of Thermocouple. (Text 1)

Voltmeters and Multi-meters: Introduction, Basic Meter as a DC Voltmeter, DC Voltmeter, Multi range Voltmeter, Extending Voltmeter Ranges, Loading, AC Voltmeter using Rectifiers. True RMS Voltmeter, Multi-meter. (Text 1)

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the importance of measurement system (L1)
- Examine the characteristics of different Instruments (L2)
- Illustrate different types of errors that may occur in instruments during measurements (L2)

UNIT - II

Digital Voltmeters: Introduction, RAMP technique, Dual Slope Integrating Type DVM, Integrating Type DVM, Most Commonly used principles of ADC, Successive Approximations, -Digit, Resolution and Sensitivity of Digital Meters, General Specifications of DVM, (Text 1)

Digital Instruments: Introduction, Digital Multi-meters, Digital Frequency Meter, Digital Measurement of Time, Universal Counter, Digital Tachometer, Digital pH Meter, Digital Phase Meter, Digital Capacitance Meter, (Text 1)

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain working of digital measuring Instruments (L2)
- Compare the various measuring techniques for measuring voltage (L4)

UNIT - III

Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram of Oscilloscope, Simple CRO, Vertical Amplifier, Horizontal Deflecting System, Sweep or Time Base Generator, Measurement of Frequency by Lissajous Method, Digital Storage Oscilloscope. (Text 1)

Signal Generators: Introduction, Fixed and Variable AF Oscillator, Standard Signal Generator, Laboratory Type Signal Generator, AF sine and Square Wave Generator, Function Generator, (Text 1)

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe functions of basic building of CRO (L1)
- Measure parameters viz. Amplitude, frequency and time period using CRO (L2)
- Classify signal generators and describe its characteristics (L2)

UNIT - 4

Measuring Instruments: Field Strength Meter, Stroboscope, Phase Meter, Q Meter, Megger. (Text 1)

Bridges: Introduction, Wheatstone's bridge, Kelvin's Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wien's bridge. (Text 1)

Learning Outcomes:

At the end of this unit, the student will be able to

- Describe function of various measuring Instruments. (L1)
- Describe how unknown capacitance and inductance can be measured using bridges (L1)
- Select appropriate bridge for measuring R, L and C parameters (L2)

UNIT-5

Transducers: Introduction, Electrical transducers, Selecting a transducer, Resistive transducer, Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, Inductive transducer, LVDT, Piezoelectric transducer, Photo cell, Photo voltaic cell, Semiconductor photo diode and transistor. (Text 1)

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the importance of transducer (L1)
- Illustrate different measuring techniques in transducers to measure physical quantities.(L2)
- Select the appropriate transducer for the measurement of physical parameters (L2)

Course outcomes:

- Learn different types of errors in measurement, calibration process and standards, various methods for measurement of non-electrical quantities, Understand the different methods for measurement of various electrical quantities.
- Familiarize the dynamics of instrument systems, various passive and active transducers
- Compare the various measuring techniques for measuring voltage (L4)

TEXT BOOKS:

- H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 3rd Edition, 2012, ISBN:9780070702066.
- A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1st Edition, 2015, ISBN: 9789332556065.

REFERENCE BOOKS:

- David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2nd Edition, 2006 ISBN 81-203-2360-2.
- A. K. Sawhney, "Electronics and Electrical Measurements", Dhanpat Rai &Sons. ISBN -81-7700-016-0

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)–IV-II L T P C 3 0 0 3

(19A05802a) BLOCKCHAIN TECHNOLOGY

Course Objectives:

This course is designed to:

- Understand the philosophy of Blockchain and the cutting edge technology behind its functions
- Illustrate how to setup Ethereum tools
- Explain the key vocabulary and concepts used in Blockchain for Business

UNIT-I

Blockchain concepts: Blockchain, Blockchain application example: Escrow, Blockchain stack, from web 2.0 to the next generation decentralized web, domain specific Blockchain application, Blockchain benefits and challenges.

Blockchain application templates: Blockchain application components, design methodology for Blockchain applications, Blockchain applications templates

Learning Outcomes:

After completing this Unit, students will be able to

- Outline the benefits and challenges of Block chain(L2)
- Design the Blockchain applications(L6)

UNIT-II

Setting up Ethereum development tools: Ethereum clients, Ethereum languages, TestRPC, Mist Ethereumwalle, meta mask, web3 JavaScript API, truffle.

Ethereum Accounts: Ethereum Accounts, keypairs, working with EOA Accounts, working with contract accounts.

Learning Outcomes:

After completing this Unit, students will be able to

- Illustrate the use of Ethereum development tools(L2)
- Create Ethereum accounts and work with them (L6)

UNIT-III

Smart contracts: Smart contract, structure of a contract, setting up and interacting with a contract using Geth client, setting up and interacting with a contract using Mist Wallet

Learning Outcomes:

After completing this Unit, students will be able to

- Make use of of smart contracts(L3)
- Distinguish setting up and interacting with a contract using Geth client and Mist Wallet.(L4)

UNIT-IV

Smart contracts (continued): Smart contract examples, Smart contract patterns.

Decentralized Applications: implementing Dapps, case studies,

Learning Outcomes:

After completing this Unit, students will be able to

- Illustrate the Smart contract examples and patterns(L2)
- Develop Decentralized applications.(L6)

UNIT-V

Mining: Concensus on Blockchain network, mining, Block validation, state storage in Ethereum.

Learning Outcomes:

After completing this Unit, students will be able to

- Define Concensus on Blockchain network(L1)
- Demonstrate State Storage in Ethereum(L2)

Course outcomes:

Upon completion of the course, the students should be able to:

- Create customized blockchain solutions (L6)
- Make use of the specific mechanics of Ethereum(L3)
- Experiment with Smart contracts (L3)
- Develop Enterprise applications using Blockchain(L6)

Text book:

1. Arshadeepbahga, Vijay madisetti, "Blockchain Applications A hands-on approach", VPT 2017.

2. Chandramouli Subramanian, Asha A George, Abhilash K A and MeenaKarthikeyan, "Blockchain Technology", Universty Press, 2021

References:

- 1. Imran Bashir, "Mastering Blockchain" Packt Publishing Ltd, March 2017.
- 2. Melanie swan, "Blokchain blueprint for a new economy", O'REILLY

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)-IV-II

L T P C

3 0 0 3

(19A05802b) MEAN STACK TECHNOLOGIES

Course Objectives:

This course is designed to:

- Translate user requirements into the overall architecture
- Implement new systems and manage the projects
- Write optimized front end code using HTML and JavaScript
- Monitor the performance of web applications & its infrastructure
- Design and implement Robust and Scalable Front End Applications

UNIT I

Introduction to Web: Internet and World Wide Web, Domain name service, Protocols: HTTP, FTP, SMTP. Html5 concepts, CSS3, Anatomy of a web page. XML: Document type Definition, XML schemas, Document object model, XSLT, DOM and SAX Approaches.

Learning Outcomes:

After completing this Unit, students will be able to

- Summarize the protocols related to Internet & WWW(L2)
- Compare and contrast XML and HTML(L5)

UNIT II

JavaScript: The Basic of JavaScript: Objects, Primitives Operations and Expressions, Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions. Angular Java Script Angular JS Expressions: ARRAY, Objects, \$eval, Strings, Angular JS Form Validation & Form Submission, Single Page Application development using Angular JS.

Learning Outcomes:

After completing this Unit, students will be able to

- Illustrate the importance of JavaScript(L2)
- Develop applications using Angular JS(L6)

UNIT III

Node.js: Introduction, Advantages, Node.js Process Model, Node JS Modules. Express.js: Introduction to Express Framework, Introduction to Nodejs, What is

Nodejs, Getting Started with Express, Your firstExpress App, Express Routing, Implementing MVC in Express, Middleware, Using Template Engines, Error Handling, API Handling, Debugging, Developing Template Engines, Using Process Managers, Security & Deployment.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain the Node JS modules(L2)
- Make use of MVC in Express(L3)

UNIT IV

RESTful Web Services: Using the Uniform Interface, Designing URIs,

Web Linking, Conditional Requests. React Js: Welcome to React, Obstacles and Roadblocks, React's Future, Keeping Up with the Changes, Working with the Files, Pure React, Page Setup, The Virtual DOM, React Elements, ReactDOM, Children, Constructing Elements with Data, React Components, DOM Rendering, Factories.

Learning Outcomes:

After completing this Unit, students will be able to

- Outline the RESTful Web Services(L2)
- Assess the future of React Js(L5)

UNIT V

Mongo DB: Introduction, Architecture, Features, Examples, Database Creation & Collection in Mongo DB. Deploying Applications: Web hosting & Domains, Deployment Using Cloud Platforms.

Learning Outcomes:

After completing this Unit, students will be able to

- Explain the features and architecture of Mongo DB (L2)
- Create and collect Database in MongDB(L6)

Course Outcomes

After the completion of the course, student will be able to

- List the Basic Concepts of Web & MarkupLanguages(L1)
- Develop web Applications using Scripting Languages &Frameworks(L6)
- Make use of Express JS and Node JSframeworks(L3)

- Illustrate the uses of web services concepts like restful, reactjs (L2)
- Deploying applications using Cloud Platforms (L6)

Text Books:

- 1) Programming the World Wide Web, Robet W Sebesta, 7ed, Pearson.
- 2) Web Technologies, Uttam K Roy,Oxford
- 3) Pro Mean Stack Development, ELadElrom, Apress
- 4) Restful Web Services Cookbook, Subbu Allamraju, O'Reilly
- 5) JavaScript & jQuery the missing manual, David sawyer mcfarland,O'Reilly
- 6) Web Hosting for Dummies, Peter Pollock, John WileyBrand

Reference Books:

- 1) Ruby on Rails up and Running, Lightning fast Web development, Bruce Tate, Curt Hibbs, Oreilly (2006).
- 2) Programming Perl, 4ed, Tom Christiansen, Jonathan Orwant, Oreilly (2012).
- 3) Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, DreamTech.
- 4) An Introduction to Web Design, Programming, Paul S Wang, Sanda S Katila, Cengage Learning.
- 5) Express.JS Guide, The Comprehensive Book on Express.js, Azat Mardan, Lean Publishing.

e-Resources:

1) http://www.upriss.org.uk/perl/PerlCourse.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)-IV-II

L T P C

3 0 0 3

(19A27802a) FOOD PLANT UTILITIES & SERVICES OPEN ELECTIVE - IV

PREAMBLE

This subject focuses on different utilities like water, steam, electricity and its properties, production of consumption of these sources in the food plant.

OBJECTIVES

• To give brief idea about the utilities that are required/used in food industry and their sources and importance.

UNIT - I

Introduction Classification of various utilities and services in food industry. Water use in Food Processing Industry Water supply system: Pumps of different types, operational aspects, piping system for fresh water, chilled water etc., fittings and control, water requirement for cleaning and processing, water quality, water purification and softening Unit

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Water use in Food Processing Industry
- Water supply system: Pumps of different types, operational aspects, piping system for fresh water, chilled water etc.,
- fittings and control, water requirement for cleaning and processing,
- water quality, water purification and softening Unit

UNIT – II

Water use in food processing: Different types of water requirements in food processing plants, types of water use, waste water sources, water wastage minimization, water loadings per unit mass of raw material. Water conservation: Water and waste water management, economic use of water, water filtration and recirculation.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Different types of water requirements in food processing plants,
- types of water use, waste water sources, water wastage minimization,
- water loadings per unit mass of raw material
- Water and waste water management, economic use of water,

water filtration and recirculation

UNIT - III

Steam uses in Food Industry Steam uses in food industry: Food processing operations in which steam is used, temperature, pressure and quantity of steam required in various food processing operations. Steam generation system: Components of a boiler system, fuels used in boilers, energy analysis for a steam generation system, heat loss from boiler system, boiler design consideration.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Food processing operations in which steam is used
- Temperature, pressure and quantity of steam required in various food processing operations
- Components of a boiler system, fuels used in boilers, energy analysis for a steam generation system
- Heat loss from boiler system, boiler design consideration.

UNIT - IV

Waste-Heat Recovery in Food Processing Facilities Quantity and quality of waste heat in food processing facilities, waste heat utilization, heat exchangers for waste heat recovery, heat pumps for waste heat recovery. Waste Disposal and its Utilization Industrial waste, sewage, influent, effluent, sludge, dissolved oxygen, biological oxygen demand, chemical oxygen demand.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Waste-heat recovery in food processing facilities
- Quantity and quality of waste heat in food processing facilities,
- Waste heat utilization, heat exchangers for waste heat recovery, heat pumps for waste heat recovery.
- Waste disposal and its utilization industrial waste, sewage, influent, effluent, sludge,
- Dissolved oxygen, biological oxygen demand, chemical oxygen demand

UNIT - V

Planning and Design of Service Facilities in Food Industry Estimation of utilities requirements: Lighting, ventilation, drainage, CIP system, dust removal, fire protection etc.

Maintenance of facilities: Design and installation of piping system, codes for building, electricity, boiler room, plumbing and pipe colouring, maintenance of the service facilities. Services required in offices, laboratories, locker and toilet facilities, canteen, parking lots and roads, loading docks, garage, repair and maintenance shop, ware houses etc.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Planning and Design of Service Facilities in Food Industry Estimation of utilities requirements: Lighting, ventilation, drainage, etc.
- Maintenance of facilities: Design and installation of piping system, codes for building, electricity, plumbing, maintenance of the service facilities.
- Services required in offices, laboratories, locker and toilet facilities, canteen, parking lots and roads, repair and maintenance shop, ware houses etc

Course Outcomes

By end of the course, students will understand the following

• Various utilities and services used in food industry and its applications in food industry namely water, steam, electricity and etc.

TEXT BOOKS

- 1. Lijun Wang. "Energy Efficiency and Management in Food Processing Facilities". CRC Press. 2008,
- 2. M. E. Casper. "Energy-saving Techniques for the Food Industry". Noyes Data Corporation. 1977,

REFERENCES

- 1. P.L. Ballaney, "Thermal Engineering in SI Units", 23rd Edition, Khanna Publishers, Delhi, 2003.
- 2. C.P. Arora. "Refrigeration and Air Conditioning". 3rd Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi. 2008,
- 3. W. E. Whitman, "A Survey of Water Use in the Food Industry", S. D. Holdsworth. Published by British Food Manufacturing Industries Research Association.
- 4. Chilton's Food Engineering. 1979, Chilton Co Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II Sem L T P C 3 0 0 3

(19A27802b) NUTRACEUTICALS AND FUNCTIONAL FOODS OPEN ELECTIVE – IV

PREAMBLE

This course will cover the classification, brief history and the impact of nutraceuticals and functional foods on health and disease prevention. Nutraceuticals to be covered in the course include isoprenoids, isoflavones, flavanoids, carotenoids, lycopene, garlic, omega 3 fatty acids, sphingolipids, vitamin E and antioxidants, herbal products in foods. Also marketing issues related to functional foods and nutraceuticals as well as stability testing will be reviewed.

Course Objectives:

- To understand the interrelationship between nutraceuticals and health maintenance.
- Cite the evidence supporting the efficacy and safety of nutraceutical and functional food products
- To explain the metabolic consequences of nutraceuticals and functional foods.
- Describe the physiologic and biochemical changes associated with consumption of nutraceuticals

UNIT – I

Introduction, definition, Modification in the definition of nutraceuticals. Classification of nutraceuticals, Nutraceuticals market scenario, formulation considerations. Challenges for Nutraceuticals.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Classification of nutraceuticals,
- Nutraceuticals market scenario and formulation considerations.
- Challenges for Nutraceuticals.

UNIT - II

Nutraceuticals value of spices and seasoning – Turmeric, Mustard, Chilli, Cumin, Fenugreek, Black Cumin, Fennel, Asafoetidia, Garlic, Ginger, Onion, Clove, Cardamom etc., Nutraceuticals from Fruits And Vegetables – Mango, Apple, Grapes, Bel, Banana, Broccoli, Tomato, Bitter Melon, Bitter Orange etc.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Nutraceuticals value of spices and seasoning Turmeric, Mustard, Chilli, Etc.
- Nutraceuticals from Fruits and Vegetables Mango, Apple, Grapes, Tomato etc.

UNIT - III

Omega -3 fatty acids from fish- Typical properties, structural formula, functional category. CLA- typical properties, structural formula, functional category. Application in Nutraceuticals. Calcium, chromium, copper, iodine, iron, magnesium, Zn- mechanism of action, bioavailability, uses and deficiency, dietary sources.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Properties of Omega -3 fatty acids from fish and structures
- Application in Nutraceuticals. Calcium, iodine, iron, Zn- mechanism of action, bioavailability, uses and deficiency, dietary sources.

UNIT - IV

Definition, classification – Type of classification (Probiotics, probiotics and synbiotics: Taxonomy and important features of probiotic microorganisms. Health effects of probiotics including mechanism of action. Probiotics in various foods: fermented milk products, non-milk products etc. Prebiotics. Definition, chemistry, sources, metabolism and bioavailability, effect of processing, physiological effects, effects on human health and potential applications in risk reduction of diseases, perspective for food applications for the following: Non-digestible carbohydrates/oligosaccharides: Dietary fibre, Resistant starch, Gums.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Probiotics, probiotics and symbiotics: important features of probiotic microorganisms.
- Non-digestible carbohydrates/oligosaccharides: Dietary fibre and etc.

UNIT - V

Phytosterol, Fatty Acids, Carotenoids, Anthocyanins, Carotenoids, Amino Acids, Water Soluble Vitamins, Free radical biology and antioxidant activity of nutraceuticals. Regulations of Nutraceuticals and Functional Foods in India and rest of the world.

Learning Outcomes:

At the end of unit, students will be able to understand the following

- Phytosterol, Fatty Acids, Carotenoids, Anthocyanins, Free radical biology and antioxidant activity of nutraceuticals.
- Regulations of Nutraceuticals and Functional Foods in India and rest of the world.

Course Outcomes

• Students will get know the nutraceuticals and its active components in different foods, regulations on nutraceuticals in India.

TEXT BOOKS

- 1. "Handbook of Nutraceuticals and Functional Foods. Yashwant Pathak, Vol. 1. (Ingredients, formulations, and applications)" CRC Press 2005.
- 2. "Handbook of Nutraceuticals and Functional Foods". Robert Wildman, 2nd Edition. CRC Press 2001.

REFERENCES

- 1. B. Shrilakshmi, "Dietetics", 5th Edition, New Age International (P) Ltd., New Delhi, 2005.
- 2. A. E. Bender, "Nutrition and Dietetic Foods", Chem. Pub. Co. New York, 2nd Edition, 2004.
- 3. P. S. Howe, "Basic Nutrition in Health and Disease", 2nd Edition,W. B. Saunders Company, London, 2003.
- 4. Kramer, "Nutraceuticals in Health and Disease Prevention", Hoppe and Packer, Marcel Dekker, Inc., NY 2001.
- 5. Bao and Fenwick, "Phytochemicals in Helath and Disease", Marcel Decker, Inc. NY 2004.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-II L T P C

3 0 0 3

(19A54802a) MATHEMATICAL MODELING & SIMULATION OPEN ELECTIVE-IV

Course Objective:

This course focuses on what is needed to build simulation software environments, and not just building simulations using preexisting packages.

UNIT-I:

Simulation Basics-Handling Stepped and Event-based Time in Simulations-Discrete versus Continuous Modeling-Numerical Techniques-Sources and Propagation of Error

Learning Outcomes:

Students will be able to

• Understand computer simulation technologies and techniques.

UNIT-II

Dynamical, Finite State, and Complex Model Simulations-Graph or Network Transitions Based Simulations-Actor Based Simulations-Mesh Based Simulations-Hybrid Simulations

Learning Outcomes:

Students will be able to

• implement and test a variety of simulation and data analysis.

UNIT-III

Converting to Parallel and Distributed Simulations-Partitioning the Data-Partitioning the Algorithms-Handling Inter-partition Dependencies

Learning Outcomes:

Students will be able to

- Understand concepts of modeling layers of society's critical infrastructure networks.
- Understand partitioning the data.

UNIT-IV

Probability and Statistics for Simulations and Analysis-Introduction to Queues and Random Noise-Random Variates Generation-Sensitivity Analysis

Learning Outcomes:

Students will be able to

- Understand Queues and Random noise.
- Understand sensitivity analysis.

UNIT-V

Simulations Results Analysis and Viewing Tools-Display Forms: Tables, Graphs, and Multidimensional Visualization-Terminals, X and MS Windows, and Web Interfaces-Validation of Model Results

Learning Outcomes:

Students will be able to

• Build tools to view and control simulations and their results.

Course Outcomes:

After the completion of course, student will be able to

- Understand basic Model Forms.
- Understand basic Simulation Approaches.
- Evaluate handling Stepped and Event-based Time in Simulations.
- Distinguish Discrete versus Continuous Modeling.
- Apply Numerical Techniques.
- Calculate Sources and Propagation of Error.

TEXT BOOKS:

- 1. JN Kapur, "Mathematical modelling", Newage publishers
- 2. Kai Velten, "Mathematical Modeling and Simulation: Introduction for Scientists and Engineers" Wiley Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- IV-II

LTPC

3 0 0 3

(19A51802a) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

UNIT 1: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply the Green chemistry Principles for day to day life as well as synthesis (L3)
- Describe the sustainable development and green chemistry (L2)
- Explain economic and un-economic reactions (L2)
- Demonstrate Polymer recycling (L2)

UNIT 2: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogeneous catalysts, Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain Heterogeneous catalyst and its applications in Chemical and Pharmaceutical Industries (L2)
- Differentiate Homogeneous and Heterogeneous catalysis (L2)
- Identify the importance of Bio and Photo Catalysis (L3)
- Discuss Transition metal and Phase transfer Catalysis (L3)

UNIT 3: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water based coatings, Ionic liquids as catalyst and solvent

Learning Outcomes:

At the end of this unit, the students will be able to

- Demonstrate Organic solvents and importance of solvent free systems (L3)
- Discuss Super critical carbondioxide (L2)
- Explain Super critical water and water as a reaction solvent (L2)
- Interpret Ionic Liquids as Catalyst and Solvent (L2)

UNIT 4: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feedstocks: Chemicals from Renewable feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry: Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

Learning Outcomes:

At the end of this unit, the students will be able to

- Describe importance of Biomass and Solar Power (L2)
- Illustrate Sonochemistry and Green Chemistry ((L2)
- Apply Green Chemistry for Sustainable Development (L3)
- Discuss the importance of Renewable resources (L3)

UNIT 5: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Learning Outcomes:

At the end of this unit, the students will be able to

- Discuss green Chemistry Principles for practicing Green nano synthesis (L3)
- Illustrate Microwave Assisted Synthesis (L2)
- Differentiate Hydrothermal and Reflux synthesis (L2)
- Demonstrate Green Chemistry applications of Inorganic nanomaterials (L2)

Course Outcomes:

Upon completion of this course the students should recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

Text Books:

- **1.** M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- 2. Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition.

Oxford University Press, USA

References:

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and Ackmez Mudhoo, CRC Press, 2010.
- 2. Edited by Alvise Perosa and Maurizio Selva, Hand Book of Green chemistry Volume8: Green Nanoscience, wiley-VCH, 2013.

HONOURS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C

3 1 0 4

(19A04H01) AUTOMOTIVE ELECTRONICS (Honours)

Course Learning Objectives:

This course will enable students to:

- Understand the basics of automobile dynamics and design electronics to complement those features.
- Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts.

Module -1

Automotive Fundamentals Overview – Evolution of Automotive Electronics, Automobile

Physical Configuration, Survey of Major Automotive Systems, The Engine – Engine Block,

Cylinder Head, Four Stroke Cycle, Engine Control, Ignition System - Spark plug, High voltage

circuit and distribution, Spark pulse generation, Ignition Timing, Diesel Engine, Drive Train -

Transmission, Drive Shaft, Differential, Suspension, Brakes, Steering System (Text 1: Chapter1),

Starter Battery – Operating principle: (Text 2: Pg. 407-410)

The Basics of Electronic Engine Control – Motivation for Electronic Engine Control – Exhaust

Emissions, Fuel Economy, Concept of an Electronic Engine control system, Definition of General

terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark

timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of

intake manifold pressure, Electronic Ignition. (Text 1: Chapter 5)

Module -2

Automotive Sensors – Automotive Control System applications of Sensors and Actuators – Variables to be measured, Airflow rate sensor, Strain Gauge MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (O2/EGO) Lambda Sensors, Piezoelectric Knock Sensor. (**Text 1: Chapter 6**)

Automotive Engine Control Actuators – Solenoid, Fuel Injector, EGR Actuator, Ignition System (Text 1: Chapter 6)

Module -3

Digital Engine Control Systems – Digital Engine control features, Control modes for fuel Control

(Seven Modes), EGR Control, Electronic Ignition Control - Closed loop Ignition timing, Spark

Advance Correction Scheme, Integrated Engine Control System - Secondary Air Management,

Evaporative Emissions Canister Purge, Automatic System Adjustment, System Diagnostics. (**Text**

1: Chapter 7)

Control Units – Operating conditions, Design, Data processing, Programming, Digital modules in

the Control unit, Control unit software. (Text 2: Pg. 196-207)

Module -4

Automotive Networking –Bus Systems – Classification, Applications in the vehicle, Coupling of

networks, Examples of networked vehicles

(Text 2: Pg. 85-91),

Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces. (Text 2: Pg.

92-151)

Vehicle Motion Control – Typical Cruise Control System, Digital Cruise Control System, Digital

Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics

(Digital only), Antilock Brake System (ABS) (Text 1: Chapter 8)

Module -5

Automotive Diagnostics—Timing Light, Engine Analyzer, On-board diagnostics, Off-board

diagnostics, Expert Systems, Occupant Protection Systems - Accelerometer based Air Bag

systems. (Text 1: Chapter 10)

Future Automotive Electronic Systems – Alternative Fuel Engines, Electric and Hybrid

vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Low tire pressure

warning system, Heads Up display, Speech Synthesis, Navigation – Navigation Sensors - Radio Navigation, Signpost navigation, dead reckoning navigation, Voice Recognition Cell Phone dialing, Advanced Cruise Control, Stability Augmentation, Automatic driving Control (**Text 1:Chapter 11**)

Course Outcomes:

At the end of the course, students will be able to:

- Acquire an overview of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.
- Use available automotive sensors and actuators while interfacing with microcontrollers / microprocessors during automotive system design.
- Understand the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.

• Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts and get fair idea on future Automotive Electronic Systems.

Text Books:

- 1. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Elsevier Publishing.
- Robert Bosch Gmbh (Ed.) Bosch Automotive Electrics and Automotive Electronics System and Components, Networking and Hybrid Drive, 5th edition, John Wiley& Sons Inc., 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C

3 1 0 4

(19A04H02) LOW POWER VLSI DESIGN (Honors)

Course Objectives:

- To impart knowledge on different abstraction levels in VLSI Design and the impact of power reduction methods at higher levels
- To describe leakage control mechanisms to reduce static power consumption in DSM VLSI regime
- To explain technology independent and technology-dependent techniques for Dynamic power reduction in CMOS circuits
- To introduce various software power estimation and optimization techniques for low power VLSI system design
- To demonstrate low power circuit and architectural techniques for reducing power consumption in SRAM designs

Unit 1

Introduction to Low Power design: Why worry about power – at global and SOC levels, Emerging zero-power applications (WSN), 20 nm scenario, Design-productivity challenge, Impact of implementation choices, Motivation for LPD, Basic VLSI Design Flow, Optimization examples at various levels (System, Sub-system, RTL, Gate, Circuit and Device levels)

Sources of power dissipation, MOS transistor leakage components, Static Power dissipation, Active Power dissipation, Circuit Techniques for Low Power Design – Standby leakage control using transistor stacks, Multiple V_{TH} and dynamic V_{TH} techniques, Supply voltage scaling technique.

Unit Outcomes:

- Identify sources of power dissipation in VLSI Circuits (L2)
- Distinguish between static and dynamic power dissipation (L2)
- Distinguish impact of power reduction techniques at various levels of VLSI Design (L2)
- Apply standby leakage reduction techniques for static power reduction in CMOS circuits (L3)

Unit 2

Power Optimization Techniques – I: Dynamic Power Reduction Approaches, Circuit Parallelization, Voltage Scaling Based Circuit Techniques, Circuit Technology – Independent Power Reduction, Circuit Technology Dependent Power Reduction; Leakage Power Reduction – Leakage Components, Design Time Reduction Techniques, Run-time Stand-by

Reduction Techniques, Run-time Active Reduction Techniques Reduction in Cache Memories, LVLP Logic Styles, Current-Mode CMOS Adders using multiple-valued logic.

UnitOutcomes:

- Distinguish between technology dependent and technology independent power reduction techniques (L2)
- Analyze different power reduction techniques for VLSI systems at Design time, Run-time and Stand-by modes (L4)
- Compare Current Mode and Voltage Mode CMOS circuits w.r.t power consumption (L5)

Unit 3

Power Optimization Techniques – II: Low Power Very Fast Dynamic Logic Circuits, Low Power Arithmetic Operators, Energy Recovery Circuit Design, Adiabatic – Charging Principle and its implementation issues (Ref-2)

Software Design for Low Power: Sources of Software Power Dissipation, Software Power Estimation, Software Power Optimizations, Automated Low-Power Code Generation, Codesign for Low Power.

Unit Outcomes:

- Identify implementation issues in adiabatic/ energy recovery circuit design (L2)
- Identify sources of software power dissipation (L2)
- Apply simple software estimation and optimization techniques for low power VLSI system design (L3)

Unit 4

Low Voltage Low Power Static Random Access memories:

Basics, Race between 6T and 4T memory cells, LVLP SRAM Cell designs- Shared bit-line SRAM cell configuration, Power efficient 7T SRAM cell with current mode read and write, Loadless CMOS 4T SRAM cell, The 1T SRAM cell, Pre-charge and Equalization Circuit, Dynamic and static decoders, Voltage Sense amplifier, Output Latch,

Low Power SRAM Techniques: Sources of SRAM Power, Low Power Circuit techniques such as capacitance reduction, Leakage current reduction.

Unit Outcomes:

- Compare different SRAM structures for power efficiency (L5)
- Apply capacitance and leakage current reduction techniques for SRAM structures to reduce power dissipation (L3)

Unit 5

Large LP VLSI System design and Applications:

Architecture-driven Voltage Scaling, Power optimization using operation reduction and operation substitution, Pre-computation based optimization, Multiple and Dynamic supply voltage design, Choice of supply voltages, Varying the clock speed, varying the V_{DD} of RAM structures, Gated Clocking. Leakage current reduction in medical devices.

Unit Outcomes:

- Apply simple architectural level power reduction techniques in CMOS VLSI designs (L3)
- Apply low power circuit techniques such as Gated clocking, varying clock speed and V_{DD} for RAM structures (L3)

Contents beyond Syllabus:

Low Power Design for safety Critical applications: safe operation constraints vs low-power techniques, Unsuitable low power design techniques for safety critical applications, Low-power and safe-operating circuits. (4 hours)

Course Outcomes:

- Distinguish impact of various power reduction techniques at different levels of VLSI Design (L2)
- Identify sources of power dissipation and apply leakage reduction techniques to reduce static power consumption in CMOS circuits (L2)
- Analyze different power reduction techniques for VLSI systems at Design time, Run-time and Stand-by modes (L4)
- Apply simple software power estimation and optimization techniques for low power VLSI system design (L3)
- Apply low power circuit and architectural techniques such as capacitance reduction, gated clocking, V_{DD} and V_{th} scaling, DVS etc in digital systems and SRAM designs (L3)

Text Books:

- 1. Kiat-Seng Yeo and Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems, Tata McGrawhill Edition, 2005.
- 2. Christian Piguet, "Low Power CMOS Circuits Technology, Logic Design and CAD Tools", 1st Indian Reprint, CRC Press, 2010.

References:

- 1. Kaushik Roy and Sharat Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley Pub., 2000.
- 2. DimitriosSoudris, Christian Piguet and CoastasGoutis, "Designing CMOS Circuits for Low Power", Kluwer Academic Pub, 2002
- 3. J. Rabaey, Low Power Design Essentials, 1st Edition, Springer Publications, 2010.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C

3 1 0 4

(19A04H03) PATTERN RECOGNITION (Honors)

Course Objectives:

- To convey methods for learning from data, with an emphasis on pattern classification.
- To expose various pattern recognition algorithms.
- To present pattern recognition algorithms to solve the real world problems in various fields.

Unit 1

Introduction - Basic concepts, Applications, Fundamental problems in pattern Recognition system design, Design concepts and methodologies, Examples of Automatic Pattern recognition systems, Simple pattern recognition model.

Unit Outcomes:

- Summarize basic concepts of pattern recognition (L2)
- Formulate simple pattern recognition model (L6)

Unit 2

Statistical Decision Making - Introduction, Baye's theorem, Multiple features, Conditionally independent features, Decision boundaries, Unequal cost of error, estimation of error rates, the leaving-one-out-techniques, characteristic curves, estimating the composition of populations. Baye's classifier for normal patterns.

Unit Outcomes:

- Describe statistical decision-making algorithms (L2)
- Predict different error rates in data analysis of patterns (L3)

Unit 3

Non Parametric Decision Making: Histogram, kernel and window estimation, nearest neighbor classification techniques. Adaptive decision boundaries, adaptive discriminant functions, Minimum squared error discriminant functions, choosing a decision making techniques.

Unit Outcomes:

- Describe non-parametric decision-making algorithms in pattern recognition (L2)
- Compare and contrast different decision-making algorithms (L5)

Unit 4

Clustering and Partitioning: Hierarchical Clustering: Introduction, agglomerative clustering algorithm, the single-linkage, complete-linkage and average-linkage algorithm. Ward's method Partition clustering-Forg's algorithm, K-means's algorithm, Isodata algorithm.

Unit Outcomes:

- Discuss various Hierarchical clustering algorithms (L5)
- Apply Partition clustering techniques in pattern recognition (L3)

Unit 5

Pattern Pre-Processing and Feature Selection:Introduction, distance measures, clustering transformation and feature ordering, clustering in feature selection through entropy minimization, features selection through orthogonal expansion, binary feature selection, Applications of Pattern Recognition inbio-metric, facial recognition, Finger prints, etc.

Unit Outcomes:

- Describe pre-processing and feature selection algorithms in pattern recognition (L2)
- Develop various applications using pattern recognition algorithms (L6)

Course Outcomes:

- Formulate systems and algorithms for pattern recognition, with focus on sequences of patterns (L6)
- Interpret principles of Bayesian parameter estimation (L2)
- Analyze Non-parametric decision-making algorithms in pattern recognition (L4)
- Analyze clustering and partitioning techniques in pattern recognition (L4)
- Apply pre-processing and feature selection methods in pattern recognition (L3)
- Develop various applications using pattern recognition algorithms (L6)

Text Books:

- 1. Gose.Johnsonbaugh, Jost." Pattern recognition and Image Analysis", PHI.
- 2. Tou. Rafael. Gonzalez. "Pattern Recognition Principle", Pearson Education.

References:

- 1. Richard duda, Hart., David Strok, "Pattern Classification", John Wiley.
- 2. Theodoridis, S. and K. Koutroumbas, Pattern recognition. 4th ed. 2009, San Diego, CA: Academic Press.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) L T P C 3 1 0 4

(19A04H04) MICRO ELECTRO MECHANICAL SYSTEMS (Honors)

Course Objectives:

- To provide knowledge of semiconductors and solid mechanics to fabricate mems devices.
- To educate on the rudiments of micro fabrication techniques.
- To introduce various sensors and actuators
- To introduce different materials used for mems.
- To educate on the applications of mems to disciplines beyond electrical and mechanical engineering.

Unit 1

INTRODUCTION: Intrinsic Characteristics Of MEMS – Energy Domains And Transducers-Sensors And Actuators – Introduction To Micro Fabrication – Silicon Based MEMS Processes – New Materials – Review Of Electrical And Mechanical Concepts In MEMS – Semiconductor Devices – Stress And Strain Analysis – Flexural Beam Bending- Torsional Deflection.

Unit Outcomes:

- Explain basic principles of MEMS (L2)
- Classify materials used for fabricating MEMS (L4)
- Analyze stress, strain, bending and deflection in semiconductor devices (L4)

Unit 2

SENSORS AND ACTUATORS-I: Electrostatic Sensors – Parallel Plate Capacitors – Applications – Interdigitated Finger Capacitor – Comb Drive Devices – Micro Grippers – Micro Motors – Thermal Sensing And Actuation – Thermal Expansion – Thermal Couples – Thermal Resistors – Thermal Bimorph – Applications – Magnetic Actuators – Micromagnetic Components – Case Studies Of MEMS In Magnetic Actuators- Actuation Using Shape Memory Alloys.

Unit Outcomes:

- Summarize different types of capacitor sensors (L2)
- Understand working of different thermal sensors (L2)
- Demonstrate the application of magnetic actuators (L2)

Unit 3

SENSORS AND ACTUATORS-II: Piezoresistive Sensors – Piezoresistive Sensor Materials – Stress Analysis Of Mechanical Elements – Applications To Inertia, Pressure, Tactile And Flow Sensors – Piezoelectric Sensors And Actuators – Piezoelectric Effects – Piezoelectric Materials – Applications To Inertia, Acoustic, Tactile And Flow Sensors.

Unit Outcomes:

- Analyze piezoelectric effect and related mathematical concepts (L4)
- Demonstrate the applications of PZTs (L2)

Unit 4

MICROMACHINING: Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching Of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case Studies – Basic Surface Micro Machining Processes – Structural And Sacrificial Materials – Acceleration Of Sacrificial Etch – Striction And Antistriction Methods – LIGA Process – Assembly Of 3D MEMS – Foundry Process.

Unit Outcomes:

- Classify the types of etching processes applicable to micromachining (L4)
- Understand surface micromachining processes (L2)
- Describe various steps in LIGA process (L2)

Unit 5

POLYMER AND OPTICAL MEMS: Polymers In MEMS– Polimide – SU-8 – Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon – Application To Acceleration, Pressure, Flow And Tactile Sensors- Optical MEMS – Lenses And Mirrors – Actuators For Active Optical MEMS.

Unit Outcomes:

- Discuss application of polymer materials in fabricating MEMS (L5)
- Describe operation of lenses, mirrors and actuators for optical MEMS (L2)

Course Outcomes:

- Explain electrical and mechanical principles of MEMS (L2)
- Describe working of electrostatic, thermal and magnetic sensors and actuators (L2)
- Demonstrate piezoelectric effect and its applications (L2)
- Categorize micromachining processes (L4)
- Describe operation of polymer and optical MEMS (L2)

Text Books:

- 1. Chang Liu, 'Foundations Of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro Systems Design And Manufacture" Tata McGraw Hill, New Delhi, 2002.

References:

1. NadimMaluf," An Introduction To Micro Electro Mechanical System Design", Artech House, 2000.

- 2. Mohamed Gad-El-Hak, Editor, "The MEMS Handbook", CRC Press Baco Raton, 2001.
- 3. Julian W. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS And Smart Devices, John Wiley & Son LTD, 2002.
- 4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)

L T P C

3 1 0 4

(19A04H05) VLSI TESTING AND TESTABILITY (Honors)

Course Objectives:

- To impart knowledge on the basic faults that occur in digital systems
- To describe fault detection techniques in combinational circuits.
- To outline procedures to generate test patterns for detecting single stuck faults in combinational and sequential circuits.
- To explain design for testability techniques with improved fault coverage.
- To introduce BIST concepts and specific architectures.
- To give exposure to approaches for introducing BIST into logic circuits, memories and embedded cores.

Unit 1

Introduction to Test and Design for Testability (DFT) Fundamentals. Modeling: Modeling digital circuits at logic level, register level and structural models. Levels of modeling. Logic Simulation: Types of simulation, Delay models, Element evaluation, Hazard detection, Gate level event driven simulation.

Unit Outcomes:

- Model digital circuit at logic, RTL and structural levels (L3)
- Compare logic and analog simulations with respect to speed and accuracy (L2)
- List various delay models and their importance in circuit simulation (L1)

Unit 2

Fault Modeling – Logic fault models, Fault detection and redundancy, Fault equivalence and fault location. Single stuck and multiple stuck – Fault models. Fault simulation applications, General techniques for Combinational circuits.

Unit Outcomes:

- Model faults as stuck at and multiple stuck at faults (L3)
- List fault detection techniques for combinational circuits (L1)
- Apply redundancy for fault detection in a digital circuit (L3)

Unit 3

Testing for single stuck faults (SSF), Automated test pattern generation (ATPG/ATG) for SSFs in combinational and sequential circuits, Functional testing with specific fault models, Vector simulation – ATPG vectors, formats, Compaction and compression, Selecting ATPG Tool.

Unit Outcomes:

- Generate test patterns for detecting single stuck faults in combinational and sequential circuits (L2)
- Test circuit function with specific fault models (L4)
- Define Vector simulation and ATPG vectors (L1)

Unit 4

Design for testability – testability trade-offs, techniques. Scan architectures and testing – controllability and Observability, generic boundary scan, full integrated scan, storage cells for scan design. Board level and system level DFT approaches. Boundary scan standards. Compression techniques – different techniques, syndrome test and signature analysis.

Unit Outcomes:

- Define controllability and observability for a digital system (L1)
- Identify schemes for introducing testability into digital circuits with improved fault coverage (L3)
- Compare board level and chip level DFT approaches in testing (L2)

Unit 5

Built-in self-test (BIST): BIST Concepts and test pattern generation. Specific BIST Architectures – CSBL, BEST, RTS, LOCST, STUMPS, CBIST, CEBS, RTD, SST, CATS, CSTP, BILBO. Brief ideas on some advanced BIST concepts and design for self-test at board level. Memory BIST (MBIST): Memory test architectures and techniques – Introduction to memory test, Types of memories and integration, Embedded memory testing model. Memory test requirements for MBIST.Brief ideas on embedded core testing.

Unit Outcomes:

- Compare different BIST architectures (L5)
- Perform memory test for the given memory block (L3)
- Compare different approaches for introducing BIST into logic circuits, memories and embedded cores (L5)

Course Outcomes:

- Model digital circuits at logic and RTL levels (L3)
- Simulate digital ICs in the presence of faults and evaluate the given test set for fault coverage (L4)
- Generate test patterns for detecting single stuck faults in combinational and sequential circuits (L3)
- Identify schemes for introducing testability into digital circuits with improved fault coverage (L3)
- Compare different approaches for introducing BIST into logic circuits, memories and embedded cores (L5)

Text Books:

- 1. MironAbramovici, Melvin A. Breur, Arthur D. Friedman, Digital Systems Testing and Testable Design, Jaico Publishing House, 2001.
- 2. Alfred Crouch., Design for Test for Digital ICs & Embedded Core Systems, Prentice Hall.

References:

- 1. Robert J. Feugate, Jr., Steven M. Mentyn, Introduction to VLSI Testing, Prentice Hall, Englehood Cliffs, 1998.
- 2. Bushnell, M., and Agrawal, Vishwani D, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2002

Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008)

Ananthapuramu-515 002 (A.P) India

Four Year B.Tech. **Course Structure and Syllabi under R20 Regulations**

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Semester-0

Induction Program: 3 weeks (Common for All Branches of Engineering)

S.No	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	MC	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	MC	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Electronics & Communication Engineering

		Semester - 1 (Theory - 5, Lab - 4))		
S.No	Course No	Course Name	Category	L-T-P/D	Credits
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3
2.	20A56201T	Applied Physics	BS	3-0-0	3
3.	20A52101T	Communicative English	HS	3-0-0	3
4.	20A02102T	Fundamentals of Electrical Circuits	ES	3-0-0	3
5.	20A03101T	Engineering Drawing	ES	1-0-0/2	2
6.	20A03101P	Engineering Graphics Lab	ES	0-0-2	1
7.		Applied Physics Lab	BS	0-0-3	1.5
8.	20A52101P	Communicative English Lab	HS	0-0-3	1.5
9.	20A02102P	Fundamentals of Electrical Circuits Lab	ES	0-0-2	1.5
				Total	19.5

	Semester -2 (Theory -5 , Lab -5)						
S.No	Course No	Course Name	Category	L-T-P	Credits		
1.	20A54201	Differential Equations and Vector Calculus	BS	3-0-0	3		
2.	20A51101T	Chemistry	BS	3-0-0	3		
3.	20A05201T	C-Programming & Data Structures	ES	3-0-0	3		
4.	20A04101T	Electronic Devices & Circuits	ES	3-0-0	3		
5.		Engineering Workshop	LC	0-0-3	1.5		
6.		IT Workshop	LC	0-0-3	1.5		
7.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5		
8.	20A51101P	Chemistry Lab	BS	0-0-3	1.5		
9.	20A04101P	Electronic Devices & Circuits Lab	ES	0-0-3	1.5		
				Total	19.5		

	Semester-III						
S.No.	Course	Course Name	Category Hours per wee	r week	Credits		
	Code			L	T	P	
1.	20A54302	Complex Variables and Transforms	BS	3	0	0	3
2.	20A04301T	Signals and Systems	PC	3	0	0	3
3.	20A02303T	Electrical Engineering	ES	3	0	0	3
4.	20A04302T	Analog Circuits	PC	3	0	0	3
5.	20A52301 20A52302 20A52303	Humanities Elective— I Managerial Economics & Financial Analysis Organizational Behaviour Business Environment	HS	3	0	0	3
6.	20A04301P	Simulation Lab	PC	0	0	3	1.5
7.	20A02303P	Electrical Engineering Lab	ES	0	0	3	1.5
8.	20A04302P	Analog Circuits Lab	PC	0	0	3	1.5
9.	20A05305	Skill oriented course – I Application Development with Python	SC	1	0	2	2
10.	20A52201	Universal Human Values	MC	3	0	0	3
11.	20A99301	NSS/NCC/NSO Activities	MC	0	0	2	0
	_				•	Total	24.5

		Semester-IV					
S.No.	Course	Course Name	Category	Hours per week		eek	Credits
	Code			L	T	P	
1.	20A54403	Probability Theory & Stochastic Processes	BS	3	0	0	3
2.	20A04303T	Digital Logic Design	PC	3	0	0	3
3.	20A04401	EM Waves and Transmission Lines	PC	3	0	0	3
4.	20A04402T	Communication Systems	PC	3	0	0	3
5.	20A04403T	Linear and Digital IC Applications	PC	3	0	0	3
6.	20A04303P	Digital Logic Design Lab	PC	0	0	3	1.5
7.	20A04402P	Communication Systems Lab	PC	0	0	3	1.5
8.	20A04403P	Linear and Digital IC Applications Lab	PC	0	0	3	1.5
9.	20A52401	Skill Oriented Course –II Soft Skills	SC	1	0	2	2
10.	20A99401	Mandatory Non-credit Course Design Thinking for Innovation	MC	2	1	0	0
	·		<u> </u>		•	Total	21.5

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during third semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

		Semester-V				
S.No.	Course Code	Course Name	L	T	P	Credits
1.	20A04501	Control Systems Engineering	3	0	0	3
2.	20A04502T	Digital Signal Processing	3	0	0	3
3.	20A04503T	Microprocessors and Microcontrollers	3	0	0	3
4.		Professional Elective Course – I	3	0	0	3
	20A05602T	Machine Learning				
	20A04504a	Computer Architecture & Organization				
	20A04504b	Information Theory and Coding				
5.		Open Elective Course – I	3	0	0	3
6.	20A04502P	Digital Signal Processing Lab	0	0	3	1.5
7.	20A04503P	Microprocessors and Microcontrollers Lab	0	0	3	1.5
8.		Skill oriented course - III	1	0	2	2
	20A04509	PCB Design and Prototype development				
9.	20A04510	Evaluation of Community Service Project				1.5
10.	20A99201	Mandatory Non-credit Course Environmental Science	3	0	0	03
		,	1	Total		21.5

Open Elective Course - I

S.No	CourseCode	Course Name	Offered by the Dept.
1	20A01505	Building Technology	CE
2	20A02505	Electric Vehicles	EEE
3	20A03505	3D Printing Technology	ME
4	20A05505a	Java Programming	CSE & Allied/IT
5	20A05502T	Artificial Intelligence	
6	20A12502	Mobile Application Development using Android	
7	20A27505	Computer Applications in Food Processing	FT
8	20A54501	Optimization Techniques	Mathematics
9	20A56501	Materials Characterization Techniques	Physics
10	20A51501	Chemistry of Energy Materials	Chemistry

Note:

- 1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.
- 2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.
- 3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline

	Semester-VI						
S.No	Course Code	Course Name	L	T	P	Credits	
1.	20A04601T	Antennas & Microwave Engineering	3	0	0	3	
2.	20A04602T	VLSI Design	3	0	0	3	
3.	20A04603T	Communication Networks	3	0	0	3	
4.		Professional Elective Course– II	3	0	0	3	
	20A04604a	Electronic Measurements and Instrumentation					
	20A04604b	Embedded System Design					
	20A04604c	Optical Communications					
5.		Open Elective – II	3	0	0	3	
6.	20A04601P	Antennas & Microwave Engineering Lab	0	0	3	1.5	
7.	20A04602P	VLSI Design Lab	0	0	3	1.5	
8.	20A04603P	Communication Networks Lab	0	0	3	1.5	
9.		Skill oriented course - IV	1	0	2	2	
	20A04607	RF System Design					
10.	20A99601	Mandatory Non-credit Course Intellectual Property Rights & Patents	2	0	0	0	
	Total						
	Industry	Internship (Mandatory) for 6 - 8 weeks duration during s	summer va	catior	1	•	

4. 5.

Open Elective Course – II

S.No.	Course Code	Course Name	Offered by the Dept.
1	20A01605	Environmental Economics	CE
2	20A02605	Smart Electric Grid	EEE
3	20A03605	Introduction to Robotics	ME
4	20A05605a	Principles of Operating Systems	
5	20A05605b	Foundations of Machine Learning	
6	20A05605c	DataAnalytics Using R	CSE & Allied/IT
7	20A27605	Food Refrigeration and Cold Chain Management	FT
8	20A54701	Wavelet Transforms & its applications	Mathematics
9	20A56701	Physics Of Electronic Materials and Devices	Physics
10	20A51701	Chemistry of Polymers and its Applications	Chemistry

		Semester-VII				
S.No.	Course Code	Course Name	L	T	P	Credits
1.		Professional Elective Course– III	3	0	0	3
	20A04701a	DSP Processors & Architectures				
	20A04701b	Introduction to Internet of Things				
	20A04701c	Satellite Communications				
2.		Professional Elective Course– IV	3	0	0	3
	20A04702a	Real Time Operating Systems				
	20A04702b	Digital Image Processing				
	20A04702c	Radar Engineering				
3.		Professional Elective Course– V	3	0	0	3
	20A04703a	Smart Sensors				
	20A05703b	Nano Electronics				
	20A04703c	Cellular & Mobile Communications				
4.		Humanities Elective – II	3	0	0	3
	20A52701a	Entrepreneurship and Incubation				
	20A52701b20A5270	1cManagement Science				
		Enterprise Resource Planning				
5.		Open Elective Course – III	3	0	0	3
6.		Open Elective Course – IV	3	0	0	3
7.		Skill oriented course – V	1	0	2	2
	20A04707	Industrial IoT & Automation				
8.	20A04709	Evaluation of Industry Internship				3
			Total			23

Open Elective Course – III

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01704	Cost Effective Housing Techniques	CE
2	20A02704	IOT Applications in Electrical Engineering	EEE
3	20A03704	Product Design & Development	ME
4	20A05704a	Web Technologies	
5	20A05704b	VR & AR for Engineers	CSE & Allied/IT
6	20A05704c	Software Engineering	
7	20A27704	Human Nutrition	FT
8	20A54702	Numerical Methods for Engineers	Mathematics
9	20A56702	Sensors And Actuators for Engineering Applications	Physics
10	20A51702	Chemistry of Nanomaterials and Applications	Chemistry

Open Elective Course – IV

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01705	Health, Safety & Environmental management	CE
2	20A02705	Renewable Energy Systems	EEE
3	20A03705	Introduction to Composite Materials	ME
4	20A05705a	Cyber Security	
5	20A05705b	Introduction to Full Stack Development	CSE & Allied/IT
6	20A27705	Waste and Effluent Management	FT
7	20A54703	Number theory & its applications	Mathematics
8	20A56703	Smart Materials and Devices	Physics
9	20A51703	Green Chemistry and Catalysis for Sustainable	Chemistry
		Environment	

	Semester-VIII								
S.No.	Course Code	Course Name	Category	L	T	P	Credits		
1.	20A04801	Full Internship & Project work	PR				12		
						Total	12		

COURSES OFFERED FOR HONOURS DEGREE IN ECE

S.No.	Course Code	Course Title	Contact Hours per Week		Credits	
			L	T		
1	20A04H01	Adaptive Signal Processing	3	1	4	
2	20A04H02	Software Defined Radio	3	1	4	
3	20A04H03	MEMS	3	1	4	
4	20A04H04	Low power VLSI Design	3	1	4	
5	20A04H05	Wireless Communications	3	1	4	
6	20A04H06	Speech Processing	3	1	4	
Suggested MOOCs						
8.	20A04107	VLSI Testing			2	
9.	20A04108	Embedded Software and Hardware Architecture			2	

LIST OF MINORS OFFERED TO ECE

S.No.	Minor Title	Department offering the Minor		
1.	Construction Technology	Civil Engineering		
2.	Environmental Geotechnology	Civil Engineering		
3.	Energy Systems	EEE		
4.	3D Printing	ME		
5.	Industrial Engineering	ME		
6.	Food Science	Food Technology		
7.	Artificial Intelligence & Data Science			
8.	Virtual & Augmented Reality	CSE& Allied/ IT		
9.	Cyber Security and Blockchain Technologies			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I Sem L T P C 3 0 0 3

(20A54101) LINEAR ALGEBRA & CALCULUS

(Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and non-homogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.

- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education
- 9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.
- 10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I Sem L

L T P C 3 0 0 3

20A56201T APPLIED PHYSICS

(ECE, EEE, CSE, AI & DS, CSE (AI), CSE (IoT), CSE (Data Science), CSE (AI & ML) & IT)

Course Objectives

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications.
- To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- To enlighten the concepts of Quantum Mechanics and to provide fundamentals of de'Broglie waves, quantum mechanical wave equation and its applications, the importance of free electron theory and band theory of solids.
- Evolution of band theory to distinguish materials, basic concepts and transport phenomenon of charge carriers in semiconductors. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

Unit-I:

Wave Optics

Interference- Principle of superposition – Interference of light – Conditions for sustained interference - Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings – Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Polarization- Introduction – Types of polarization – Polarization by reflection, refraction and double refraction - Nicol's Prism - Half wave and Quarter wave plates with applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II:

Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Propagation Losses (qualitative) – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the basic concepts of LASER light Sources (L2)
- Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- Explain the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

Unit-III:

Dielectric and Magnetic Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and Permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia, para & Ferro-Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- Explain the applications of dielectric and magnetic materials (L2)
- Apply the concept of magnetism to magnetic devices (L3)

Unit IV:

Quantum Mechanics, Free Electron Theory and Band theory of Solids

Quantum Mechanics- Dual nature of matter – Schrodinger's time independent and dependent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well.

Free Electron Theory- Classical free electron theory (Merits and demerits only) – Quantum free electron theory – Equation for electrical conductivity based on quantum free electron theory – Fermi-Dirac distribution – Density of states – Fermi energy.

Band theory of Solids- Bloch's Theorem (Qualitative) – Kronig-Penney model (Qualitative) – E vs K diagram – Classification of crystalline solids – Effective mass of electron – m* vs K diagram – Concept of hole.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dual nature of matter (L2)
- Understand the significance of wave function (L2)
- Interpret the concepts of classical and quantum free electron theories (L2)
- Explain the importance of K-P model
- Classify the materials based on band theory (L2)
- Apply the concept of effective mass of electron (L3)

Unit – V:

Semiconductors and Superconductors

Semiconductors- Introduction – Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors – Density of charge carriers – Dependence of Fermi energy on carrier concentration and temperature – Drift and diffusion currents – Einstein's equation – Direct and indirect band gap semiconductors – Hall effect – Hall coefficient – Applications of Hall effect.

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) – High T_c superconductors – Applications of superconductors.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify the energy bands of semiconductors (L2)
- Interpret the direct and indirect band gap semiconductors (L2)
- Identify the type of semiconductor using Hall effect (L2)
- Identify applications of semiconductors in electronic devices (L2)
- Explain how electrical resistivity of solids changes with temperature (L2)
- Classify superconductors based on Meissner's effect (L2)
- Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning.

Reference Books:

- 1. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 4. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill

Course Outcomes

- Study the different realms of physics and their applications in both scientific and technological systems through physical optics. (L2)
- Identify the wave properties of light and the interaction of energy with the matter (L3).
- Asses the electromagnetic wave propagation and its power in different media (L5).
- Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields. (L3)
- Study the quantum mechanical picture of subatomic world along with the discrepancies between the classical estimates and laboratory observations of electron transportation phenomena by free electron theory and band theory. (L2)
- Elaborate the physical properties exhibited by materials through the understanding of properties of semiconductors and superconductors. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– I Sem

L T P C 3 0 0 3

(20A52101T) COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

UNIT -1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing:** Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Parts of Speech, Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

UNIT -2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured

talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

UNIT -3

Lesson: The Death Trap: Saki

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing, Paragraph Writing **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

UNIT-4

Lesson: Innovation: Muhammad Yunus

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing **Grammar and Vocabulary:** Quantifying expressions - adjectives and adverbs; comparing and contrasting; Voice - Active & Passive Voice

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations
- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

UNIT -5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. Writing: Writing structured essays on specific topics using suitable claims and evidences. Grammar and Vocabulary: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Text Book:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Course Outcomes

- Retrieve the knowledge of basic grammatical concepts
- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

Web links

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – I Sem L T P C 3 0 0 3

(20A02102T) FUNDAMENTALS OF ELECTRICAL CIRCUITS

Course Objectives:

To make the student learn about

- Basic characteristics of R, L, C parameters, their Voltage and Current Relations and Various combinations of these parameters.
- The Single Phase AC circuits and concepts of real power, reactive power, complex power, phase angle and phase difference
- Series and parallel resonances, bandwidth, current locus diagrams
- Network theorems and their applications
- Network Topology and concepts like Tree, Cut-set, Tie-set, Loop, Co-Tree

Unit- 1

Introduction to Electrical & Magnetic Circuits

Electrical Circuits: Circuit Concept – Types of elements - Source Transformation-Voltage - Current Relationship for Passive Elements. Kirchhoff's Laws – Network Reduction Techniques- Series, Parallel, Series Parallel, Star-to-Delta or Delta-to-Star Transformation. Examples

Magnetic Circuits: Faraday's Laws of Electromagnetic Induction-Concept of Self and Mutual Inductance-Dot Convention-Coefficient of Coupling-Composite Magnetic Circuit-Analysis of Series and Parallel Magnetic Circuits, MMF Calculations.

Learning Outcomes:

At the end of this unit, the student will be able to

- To know about Kirchhoff's Laws in solving series, parallel, non-series-parallel configurations in DC networks
- To know about voltage source to current source and vice-versa transformation in their representation
- To understand Faraday's laws
- To distinguish analogy between electric and magnetic circuits
- To understand analysis of series and parallel magnetic circuits

Unit- 2

Network Topology

Definitions – Graph – Tree, Basic Cutset and Basic Tieset Matrices for Planar Networks – Loop and Nodal Methods of Analysis of Networks & Independent Voltage and Current Sources – Duality & Dual Networks. Nodal Analysis, Mesh Analysis.

Learning Outcomes:

At the end of this unit, the student will be able to

• To understand basic graph theory definitions which are required for solving electrical circuits

- To understand about loop current method
- To understand about nodal analysis methods
- To understand about principle of duality and dual networks
- To identify the solution methodology in solving electrical circuits based on the topology

Unit-3

Single Phase A.C Circuits

R.M.S, Average Values and Form Factor for Different Periodic Wave Forms – Sinusoidal Alternating Quantities – Phase and Phase Difference – Complex and Polar Forms of Representations, j-Notation, Steady State Analysis of R, L and C (In Series, Parallel and Series Parallel Combinations) with Sinusoidal Excitation-Resonance - Phasor diagrams - Concept of Power Factor- Concept of Reactance, Impedance, Susceptance and Admittance-Apparent Power, Active and Reactive Power, Examples.

Learning Outcomes:

At the end of this unit, the student will be able to

- To understand fundamental definitions of 1-φ AC circuits
- To distinguish between scalar, vector and phasor quantities
- To understand voltage, current and power relationships in 1-φ AC circuits with basic elements R, L, and C.
- To understand the basic definitions of complex immittances and complex power
- To solve 1-φ AC circuits with series and parallel combinations of electrical circuit elements R, L and C.

Unit-4

Network Theorems

Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Millmann's, Tellegen's, and Compensation Theorems for D.C and Sinusoidal Excitations.

Learning Outcomes:

At the end of this unit, the student will be able to

- To know that electrical circuits are 'heart' of electrical engineering subjects and network theorems are main part of it.
- To distinguish between various theorems and inter-relationship between various theorems
- To know about applications of certain theorems to DC circuit analysis
- To know about applications of certain theorems to AC network analysis
- To know about applications of certain theorems to both DC and AC network analysis

Unit- 5

Three Phase A.C. Circuits

Introduction - Analysis of Balanced Three Phase Circuits - Phase Sequence- Star and Delta Connection - Relation between Line and Phase Voltages and Currents in Balanced Systems - Measurement of Active and Reactive Power in Balanced and Unbalanced Three Phase Systems. Analysis of Three Phase Unbalanced Circuits - Loop Method - Star Delta Transformation Technique - for balanced and unbalanced circuits - Measurement of Active and reactive Power - Advantages of Three Phase System.

Learning Outcomes:

At the end of this unit, the student will be able to

- To know about advantages of 3-φ circuits over 1-φ circuits
- To distinguish between balanced and unbalanced circuits
- To know about phasor relationships of voltage, current, power in star and delta connected balanced and unbalanced loads
- To know about measurement of active, reactive powers in balanced circuits
- To understand about analysis of unbalanced circuits and power calculations

Text Books:

- 1. Fundamentals of Electric Circuits Charles K. Alexander and Matthew. N. O. Sadiku, Mc Graw Hill, 5th Edition, 2013.
- 2. Engineering circuit analysis William Hayt and Jack E. Kemmerly, Mc Graw Hill Company, 7th Edition, 2006.

Reference Books:

- 1. Circuit Theory Analysis & Synthesis A. Chakrabarti, Dhanpat Rai & Sons, 7th Revised Edition, 2018.
- 2. Network Analysis M.E Van Valkenberg, Prentice Hall (India), 3rd Edition, 1999.
- 3. Electrical Engineering Fundamentals V. Del Toro, Prentice Hall International, 2nd Edition, 2019.
- 4. Electric Circuits- Schaum's Series, Mc Graw Hill, 5th Edition, 2010.
- 5. Electrical Circuit Theory and Technology John Bird, Routledge, Taylor & Francis, 5th Edition, 2014.

Course Outcomes:

After completing the course, the student should be able to do the following

- Given a network, find the equivalent impedance by using network reduction techniques and determine the current through any element and voltage across and power through any element.
- Given a circuit and the excitation, determine the real power, reactive power, power factor etc,.
- Apply the network theorems suitably
- Determine the Dual of the Network, develop the Cut Set and Tie-set Matrices for a given Circuit. Also understand various basic definitions and concepts.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – I Sem L T P/D C

1 0 0/2 2

(20A03101T) ENGINEERING DRAWING

(Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its significance-Conventions in drawing-lettering - BIS conventions.

- a)Conic sections including the rectangular hyperbola- general method only,
- b) Cycloid, epicycloids and hypocycloid c) Involutes

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the significance of engineering drawing
- Know the conventions used in the engineering drawing
- Identify the curves obtained in different conic sections
- Draw different curves such as cycloid, involute and hyperbola

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of projection
- Know how to draw the projections of points, lines
- Differentiate between projected length and true length
- Find the true length of the lines

Unit: III

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the procedure to draw projection of solids
- Differentiate between rotational method and auxillary view method.
- Draw the projection of solid inclined to one plain
- Draw the projection of solids inclined to both the plains

Unit: IV

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand different sectional views of regular solids
- Obtain the true shapes of the sections of prism
- Draw the sectional views of prism, cylinder, pyramid and cone

Unit: V

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of development of surfaces
- Draw the development of regular solids such as prism, cylinder, pyramid and cone
- Obtain the development of sectional parts of regular shapes

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Draw various curves applied in engineering. (12)
- Show projections of solids and sections graphically. (12)
- Draw the development of surfaces of solids. (13)

Additional Sources

Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– I Sem

L T P C
0 0 2 1

(20A03101P) ENGINEERING GRAPHICS LAB

(Common to All Branches of Engineering)

Course Objectives:

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V.Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Use computers as a drafting tool. (L2)
- Draw isometric and orthographic drawings using CAD packages. (L3)

Additional Sources

1. Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B. Tech (ECE)– I Sem L T P C 0 0 3 1.5

(20A56201P) APPLIED PHYSICS LAB

(ECE, EEE, CSE, AI & DS, CSE (AI), CSE (IoT), CSE (Data Science), CSE(AI & ML) & IT)

Course Objectives:

- Understands the concepts of interference, diffraction and their applications.
- Understand the role of optical fiber parameters in communication.
- Recognize the importance of energy gap in the study of conductivity and Hall Effect in a semiconductor.
- Illustrates the magnetic and dielectric materials applications.
- Apply the principles of semiconductors in various electronic devices.

Note: In the following list, out of 15 experiments, any 12 experiments (minimum 10) must be performed in a semester

List of Applied Physics Experiments

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- 9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. To determine the resistivity of semiconductor by Four probe method
- 13. To determine the energy gap of a semiconductor
- 14. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.
- 15. Measurement of resistance with varying temperature.

Course Outcomes:

At the end of the course, the student will be able to

- Operate optical instruments like microscope and spectrometer (L2)
- Determine thickness of a hair/paper with the concept of interference (L2)
- Estimate the wavelength of different colors using diffraction grating and resolving power (L2)
- Plot the intensity of the magnetic field of circular coil carrying current with distance (L3)
- Evaluate the acceptance angle of an optical fiber and numerical aperture (L3)
- Determine the resistivity of the given semiconductor using four probe method (L3)
- Identify the type of semiconductor i.e., n-type or p-type using hall effect (L3)
- Calculate the band gap of a given semiconductor (L3)

References

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- $2.\ http://vlab.amrita.edu/index.php\ -Virtual\ Labs,\ Amrita\ University$

 \mathbf{C}

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)– I Sem L T P 0 0 3 1.5

(20A52101P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

List of Topics

- 1. Phonetics
- 2. Reading comprehension
- 3. Describing objects/places/persons
- 4. Role Play or Conversational Practice
- 5. JAM
- 6. Etiquettes of Telephonic Communication
- 7. Information Transfer
- 8. Note Making and Note Taking
- **9.** E-mail Writing
- 10. Group Discussions-1
- 11. Resume Writing
- 12. Debates
- 13. Oral Presentations
- 14. Poster Presentation
- 15. Interviews Skills-1

Suggested Software

Orel, Walden Infotech, Young India Films

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course Outcomes

After completing the course, the student will be able to

- Listening and repeating the sounds of English Language
- Understand the different aspects of the English language
- proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable
- Division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to
- Improve fluency in spoken English.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– I Sem L T P C 0 0 2 1.5

(20A02102P) FUNDAMENTALS OF ELECTRICAL CIRCUITS LAB

Course Objectives:

- Remember, understand and apply various theorems and verify practically.
- Understand and analyze active, reactive power measurements in three phase balanced & unbalanced circuits.

List of Experiments:

- 1. Verification of Thevenin's and Norton's Theorems
- 2. Verification of Superposition Theorem for average and rms values
- 3. Maximum Power Transfer Theorem for DC and AC circuits
- 4. Verification of Compensation Theorem for DC circuits
- 5. Verification of Reciprocity, Millmann's Theorems for DC circuits
- 6. Determination of Self, Mutual Inductances and Coefficient of Coupling
- 7. Measurement of Active Power for Star Connected Balanced Loads
- 8. Measurement of Reactive Power for Star Connected Balanced Loads
- 9. Measurement of 3-Phase Power by Two Wattmeter Method for Unbalanced Loads
- 10. Measurement of Active Power for Delta Connected Balanced Loads
- 11. Measurement of Reactive Power for Delta Connected Balanced Loads

Course Outcomes:

At the end of the course, students should be able to

- Remember, understand and apply various theorems and verify practically.
- Understand and analyze active, reactive power measurements in three phase balanced & un balanced circuits.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C 3 0 0 3

(20A54201) DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Common to Civil, EEE, Mechanical, ECE and Food Technology)

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

UNIT-1

Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentaryfunction, generalsolution, particular integral, Wronskean, method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and Mass spring system.

Learning Outcomes:

At the end of this unit, the student will be able to

- Identify the essential characteristics of linear differential equations with constant coefficients (L3)
- Solve the linear differential equations with constant coefficients by appropriate method (L3)
- Classify and interpret the solutions of linear differential equations (L3)
- Formulate and solve the higher order differential equation by analyzing physical situations (L3)

UNIT 2:

Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order equations using Lagrange's method.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply a range of techniques to find solutions of standard pdes (L3)
- Outline the basic properties of standard PDEs (L2)

UNIT -3

Applications of Partial Differential Equations

Classification of PDE, method of separation of variables for second order equations. Applications of Partial Differential Equations: One dimensional Wave equation, One dimensional Heat equation.

Learning Outcomes:

At the end of this unit, the student will be able to

- Calcify the PDE (L3)
- Learn the applications of PDEs (L2)

UNIT-4

Vector differentiation

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply del to Scalar and vector point functions (L3)
- Illustrate the physical interpretation of Gradient, Divergence and Curl (L3)

UNIT -5

Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find the work done in moving a particle along the path over a force field (L4)
- Evaluate the rates of fluid flow along and across curves (L4)
- Apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals (L3)

Text Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

Reference Books:

- 1. Dennis G. Zill and Warren S. Wright, Advanced Engineering Mathematics, Jones and Bartlett, 2011.
- 2. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 3. George B.Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 4. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 5. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 6. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 7. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 8. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 9. R.L. GargNishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 10. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.
- 11. H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.
- 12. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Solve the differential equations related to various engineering fields (L6)
- Identify solution methods for partial differential equations that model physical processes (L3)
- Interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- Estimate the work done against a field, circulation and flux using vector calculus (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C 3 0 0 3

(20A51101T) CHEMISTRY

(CSE, AI & DS, CSE (AI), CSE (IoT), CSE (Data Science), CSE(AI & ML), ECE, EEE and IT)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Unit 1:

Structure and Bonding Models:

Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of Ψ and Ψ^2 , applications to hydrogen, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O₂ and CO, etc. π -molecular orbitals of butadiene and benzene, calculation ofbond order.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Schrodinger wave equation to hydrogen atom (L3)
- Illustrate the molecular orbital energy level diagram of different molecular species (L2)
- Explain the calculation of bond order of O₂ and Co molecules (L2)
- Discuss the basic concept of molecular orbital theory (L3)

Unit 2:

Modern Engineering materials:

- i). Coordination compounds: Crystal field theory salient features splitting in octahedral and tetrahedral geometry. Properties of coordination compounds-Oxidation state, coordination, magnetic and colour.
- ii). Semiconductor materials, super conductors- basic concept, band diagrams for conductors, semiconductors and insulators, Effect of doping on band structures.
- iii). Supercapacitors: Introduction, Basic concept-Classification Applications.
- iv). Nanochemistry: Introduction, classification of nanometerials, properties and applications of Fullerenes, carbonnano tubes and Graphines nanoparticles.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain splitting in octahedral and tetrahedral geometryof complexes (L2).
- Discuss the magnetic behaviour and colour of coordination compounds (L3).
- Explain the band theory of solids for conductors, semiconductors and insulators (L2)
- Demonstrate the application of Fullerenes, carbon nano tubes and Graphines nanoparticles (L2).

Unit 3:

Electrochemistry and Applications:

Electrodes – concepts, reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode); Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries-working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Differentiate between ph metry, potentiometric and conductometric titrations (L2)
- Explain the theory of construction of battery and fuel cells (L2)
- Solve problems based on cell potential (L3)

Unit 4:

Polymer Chemistry:

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics - Thermoplastics and Thermosettings, Preparation, properties and applications of - PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers–Buna-S, Buna-N–preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, polypyrroles – mechanism of conduction and applications.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the different types of polymers and their applications (L2)
- Explain the preparation, properties and applications of Bakelite, Nylon-6,6, and carbon fibres (L2)
- Describe the mechanism of conduction in conducting polymers (L2)
- Discuss Buna-S and Buna-N elastomers and their applications (L2)

Unit 5:

Instrumental Methods and Applications (10 hrs)

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. Principle and applications of pH metry, UV-Visible,IR Spectroscopies. Solid-Liquid Chromatography–TLC, retention time.

Learning outcomes:

After completion of Unit IV, students will be able to:

- Explain the different types of spectral series in electromagnetic spectrum (L2)
- Understand the principles of different analytical instruments (L2)
- Explain the different applications of analytical instruments (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1.G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.
- 3. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 4. J.M.Lehn, Supra Molecular Chemistry, VCH Publications

Course Outcomes:

At the end of the course, the students will be able to:

- Compare the materials of construction for battery and electrochemical sensors (12)
- Explain the preparation, properties, and applications of thermoplastics &thermosetting, elastomers & conducting polymers. (12)
- Explain the principles of spectrometry, slc in separation of solid and liquid mixtures (12)
- Apply the principle of Band diagrams in application of conductors and semiconductors (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C 3 0 0 3

(20A05201T) C-PROGRAMMING & DATA STRUCTURES

(Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT - 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT - 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** - sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- 1. Analyse the basicconcepts of C Programming language. (L4)
- 2. Design applications in C, using functions, arrays, pointers and structures. (L6)
- 3. Apply the concepts of Stacks and Queues in solving the problems. (L3)
- 4. Explore various operations on Linked lists. (L5)
- 5. Demonstrate various tree traversals and graph traversal techniques. (L2)
- 6. Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C 3 0 0 3

(20A04101T) ELECTRONIC DEVICES & CIRCUITS (Common to EEE and ECE)

Course Objectives:

- To understand the basic principles of all semiconductor devices.
- To be able to solve problems related to diode circuits, and amplifier circuits.
- To analyze diode circuits, various biasing and small signal equivalent circuits of amplifiers.
- To be able to compare the performance of BJTs and MOSFETs
- To design rectifier circuits and various amplifier circuits using BJTs and MOSFETs.

Unit – **1**

Review of Semiconductors: Intrinsic semiconductors, Doped Semiconductors, Current Flow in Semiconductors, PN Junction with Open Circuit, PN Junction with Applied Voltage, Capacitive Effects in PN Junction.

Diodes: Introduction, The Ideal Diode – current voltage characteristic, rectifier, diode logic gates, Terminal Characteristics of Junction Diodes– forward bias,reversebias, and breakdown regions, Modeling the Diode Forward Characteristics- exponential model, graphical analysis and Iterative analysis using the exponential model, constant voltage drop model, the small signal model.

Learning outcomes:

- Remember and understand the basic characteristics of semiconductor diode (L1)
- Understand iterative and graphical analysis of simple diode circuits (L1)

Unit - 2

Zener Diodes— Zenerdiode Characteristics, Voltage shunt regulator, Temperature Effects, Rectifier Circuits— half-wave, full-wave and bridge rectifier circuits, rectifier with a filter capacitor, C-L-C filter, Clipping and Clamping Circuits— limiter circuit, the clamped capacitor, voltage doubler, Special Diode Types— UJT, Schottkybarrier diode, Varactor diode, photo diode, light emitting diode(LED), Problem Solving.

Bipolar Junction Transistors(BJTs): Physical Operation - simplified structure and modes of operation, Operation of the npn, and pnp transistors: cutoff, active, and saturation modes, V-ICharacteristics- of different configurations - graphical representation of transistor characteristics, dependence of collector current on collector voltage, the Early Effect.

Learning outcomes:

- Understand principle of operation of Zener diode and other special semiconductor diodes (L1)
- Understand the V-I characteristics of BJT and its different configurations (L1)
- Analyze various applications of diode and special purpose diodes (L3)
- Design rectifier and voltage regulator circuits (L4)

Unit-3

BJT circuits at DC,Applying the BJT in Amplifier Design- Voltage Amplifier,Voltage Transfer Characteristic (VTC), Small-Signal Voltage Gain, determining the VTC by Graphical Analysis, Qpoint, Small-signal operation and models- the transconductance, input resistance at the base, input resistance at the emitter, Voltage gain, separating the Signal and the DC Quantities, The Hybrid- π Model, the T Model, Basic BJT Amplifier Configurations - Common-Emitter (CE) amplifier without and with emitter resistance, Common-Base (CB) amplifier, Common-Collector (CC) amplifier or Emitter Follower, Biasing in BJT Amplifier Circuits- Fixed bias, Self bias, voltage divider bias circuits, biasing using a Constant-Current Source,CE amplifier – Small signal analysis and design,Transistor breakdown and Temperature Effects, Problem solving.

Learning outcomes:

- Solve problems on various biasing circuits using BJT (L2)
- Analyze BJT based biasing circuits (L3)
- Design an amplifier using BJT based on the given specifications (L4)

Unit -4

MOS Field-Effect Transistors (MOSFETs):Introduction, Device Structure and Physical Operation – device structure, operation with zero gate voltage, creating a channel for current flow, operation for different drain to source voltages, the P-channel MOSFET,CMOS, V-I characteristics— i_D - v_{DS} characteristics, i_D – v_{GS} characteristics, finite output resistance in saturation, characteristics of the p-Channel MOSFET, MOSFET Circuits at DC, Applying the MOSFET in Amplifier Design – voltage transfer characteristics, biasing the MOSFET to obtain linear amplification, the small signal voltage gain, graphical analysis, the Q-point. Problem solving.

Learning outcomes:

- Understand principle of operation of various types of MOSFET devices (L1)
- Understand the V-I characteristics of MOSFET devices and their configurations (L1)

Unit -5

MOSFET Small Signal Operation Models— the dc bias, separating the DC analysis and the signal analysis, Small signal equivalent circuit models, the transconductance, the T equivalent circuit model, Basic MOSFET Amplifier Configurations— three basic configurations, characterizing amplifiers, common source(CS) amplifier without and with source resistance, common gate (CG) amplifier, source follower, the amplifier frequency response, Biasing in MOSFET Amplifier Circuits— biasing by fixing V_{GS} with and without source resistance, biasing using drain to gate feedback resistor, biasing using constant current source, Common Source Amplifier using MOSFETs — Small signal analysis and design, Body Effect, Problem Solving.

Learning outcomes:

- Solve problems on small signal equivalent of MOSFET devices (L2)
- Analyze various biasing circuits based on different types of MOSFETs (L3)
- Design an amplifier using BJT based on the given specifications (L4)

Text Books:

1. Adel S. Sedra and KennethC. Smith, "Microelectronic Circuits – Theory and Applications", 6th Edition, Oxford Press, 2013.

2. Donald A Neamen, "Electronic Circuits – analysis and design", 3rd Edition, McGraw Hill (India), 2019.

References:

- 1. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.
- 2. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.
- 3. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.
- 1. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3rd edition, McGraw-Hill (India), 2010.

Course Outcomes:

After the completion of the course students will able to

- **CO1:**Understand principle of operation, characteristics and applications of Semiconductor diodes, Bipolar Junction Transistor and MOSFETs.
- **CO2:**Applying the basic principles solving the problems related to Semiconductor diodes, BJTs, and MOSFETs.
- **CO3:** Analyze diode circuits for different applications such as rectifiers, clippers and clampers also analyze biasing circuits of BJTs, and MOSFETs.
- CO4: Design of diode circuits and amplifiers using BJTs, and MOSFETs.
- **CO5:** Compare the performance of various semiconductor devices.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C 0 0 3 1.5

(20A03202) ENGINEERING WORKSHOP

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

a) Half – Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (12)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C

0 0 3 1.5

(20A05202) IT WORKSHOP

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic

tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors and Prepare spread sheets for calculations using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II Sem L T P C

0 0 3 1.5

(20A05201P) C-PROGRAMMING & DATA STRUCTURES LAB

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week 1

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:
 - i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.
 - ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or 1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:
 - i) call-by-value
- ii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- Reading a complex number i)
- Writing a complex number ii)
- Addition of two complex numbers iii)
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) **Pointers**

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) **Pointers**

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- Evaluating the postfix expression ii)

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

- i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

- i) Creation
- ii) Insertion
- iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

- i) Creation

- ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE) – I Sem L T P C 0 0 3 1.5

(20A51101P) CHEMISTRY LAB

(CSE, AI & DS, CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), ECE, EEE and IT)

Course Objectives:

• Verify the fundamental concepts with experiments

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Models of potential energy surfaces
- 3. Conductometrictitration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite and measurement of its mechanical properties (strength.).
- 8. Verify Lambert-Beer's law
- 9. Thin layer chromatography
- 10. Identification of simple organic compounds by IR.
- 11. Preparation of nanomaterial's by precipitation
- 12. Estimation of Ferrous Iron by Dichrometry.

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer Bakelite materials (L2)
- Measure the strength of an acid present in secondary batteries (L3)
- Analysethe IR of some organic compounds (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (ECE)- II Sem

L T P C 0 0 3 1.5

(20A04101P) ELECTRONIC DEVICES & CIRCUITS LAB (Common to EEE and ECE)

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyse the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- To Model the electronic circuits using tools such as PSPICE/Multisim.

LIST OF EXPERIMENTS: (Execute any 12 experiments).

Note: All the experiments shall be implemented using both Hardware and Software.

- 1. Verification of Volt- Ampere characteristics of a PN junction diode and find static, dynamic and reverse resistances of the diode from the graphs obtained.
- 2. Design a full wave rectifier for the given specifications with and without filters, and verify the given specifications experimentally. Vary the load and find ripple factor. Draw suitable graphs.
- 3. Verify various clipping and clamper circuits using PN junction diode and draw the suitable graphs.
- 4. Design a Zener diode-based *voltage regulator* against variations of supply and load. Verify the same from the experiment.
- 5. Study and draw the *output* and *transfer* characteristics of MOSFET (Enhance mode) in Common Source Configuration experimentally. Find *Threshold voltage* (V_T) , g_m , & K from the graphs.
- 6. Study and draw the *output* and *transfer* characteristics of MOSFET (Depletion mode) or JFET in Common Source Configuration experimentally. Find I_{DSS} , g_m , & V_P from the graphs.
- 7. Verification of the input and output characteristics of BJT in **Common Emitter** configuration experimentally and find required h parameters from the graphs.
- 8. Study and draw the input and output characteristics of BJT in **Common Base** configuration experimentally, and determine required h parameters from the graphs.
- 9. Study and draw the Volt Ampere characteristics of UJT and determine η , I_P , I_v , V_P , & V_V from the experiment.
- 10. Design and analysis of voltage- divider bias/self-bias circuit using BJT.
- 11. Design and analysis of voltage- divider bias/self-bias circuit using JFET.
- 12. Design and analysis of self-bias circuit using MOSFET.
- 13. Design a suitable circuit for switch using CMOSFET/JFET/BJT.
- 14. Design a small signal amplifier using MOSFET (common source) for the given specifications. Draw the frequency response and find the bandwidth.
- 15. Design a small signal amplifier using BJT(common emitter) for the given specifications. Draw the frequency response and find the bandwidth.

Tools / Equipment Required: Software Toollike Multisim/ Pspice or Equivalent,

DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course Outcomes:

- Understand the basic characteristics and applications of basic electronic devices. (L1)Observe the characteristics of electronic devices by plotting graphs. (L2)
- Analyze the Characteristics of UJT, BJT, MOSFET (L3).

 Design MOSFET / BJT based amplifiers for the given specifications. (L4)

 Simulate all circuits in PSPICE /Multisim. (L5).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

20A54302 Complex variables and Transforms (Common to ECE & EEE) Functions, Differentiations and Integration

Pre-requisite

Course Objectives:

This course aims at providing the student to acquire the knowledge on the calculus of functions of complex variables. The student develops the idea of using continuous/discrete transforms.

Course Outcomes (CO): Student will be able to

- Understand the analyticity of complex functions and conformal mappings.
- Apply cauchy's integral formula and cauchy's integral theorem to evaluate improper integrals along contours.
- Understand the usage of laplace transforms, fourier transforms and z transforms.
- Evaluate the fourier series expansion of periodic functions.
- Understand the use of fourier transforms and apply z transforms to solve difference equations.

UNIT - I **Complex Variable – Differentiation**:

8 Hrs

Introduction to functions of complex variable-concept of Limit & continuity- Differentiation, Cauchy-Riemann equations, analytic functions (exponential, trigonometric, logarithm), harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method-Conformal mappings-standard and special transformations (sin z, e^z, cos z, z²) Mobius transformations (bilinear) and their properties.

UNIT - II Complex Variable – Integration:

9 Hrs

Line integral-Contour integration, Cauchy's integral theorem, Cauchy Integral formula, Liouville's theorem (without proof) and Maximum-Modulus theorem (without proof); power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (around unit circle, semi circle with f(z) not having poles on real axis).

UNIT - III Laplace Transforms

9 Hrs

Definition-Laplace transform of standard functions-existence of Laplace Transform – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function. Differentiation and integration of transform – solving Initial value problems to ordinary differential equations with constant coefficients using Laplace transforms.

UNIT - IV Fourier series

8 Hrs

Determination of Fourier coefficients (Euler's) – Dirichlet conditions for the existence of Fourier series – functions having discontinuity-Fourier series of Even and odd functions – Fourier series in an arbitrary interval – Half-range Fourier sine and cosine expansions- typical wave forms - Parseval's formula- Complex form of Fourier series.

UNIT - V Fourier transforms & Z Transforms:

9 Hrs

Fourier integral theorem (without proof) – Fourier sine and cosine integrals-complex form of Fourier integral. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – convolution theorem .

Z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

- 1. nptel.ac.in/courses/111107056
- 2. onlinelibrary.wiley.com
- 3. https://onlinecourses.nptel.ac.in/noc18ma12.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

20A04301T SIGNALS AND SYSTEMS

Pre-requisite

Mathematics - I

Course Objectives:

- To introduce students to the basic idea of signal and system analysis and its characterization in time and frequency domains.
- To present Fourier tools through the analogy between vectors and signals.
- To teach concept of sampling and reconstruction of signals.
- To analyze characteristics of linear systems in time and frequency domains.
- To understand Laplace and z-transforms as mathematical tool to analyze continuous and discrete-time signals and systems.

Course Outcomes (CO):

- **CO1:** Understand the mathematical description and representation of continuous-time and discrete-time signals and systems. Also understand the concepts of various transform techniques.
- **CO2:** Apply sampling theorem to convert continuous-time signals to discrete-time signals and reconstruct back, different transform techniques to solve signals and system related problems.
- **CO3:** Analyze the frequency spectra of various continuous-time and discrete-time signals using different transform methods.
- **CO4:** Classify the systems based on their properties and determine the response of them.

UNIT - I Signals and Systems

Signals & Systems: Basic definitions and classification of Signals and Systems (Continuous time and discrete time), operations on signals, Concepts of Convolution and Correlation of signals, Analogy between vectors and signals-Orthogonality, mean square error.

UNIT - II Fourier Series and Fourier Transform

Fourier series: Trigonometric & Exponential, Properties of Fourier series, concept of discrete spectrum, Illustrative Problems.

Continuous Time Fourier Transform: Definition, Computation and properties of Fourier transform for different types of signals and systems, Inverse Fourier transform. Statement and proof of sampling theorem of low pass signals, Illustrative Problems.

UNIT - III Laplace Transform

Laplace Transform: Definition, ROC, Properties, Inverse Laplace transforms, the S-plane and BIBO stability, Transfer functions, System Response to standard signals, Solution of differential equations with initial conditions.

UNIT - IV Signal Transmission through LTI systems

Signal Transmission through Linear Systems: Linear system, impulse response, Response of a linear system for different input signals, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between bandwidth and rise time, Energy and Power spectral densities, Illustrative Problems.

UNIT - V **DTFT & Z-Transform**

Discrete Time Fourier Transform: Definition, Computation and properties of Discrete Time Fourier transform for different types of signals and systems.

Z–Transform: Definition, ROC, Properties, Poles and Zeros in Z-plane, The inverse Z-Transform, System analysis, Transfer function, BIBO stability, System Response to standard signals, Solution of difference equations with initial conditions. Illustrative Problems.

Textbooks:

1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009

2. Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, Wiley, 2005.

Reference Books:

- BP Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford University Press, 015.
- 2. Matthew Sadiku and Warsame H. Ali, "Signals and Systems A primer with MATLAB", CRC Press, 2016.
- 3. Hwei Hsu, "Schaum's Outline of Signals and Systems", 4thEdition, TMH, 2019.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P

3 0 0 3

20A02303T ELECTRICAL ENGINEERING

Pre-requisite Fundamentals of Electrical Circuits

Course Objectives:

- Distinguish between classical method and Laplace transform approach in analyzing transient phenomenon in DC excitations
- Understand and design the different types of filters.
- To know about various characteristics of DC Generators and motors.
- To know about principle of operation of a DC machine working as a generator and motor.
- To understand computation and predetermination of regulation of a 1- ϕ transformer.
- To know about principle of operation of three phase induction motor.

Course Outcomes (COs):

CO1: Able to acquire knowledge about how to determine the transient response of R-L, R-C, R-L-C series circuits for D.C and A.C excitations.

CO2: Able to solve the problems on R L C circuits for different excitations using different approaches.

CO3: Analyze the complex circuits of R L C circuits.

CO4: Able to solve the problems the e.m.f. generated on DC Generator

CO5: Able to acquire knowledge about how to determine the efficiency and regulation of single phase transformer and synchronous machine.

UNIT - I **Transient Analysis**

Introduction, Source free R-L, R-C circuits, R-L, R-C circuits with DC, step, pulse forcing functions, Source free R-L-C circuits – under damped, over damped and critical damped cases, Response of R-L-C circuits with DC and Sinusoidal forcing functions, Relationship between bandwidth and Quality factor in R-L-C circuits – Response of R-L-C circuits using Integral-differential equation and Laplace Transform approaches for dc and sinusoidal excitations – Problem Solving.

UNIT - II Frequency Response

Introduction, Series and Parallel Resonant circuits, Resonant frequency, Relationship between bandwidth and Quality factor, Variation of resonant frequency with circuit elements, Passive Filters – Low pass, High pass, band pass, band elimination filter, Network Synthesis – Foster and Cover forms of LC circuits – Problem Solving.

UNIT - III **Two-port Networks**

Introduction, Types of two port networks, Various parameters of two port networks, Impedance, Admittance, Transmission, Hybrid parameters and their relations – Finding the two port parameters for various circuits, Concept of transformed network, Two port parameters using transformed variables – Problem solving.

UNIT - IV DC Machines

DC Generators: Principle of operation of DC machines – EMF equation – types of generators – Magnetization and Load characteristics of DC generators

DC Motors: Principle of operation of DC Motor, Types of Motors, Back EMF Equation,

Characteristics of DC motor, Torque Equation, Three Point starter, Efficiency Calculation, Swinburne's Test and speed control.

UNIT - V AC Machines

Transformers: Construction and principle of operation of single-phase transformer –EMF equation O.C. & S.C. tests – efficiency and regulation.

Induction Motors: Principle and operation of three phase induction motors – Constructional details – Torque equation- slip torque characteristics.

Alternators: Principle and operation of alternators – O.C. & S.C. tests – regulation by synchronous impedance method.

Textbooks:

- 1. William Hayt, Jack E. Kemmerly and Jamie Phillips, "Engineering Circuit Analysis", Mc Graw Hill, 9th edition, 2019.
- 2. Charles Alexander & Mathew Sadiku, "Fundamentals of Electric Circuits", 6th edition, McGraw Hill Publications, 2016.
- 3. I. J. Nagrath&D.P.Kothari, "Electric Machines", 7th Edition, Tata Mc Graw Hill, 2005.

Reference Books:

- 1. M.E. Van Valkenberg, "Network Analysis", 3rd Edition, Prentice Hall (India), 1980.
- 2. B. R. Gupta, "Fundamentals of Electric Machines", Vandana Singhal, 3rd Edition, New age International Publishers, 2005.
- 3. T.K. Nagsarkar and M.S. Sukhija, "Basic Electrical Engineering", 3rd Edition, Oxford University Press 2017.
- 4. S. Kamakashiah, "Electromachanics III", overseas publishers Pvt. Ltd.
- 5. V.K. Mehta and Rohit Mehta, "Principles of Electrical Engineering", S.Chand Publications, 2005.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C

3 0 0 3

20A04302T ANALOG CIRCUITS

Pre-requisite

Electronic Devices and Circuits, Electrical circuits

Course Objectives:

- To review analysis & design of single stage amplifiers using BJT & MOSFETs at low and high frequencies.
- To understand the characteristics of Differential amplifiers, feedback and power amplifiers.
- To examine the response of tuned amplifiers and multivibrators
- To categorize different oscillator circuits based on the application
- To design the electronic circuits for the given specifications and for a given application.

Course Outcomes (CO):

- CO1: Understand the characteristics of differential amplifiers, feedback and power amplifiers. (L2)
- CO2: Examine the frequency response of multistage and differential amplifier circuits using BJT & MOSFETs at low and high frequencies. (L3)
- CO3: Investigate different feedback and power amplifier circuits based on the application. (L4)
- CO4: Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillator circuits. (L4)
- CO5: Evaluate the performance of different tuned amplifiers and multivibrators (L5)
- CO6: Design analog circuits for the given specifications and application. (L6)

UNIT - I Multistage and Differential Amplifiers

10Hrs

Introduction – Recap of Small Signal Amplifiers, Multistage Amplifiers, Cascode amplifier, Darlington pair, the MOS Differential Pair, Small-Signal Operation of the MOS Differential Pair, The BJT Differential Pair, and other Nonideal Characteristics of the Differential Amplifier.

UNIT - II Frequency Response

15Hrs

Low-Frequency Response of the CS and CE Amplifiers, Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT, High-Frequency Response of the CS and CE Amplifiers, High-Frequency Response of the CG and Cascode Amplifiers, High-Frequency Response of the Source and Emitter Followers, High-Frequency Response of Differential Amplifiers and Multistage amplifiers.

UNIT - III Feedback Amplifiers & Oscillators

12Hrs

Feedback Amplifiers: Introduction, The General Feedback Structure, Some Properties of Negative Feedback, The Four Basic Feedback Topologies, The Feedback Voltage Amplifier (Series—Shunt), The Feedback Transconductance Amplifier (Series—Series), The Feedback Trans-resistance Amplifier (Shunt—Shunt), The Feedback Current Amplifier (Shunt—Series), Summary.

Oscillators: General Considerations, Phase Shift Oscillator, Wien-Bridge Oscillator, LC Oscillators, Relaxation Oscillator, Crystal Oscillators, Illustrative Problems.

UNIT - IV Power Amplifiers

10Hrs

Introduction, Classification of Output Stages, Class A Output Stage, Class B Output Stage, Class AB Output Stage, Biasing the Class AB Circuit, CMOS Class AB Output Stages, Power BJTs, Variations on the Class AB Configuration, MOS Power Transistors.

UNIT - V Tuned Amplifiers and Multivibrators

11Hrs

Tuned Amplifiers: Basic Principle, Use of Transformers, Single Tuned Amplifiers, Amplifiers with multiple Tuned Circuits, Stagger Tuned Amplifiers.

Multivibrators: Analysis and Design of Bistable, Monostable, and Astable Multivibrators.

Textbooks:

1. Adel. S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits," 6th Edition, Oxford University Press, 2011.

- 2. J. Millman, C Chalkias, "Integrated Electronics", 4thEdition, McGraw Hill Education (India) Private Ltd., 2015.
- 3. Millman and Taub, "Pulse, Digital and Switching Waveforms", 3rd Edition, Tata McGraw-Hill Education, 2011.

Reference Books:

- 1. Behzad Razavi, "Fundamentals of Micro Electronics", Wiley, 2010.
- 2. Donald A Neamen, "Electronic Circuits Analysis and Design," 3rdEdition, McGraw Hill (India), 2019.
- 3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory", 9th Edition, Pearson/Prentice Hall, 2006.
- 4. K.Lal Kishore, "Electronic Circuit Analysis", 2ndEdition, B S Publications, 2008.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

20A52301 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to All branches of Engineering)

Course Objectives:

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, input-output relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements

Course Outcomes (CO):

- Define the concepts related to Managerial Economics, financial accounting and management.
- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets
- Apply the Concept of Production cost and revenues for effective Business decision
- Analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques
- Develop the accounting statements and evaluate the financial performance of business entity.

UNIT - I Managerial Economics

Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting- Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT - II Production and Cost Analysis

Introduction – Nature, meaning, significance, functions and advantages. Production Function– Least-cost combination– Short run and Long run Production Function- Isoquants and Isocosts, MRTS - Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale. Cost & Break-Even Analysis - Cost concepts and Cost behavior- Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems)-Managerial significance and limitations of Break-Even Analysis.

UNIT - III Business Organizations and Markets

Introduction – Nature, meaning, significance, functions and advantages. Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly-Monopolistic Competition—Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT - IV Capital Budgeting

Introduction – Nature, meaning, significance, functions and advantages. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT - V Financial Accounting and Analysis

Introduction - Nature, meaning, significance, functions and advantages. Concepts and Conventions-

Double-Entry Book Keeping, Journal, Ledger, Trial Balance-Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis -* Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney&Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference Books:

- 1. Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2013.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt

https://www.slideshare.net/rossanz/production-and-cost-45827016

https://www.slideshare.net/darkyla/business-organizations-19917607

https://www.slideshare.net/balarajbl/market-and-classification-of-market

https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396

https://www.slideshare.net/ashu1983/financial-accounting

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T 1

3 0 0 3

20A52302 ORGANISATIONAL BEHAVIOUR (Common to All branches of Engineering)

Course Objectives:

- To enable student's comprehension of organizational behavior
- To offer knowledge to students on self-motivation, leadership and management
- To facilitate them to become powerful leaders
- To Impart knowledge about group dynamics
- To make them understand the importance of change and development

Course Outcomes (CO):

- Define the Organizational Behaviour, its nature and scope.
- Understand the nature and concept of Organizational behaviour
- Apply theories of motivation to analyse the performance problems
- Analyse the different theories of leadership
- Evaluate group dynamics
- Develop as powerful leader

UNIT - I Introduction to Organizational Behavior

Meaning, definition, nature, scope and functions - Organizing Process - Making organizing effective -Understanding Individual Behaviour - Attitude - Perception - Learning - Personality.

UNIT - II Motivation and Leading

Theories of Motivation- Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Vroom's theory of expectancy - Mc Cleland's theory of needs-Mc Gregor's theory X and theory Y- Adam's equity theory - Locke's goal setting theory- Alderfer's ERG theory .

UNIT - III **Organizational Culture**

Introduction – Meaning, scope, definition, Nature - Organizational Climate - Leadership - Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management - Evaluating Leader- Women and Corporate leadership.

UNIT - IV Group Dynamics

Introduction – Meaning, scope, definition, Nature- Types of groups - Determinants of group behavior - Group process – Group Development - Group norms - Group cohesiveness - Small Groups - Group decision making - Team building - Conflict in the organization – Conflict resolution

UNIT - V Organizational Change and Development

Introduction –Nature, Meaning, scope, definition and functions- Organizational Culture - Changing the Culture – Change Management – Work Stress Management - Organizational management – Managerial implications of organization's change and development

Textbooks:

- 1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12 Th edition 2011
- 2. P Subba Ran, Organisational Behaviour, Himalya Publishing House 2017

Reference Books:

- McShane, Organizational Behaviour, TMH 2009
- Nelson, Organisational Behaviour, Thomson, 2009.
- Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson 2009.
- Aswathappa, Organisational Behaviour, Himalaya, 2009

Online Learning Resources:

httphttps://www.slideshare.net/Knight1040/organizational-culture-

9608857s://www.slideshare.net/AbhayRajpoot3/motivation-165556714

https://www.slideshare.net/harshrastogi1/group-dynamics-159412405

https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

20A52303 Business Environment (Common to All branches of Engineering)

Course Objectives:

- To make the student to understand about the business environment
- To enable them in knowing the importance of fiscal and monitory policy
- To facilitate them in understanding the export policy of the country
- To Impart knowledge about the functioning and role of WTO
- To Encourage the student in knowing the structure of stock markets

Course Outcomes (CO):

- Define Business Environment and its Importance.
- Understand various types of business environment.
- Apply the knowledge of Money markets in future investment
- Analyse India's Trade Policy
- Evaluate fiscal and monitory policy
- Develop a personal synthesis and approach for identifying business opportunities

UNIT - I Overview of Business Environment

Introduction – meaning Nature, Scope, significance, functions and advantages. Types-Internal &External, Micro and Macro. Competitive structure of industries -Environmental analysis-advantages & limitations of environmental analysis& Characteristics of business.

UNIT - II Fiscal & Monetary Policy

Introduction – Nature, meaning, significance, functions and advantages. Public Revenues - Public Expenditure - Evaluation of recent fiscal policy of GOI. Highlights of Budget- Monetary Policy - Demand and Supply of Money –RBI -Objectives of monetary and credit policy - Recent trends- Role of Finance Commission.

UNIT - III India's Trade Policy

Introduction – Nature, meaning, significance, functions and advantages. Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank -Balance of Payments - Structure & Major components - Causes for Disequilibrium in Balance of Payments - Correction measures.

UNIT - IV World Trade Organization

Introduction – Nature, significance, functions and advantages. Organization and Structure - Role and functions of WTO in promoting world trade - GATT -Agreements in the Uruguay Round –TRIPS, TRIMS - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

UNIT - V Money Markets and Capital Markets

Introduction – Nature, meaning, significance, functions and advantages. Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI – Stock Exchanges - Investor protection and role of SEBI, Introduction to international finance.

Textbooks:

- 1. Francis Cherunilam (2009), International Business: Text and Cases, Prentice Hall of India.
- 2. K. Aswathappa, Essentials of Business Environment: Texts and Cases & Exercises 13th Revised Edition.HPH2016

Reference Books:

1.K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.

- 2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.
- 3. Chari. S. N (2009), International Business, Wiley India.
- 4.E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245

https://www.slideshare.net/rbalsells/fiscal-policy-ppt

https://www.slideshare.net/aguness/monetary-policy-presentationppt

https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982

https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt

https://www.slideshare.net/viking2690/wto-ppt-60260883

https://www.slideshare.net/prateeknepal3/ppt-mo

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 0 0 3 1.5

20A04301P SIMULATION LAB

Pre-requisite Linear Algebra

Course Objectives:

- To realize the concepts studied in theory
- To simulate various Signals and Systems through MATLAB
- To apply the concepts of signals to determine their energy, power, psd etc.
- To analyze the output of a system when it is excited by different types of deterministic and random signals.
- To generate random signals for the given specifications

Course Outcomes (CO):

CO1: Learn how to use the MATLAB software and know syntax of MATLAB programming.

CO2: Understand how to simulate different types of signals and system response.

CO3: Find the Fourier Transform of a given signal and plot amplitude and phase characteristics.

CO4: Analyze the response of different systems when they are excited by different signals and plot power spectral density of signals.

CO5: Generate/Simulate different random signals for the given specifications

List of Experiments:

- 1. Write a program to generate various Signals and Sequences: Periodic and Aperiodic, Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc function.
- 2. Perform operations on Signals and Sequences: Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Write a program to find the trigonometric & exponential Fourier series coefficients of a rectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightings- Plot the discrete spectrum of the signal.
- 4. Write a program to find Fourier transform of a given signal. Plot its amplitude and phase spectrum.
- 5. Write a program to convolve two discrete time sequences. Plot all the sequences.
- 6. Write a program to find autocorrelation and cross correlation of given sequences.
- 7. Write a program to verify Linearity and Time Invariance properties of a given Continuous/Discrete System.
- 8. Write a program to generate discrete time sequence by sampling a continuous time signal. Show that with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
- 9. Write a program to find magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
- 10. Write a program to find response of a low pass filter and high pass filter, when a speech signal is passed through these filters.
- 11. Write a program to generate Complex Gaussian noise and find its mean, variance, Probability Density Function (PDF) and Power Spectral Density (PSD).
- 12. Generate a Random data (with bipolar) for a given data rate (say 10kbps). Plot the same for a time period of 0.2 sec.
- 13. To plot pole-zero diagram in S-plane of given signal/sequence and verify its stability.

Note: All the experiments are to be simulated using MATLAB or equivalent software.

References:

Stephen J. Chapman, "MATLAB Programming for Engineers", Cengage, November 2012. Online Learning Resources/Virtual Labs:

https://www.vlab.co.in/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 0 0 3 1.5

20A02303P ELECTRICAL ENGINEERING LAB

Pre-requisite Fundamentals of Electrical Circuits

Course Objectives:

- Understand and experimentally verify various resonance circuits
- Apply and experimentally analyze two port network parameters
- To do experiments on DC Machines
- To do experiments on AC Machines

Course Outcomes (CO):

- To determine the various parameters experimentally
- To understand various characteristics of DC generators and DC motors
- To predetermine the efficiency and regulation of a 1-φ transformer

Experiments

- 1. Response of RL, RC, and R-L-C circuits for step and pulse inputs
- 2. Series Resonance and its Frequency Response
- 3. Parallel Resonance and its Frequency Response
- 4. Determination of Z & Y parameters for the given two port network.
- 5. Determination of Transmission and Hybrid Parameters of a given two port network
- 6. OCC of a separately excited DC generator
- 7. Load characteristics of DC shunt generator
- 8. Load characteristics of DC shunt motor
- 9. Swinburne's test
- 10. Speed control of DC shunt motor
- 11. OC & SC tests on a 1-φ transformer
- 12. Load test on Squirrel cage Induction motor
- 13. Predetermination of regulation of alternator by Synchronous impedance method

Note: Student has to perform at least 10 experiments

Online learning resources/Virtual Labs:

https://www.vlab.co.in/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 0 0 3 1.5

20A04302P ANALOG CIRCUITS LAB

Pre-requisite Electronic Devices and Circuits lab

Course Objectives:

- To review analysis & design of single stage amplifiers using BJT & MOSFETs at low and high frequencies.
- To understand the characteristics of Differential amplifiers, feedback and power amplifiers.
- To examine the response of tuned amplifiers and multivibrators
- To categorize different oscillator circuits based on the application
- To design the electronic circuits for the given specifications and for a given application.

Course Outcomes (CO):

CO1: Know about the usage of equipment/components/software tools used to conduct the experiments in analog circuits.

CO2: Conduct the experiment based on the knowledge acquired in the theory about various analog circuits using BJT/MOSFETs to find the important parameters of the circuit (viz. Voltage gain, Current gain, bandwidth, input and output impedances etc) experimentally.

CO3: Analyze the given analog circuit to find required important metrics of it theoretically.

CO4:Draw the relevant graphs between important metrics of the system from the observed measurements.

CO5: Compare the experimental results with that of theoretical ones and infer the conclusions.

CO6: Design the circuit for the given specifications.

List of Experiments:

- 1. Design and Analysis of Darlington pair.
- 2. Frequency response of CE CC multistage Amplifier
- 3. Design and Analysis of Cascode Amplifier.
- 4. Frequency Response of Differential Amplifier
- 5. Design and Analysis of Series Series feedback amplifier and find the frequency response of it.
- 6. Design and Analysis of Shunt Shunt feedback amplifier and find the frequency response of it.
- 7. Design and Analysis of Class A power amplifier
- 8. Design and Analysis of Class AB amplifier
- 9. Design and Analysis of RC phase shift oscillator
- 10. Design and Analysis of LC Oscillator
- 11. Frequency Response of Single Tuned amplifier
- 12. Design and Analysis of Bistable Multivibrator
- 13. Design and Analysis of Monostable Multivibrator
- 14. Design and Analysis of Astable Multivibrator

Note: At least 12 experiments shall be performed. Both BJT and MOSFET based circuits shall be implemented.

Faculty members who are handling the laboratory shall see that students are given design specifications for a given circuit appropriately and monitor the design and analysis aspects of the circuit.

Online learning resources/Virtual labs:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 1 0 2 2

20A05305 Application Development with Python

Course Objectives:

- To learn the basic concepts of software engineering and life cycle models
- To explore the importance of Databases in application Development
- Acquire programming skills in core Python
- To understand the importance of Object-oriented Programming

Course Outcomes (CO):

Students should be able to

- Identify the issues in software requirements specification and enable to write SRS documents for software development problems
- Explore the use of Object oriented concepts to solve Real-life problems
- Design database for any real-world problem
- Solve mathematical problems using Python programming language

Module 1. Basic concepts in software engineering and software project management

Basic concepts: abstraction versus decomposition, the evolution of software engineering techniques, Software development life cycle

Software project management: project planning and project scheduling

Task:

1. Identifying the Requirements from Problem Statements

Module 2. Basic Concepts of Databases

Database systems applications, Purpose of Database Systems, view of Data, Database Languages, Relational Databases, <u>Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)</u>, <u>Data Manipulation Language(DML) Statements</u>

Task:

- 1. Implement <u>Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)</u>
- 2. Implement Data Manipulation Language(DML) Statements

Module 3. Python Programming:

Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements, Looping statements

Python Data Structures: Lists, Dictionaries, Tuples.

Strings: Creating strings and basic operations on strings, string testing methods.

Functions: Defining a function- Calling a function- Types of functions-Function Arguments-Anonymous functions- Global and local variables

OOPS Concepts; Classes and objects- Attributes- Inheritance- Overloading- Overriding- Data hiding

Modules and Packages: Standard modules-Importing own module as well as external modules Understanding Packages Powerful Lamda function in python Programming using functions, modules and external packages

Working with Data in Python: Printing on screen- Reading data from keyboard- Opening and closing file-Reading and writing files- Functions-Loading Data with Pandas-Numpy

Tasks:

1. OPERATORS

a. Read a list of numbers and write a program to check whether a particular element is present or not using

membership operators.

- b. Read your name and age and write a program to display the year in which you will turn 100 years old.
- c. Read radius and height of a cone and write a program to find the volume of a cone.
- d. Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean theorem)

2. CONTROL STRUCTURES

- a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it using if...elif...else statement.
- b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a particular word given by the user from the dictionary using while loop.
- c. Write a Program to find the sum of a Series $1/1! + 2/2! + 3/3! + 4/4! + \dots + n/n!$. (Input :n = 5, Output : 2.70833)
- d. In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number itself. Write a program to find out, if the given number is abundant. (Input: 12, Sum of divisors of 12 = 1 + 2 + 3 + 4 + 6 = 16, sum of divisors 16 > original number 12)

3: LIST

- a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y = 5).
- b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63], odd numbers sum = 101, even numbers sum = 24)
- c. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The numbers in odd index position: 25 47 84).
- d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20 40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

4: TUPLE

- a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples. test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)]
- b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input: test_list = [("GFG", "IS", "BEST"), ("GFg", "AVERAGE"), ("GfG",), ("Gfg", "CS")], Output : [(,,GFG", ,,IS", ,,BEST")]).
- c. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple. (Input: tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output: 3)

5: SET

- a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x, x*x).
- b. Write a program to perform union, intersection and difference using Set A and Set B.
- c. Write a program to count number of vowels using sets in given string (Input: "Hello World", Output: No. of vowels: 3)
- **d.** Write a program to form concatenated string by taking uncommon characters from two strings using set concept (Input : S1 = ``aacdb'', S2 = ``gafd'', Output : "cbgf").

6: DICTIONARY

- a. Write a program to do the following operations:
- i. Create a empty dictionary with dict() method
- ii. Add elements one at a time
- iii. Update existing key"s value
- iv. Access an element using a key and also get() method
- v. Deleting a key value using del() method
- b. Write a program to create a dictionary and apply the following methods:
- i. pop() method
- ii. popitem() method
- iii. clear() method
- c. Given a dictionary, write a program to find the sum of all items in the dictionary.
- d. Write a program to merge two dictionaries using update() method.

7: STRINGS

- a. Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to be symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one half of the string is the reverse of the other half or if a string appears same when read forward or backward.
- b. Write a program to read a string and count the number of vowel letters and print all letters except 'e' and 's'.
- c. Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method, Input: India is my country. Output: is my country)
- d. Write a program to read a string and count how many times each letter appears. (Histogram).

8: USER DEFINED FUNCTIONS

- a. A generator is a function that produces a sequence of results instead of a single value. Write a generator function for Fibonacci numbers up to n.
- b. Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.
- c. Write a fact() function to compute the factorial of a given positive number.
- d. Given a list of n elements, write a linear_search() function to search a given element x in a list.

9: BUILT-IN FUNCTIONS

- a. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by importing statistics library.
- b. Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(), degrees(), radians() by importing math module.
- c. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(), log10(), pow() by importing math module.
- d. Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd() by importing math module.

10. CLASS AND OBJECTS

- a. Write a program to create a BankAccount class. Your class should support the following methods for
- i) Deposit
 - ii) Withdraw
 - iii) GetBalanace
 - iv) PinChange
- b. Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method that increases the balance by the appropriate amount of interest (Hint:use Inheritance).
- c. Write a program to create an employee class and store the employee name, id, age, and salary using the constructor. Display the employee details by invoking employee_info() method and also using dictionary (__dict__).
- d. Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate the 3 types of access modifiers: public, private and protected.

11. FILE HANDLING

- a. . Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform the following operations:
 - i. Count the sentences in the file.
 - ii. Count the words in the file.
 - iii. Count the characters in the file.
- b. . Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only lower case alphabets and display the number of lines copied.
- c. Write a Python program to store N student"s records containing name, roll number and branch. Print the given branch student"s details only.

References:

- 1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.
- 2. RamezElmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
- 3. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford Press, 1st Edition, 2017.
- 4. Larry Lutz, "Python for Beginners: Step-By-Step Guide to Learning Python Programming", CreateSpace Independent Publishing Platform, First edition, 2018

Online Learning Resources/Virtual Labs:

- http://vlabs.iitkgp.ernet.in/se/
 http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php
 https://python-iitk.vlabs.ac.in

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-I Sem L T P C 3 0 0 3

20A52201 UNIVERSAL HUMAN VALUES (Common to all branches of Engineering)

Course Objectives:

The objective of the course is fourfold:

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

Course Outcomes (CO):

By the end of the course,

- Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
- They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability.
- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

UNIT - I Course Introduction - Need, Basic Guidelines, Content and Process for Value Education 8 Hrs

Purpose and motivation for the course, recapitulation from Universal Human Values-I

Self-Exploration—what is it? - Its content and process; 'Natural Acceptance' and Experiential Validationas the process for self-exploration

Continuous Happiness and Prosperity- A look at basic Human Aspirations

Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority

Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT - II Understanding Harmony in the Human Being - Harmony in Myself! 12 Hrs

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'

Understanding the needs of Self ('I') and 'Body' - happiness and physical facility

Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)

Understanding the characteristics and activities of 'I' and harmony in 'I'

Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT - III Understanding Harmony in the Family and Society- Harmony in Human- 8 Hrs Human Relationship

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship

Understanding the meaning of Trust; Difference between intention and competence

Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals

Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

UNIT – IV Understanding Harmony in the Nature and Existence - Whole existence as 10 Hrs

Coexistence

Understanding the harmony in the Nature

Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature

Understanding Existence as Co-existence of mutually interacting units in all- pervasive space

Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT – V Implications of the above Holistic Understanding of Harmony on

8 Hrs

Professional Ethics

Natural acceptance of human values

Definitiveness of Ethical Human Conduct

Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

Case studies of typical holistic technologies, management models and production systems

Strategy for transition from the present state to Universal Human Order:

a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers

b. At the level of society: as mutually enriching institutions and organizations Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Textbooks:

R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2 Reference Books:

Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.

A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.

The Story of Stuff (Book).

- 4. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 5. E. FSchumacher. "Small is Beautiful"

Slow is Beautiful -Cecile Andrews

J C Kumarappa "Economy of Permanence"

Pandit Sunderlal "Bharat Mein Angreji Raj"

Dharampal, "Rediscovering India"

Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"

India Wins Freedom - Maulana Abdul Kalam Azad

Vivekananda - Romain Rolland(English)

Gandhi - Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to

connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 3 0 0 3

20A54403 PROBABILITY THEORY AND STOCHASTIC PROCESSES

Pre-requisite Signals Systems & Networks

Course Objectives:

- To gain the knowledge of the basic probability concepts and acquire skills in handling situations involving more than one random variable and functions of random variables.
- To understand the principles of random signals and random processes.
- To be acquainted with systems involving random signals.
- To gain knowledge of standard distributions that can describe real life phenomena

Course Outcomes (CO):

CO1: Understanding the concepts of Probability, Random Variables, Random Processes and their characteristics learn how to deal with multiple random variables, conditional probability, joint distribution and statistical independence. (L1)

CO2: Formulate and solve the engineering problems involving random variables and random processes. (L2)

CO3: Analyze various probability density functions of random variables. (L3)

CO4: Derive the response of linear system for Gaussian noise and random signals as inputs. (L3)

UNIT - I **Probability & Random Variable**

Probability through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, Bayes' Theorem, Independent Events, Problem Solving.

Random Variable: Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous, Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Methods of defining Conditioning Event, Conditional Density, Properties, Problem Solving.

UNIT - II **Operations on Random variable**

Operations on Single Random Variable: Introduction, Expectation of a random variable, moments-moments about the origin, Central moments, Variance and Skew, Chebyshev's inequality, moment generating function, characteristic function, transformations of random variable.

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected), Unequal Distribution, Equal Distributions.

UNIT - III Operations on Multiple Random variables

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties of Gaussian random variables, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT - IV Random Processes

Random Processes-Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence, First-Order Stationary Processes, Second-Order and Wide-Sense Stationarity, N-Order and Strict-Sense Stationarity. Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Processes.

Random Processes-Spectral Characteristics: The Power Density Spectrum and its Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum and its Properties, Relationship between Cross-Power Spectrum and Cross-Correlation

Function.

UNIT - V Random Signal Response of Linear Systems Lecture Hrs Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band Limited and Narrowband Processes, Properties.

Noise Definitions: White Noise, colored noise and their statistical characteristics, Ideal low pass filtered white noise, RC filtered white noise.

Textbooks:

- 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002

Reference Books:

- 1. Simon Haykin, "Communication Systems", 3rd Edition, Wiley, 2010.
- 2. Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing," 3rd Edition, Pearson Education, 2002.
- 3. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis," 3rd Edition, Oxford, 1999.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 3 0 0 3

20A04303T DIGITAL LOGIC DESIGN (Common to ECE and EEE)

Course Objectives:

- To familiarize with the concepts of different number systems and Boolean algebra.
- To introduce the design techniques of combinational, sequential logic circuits.
- To model combinational and sequential circuits using HDLs.

Course Outcomes (CO):

- CO1: Understand the properties of Boolean algebra, other logic operations, and minimization of Boolean functions using Karnaugh map.
- CO2: Make use of the concepts to solve the problems related to the logic circuits.
- CO3: Analyze the combinational and sequential logic circuits.
- CO4: Develop digital circuits using HDL, and Compare various Programmable logic devices
- CO5: Design various logic circuits using Boolean algebra, combinational and sequential logic circuits.

UNIT - I Number Systems, Boolean algebra and Logic Gates

Number systems - binary numbers, octal, hexadecimal, other binary codes; complements, signed binary numbers, digital logic operations and gates, basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, complements of Boolean functions, two-level NAND and NOR Implementation of Boolean functions.

UNIT - II Minimization of Boolean functions and Combinational Logic Circuits

The Karnaugh map method (up to five variables), product of sums simplifications, don't care conditions, Tabular method, Introduction, Combinational circuits, design procedure, adders, subtractors, 4-bit binary adder/ subtractor circuit, BCD adder, carry look- a-head adder, binary multiplier, magnitude comparator, decoders and encoders, multiplexers, demultiplexers,

UNIT - III Sequential Logic Circuits

Basic architectural distinction between combinational and sequential circuits, Design procedure, latches, flip-flops, truth tables and excitation tables, timing and triggering consideration, conversion of flip- flops, design of counters, ripple counters, synchronous counters, ring counter, Johnson counter, registers, shift registers, universal shift register

UNIT - IV Finite State Machines and Programmable Logic Devices

Types of FSM, capabilities and limitations of FSM, state assignment, realization of FSM using flipflops, Mealy to Moore conversion and vice-versa, reduction of state tables using partition technique, Design of sequence detector.

UNIT - V Hardware Description Language

Types of PLD's: PROM, PAL, PLA, basic structure of CPLD and FPGA, advantages of FPGAs, Design of sequential circuits using ROMs, PLAs, CPLDs and FPGAs, Introduction to Verilog - structural Specification of logic circuits, behavioural specification of logic circuits, hierarchical Verilog Code, Verilog for combinational circuits - conditional operator, if-else statement, case statement, for loop; using storage elements with CAD tools-using Verilog constructs for storage elements, flip-flop with clear capability, using Verilog constructs for registers and counters.

Textbooks:

- 1. M. Morris Mano, "Digital Design", 3rd Edition, PHI. (Unit I to IV)
- 2. Stephen Brown and ZvonkoVranesic, "Fundamentals of Digital Logic with Verilog Design", 3rd Edition, McGraw-Hill (Unit V)

Reference Books:

- 1. Charles H. Roth, Jr, "Fundamentals of Logic Design", 4th Edition, Jaico Publishers.
- 2. ZviKohavi and Niraj K.Jha, "Switching and Finite Automata Theory, 3rd Edition, Cambridge University Press, 2010.
- 3. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2ndEdition, Prentice Hall PTR.
- 4. D.P. Leach, A.P. Malvino, "Digital Principles and Applications", TMH, 7th Edition.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 3 0 0 3

20A04401 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Pre-requisite Mathematics II and Mathematics III

Course Objectives:

- To introduce fundamentals of static and time varying electromagnetic fields.
- To teach problem solving in Electromagnetic fields using vector calculus.
- To demonstrate wave concept with the help of Maxwell's equations.
- To introduce concepts of polarization and fundamental theory of electromagnetic waves in transmission lines and their practical applications.
- To analyze reflection and refraction of electromagnetic waves propagated in normal and oblique incidences.

Course Outcomes (CO):

CO1: Explain basic laws of electromagnetic fields and know the wave concept. (L2)

CO2: Solve problems related to electromagnetic fields. (L3)

CO3: Analyze electric and magnetic fields at the interface of different media. (L3)

CO4: Derive Maxwell's equations for static and time varying fields. (L3)

CO5: Analogy between electric and magnetic fields. (L5)

C06: Describes the transmission lines with equivalent circuit and explain their characteristic with various lengths. (L2)

UNIT - I Static Electric Fields

Recap of Vector Analysis: Coordinate systems and transformation-Cartesian, Cylindrical and Spherical coordinates

Recap of Vector Calculus: Differential length area and volume, line surface and volume integrals, Del operator, gradient, divergent and curl operations.

Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Divergence Theorem, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT - II Static Magnetic Fields & Time varying Fields

Magnetic Fields: Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic dipole, Ampere's Force Law, Inductances and Magnetic Energy, Illustrative Problems.

Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's equations for time varying fields, Maxwell's Equations in Different Final Forms and Word Statements, Illustrative Problems

UNIT - III Boundary Conditions and Uniform Plane Wave

Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Wave Equations for Conducting and Perfect Dielectric Media. **Uniform Plane Waves** – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Illustrative Problems.

UNIT - IV Reflection and Refraction of Plane Waves

Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

UNIT - V Transmission Lines

Transmission Lines: Introduction, Transmission line parameters, Transmission line equivalent circuit, Transmission line equations and their solutions in their phasor form, input impedance, standing wave ratio, Transmission of finite length- half wave, quarter wave transmission line, Smith chart, graphical analysis of transmission lines using Smith chart, stub matching- single and double stub matching, Illustrative Problems.

Textbooks:

- 1. Matthew N.O. Sadiku, "Elements of Electromagnetics", 4th edition. Oxford Univ. Press, 2008.
- 2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics", 7thedition.,TMH, 2006.

Reference Books:

- 1. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", 2nd Edition, PHI, 2000.
- 2. John D. Krauss, "Electromagnetics", 4th Edition, McGraw-Hill publication, 1999.
- 3. Electromagnetics, Schaum's outline series, 2nd Edition, Tata McGraw-Hill publications, 2006.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 3 0 0 3

20A04402T COMMUNICATION SYSTEMS

Pre-requisite Signals & Systems

Course Objectives:

- To introduce various modulation and demodulation techniques of analog and digital communication systems.
- To analyze different parameters of analog and digital communication techniques.
- To Know Noise Figure in AM & FM receiver systems.
- To understand Function of various stages of AM, FM transmitters and Know Characteristics of AM &FMreceivers.
- To analyze the performance of various digital modulation techniques in the presence of AWGN.
- To evaluate the performance of each modulation scheme to know the merits and demerits interms of bandwidth and power efficiency

Course Outcomes (CO):

- CO1: Recognize/List the basic terminology used in analog and digital communication techniques for transmission of information/data.
- CO2: Explain/Discuss the basic operation of different analog and digital communication systems at baseband and passband level.
- CO3: Compute various parameters of baseband and passband transmission schemes by applying basic engineering knowledge.
- CO4: Analyze/Investigate the performance of different modulation & demodulation techniques to solve complex problems in the presence of noise.
- CO5: Evaluate/Assess the performance of all analog and digital modulation techniques to know the merits and demerits of each one of them in terms of bandwidth and power efficiency.

UNIT - I Continuous Wave Modulation

15 Hrs

Introduction: The communication Process, Communication Channels, Baseband and Passband Signals, Analog vs Digital Communications, Need for the modulation.

Amplitude Modulation(AM): AM and its modifications – DSB, SSB,VSB. Frequency Translation, Frequency Division Multiplexing (FDM).

Angle Modulation:Frequency Modulation(FM), Phase Modulation, PLL, Nonlinear Effects in FM, Superheterodyne Receivers.

UNIT - II Noise and Pulse Modulation

12 Hrs

Introduction to Noise: Types of Noise, Receiver Model, Noise in AM, DSB, SSB, and FM Receivers, Pre-Emphasis and De-emphasis in FM.

Introduction to Pulse Modulation: The Sampling Process, PAM, TDM, Bandwidth-Noise Trade off, Quantization process, PCM, Noise considerations in PCM systems, Delta Modulation, DPCM, Coding speech at low bit rates.

UNIT - III Baseband Pulse Transmission

10 Hrs

Introduction, Matched Filter, Properties of Matched Filter, Error rate due to noise, Inter Symbol Interference (ISI), Nyquist Criterion for distortion less baseband binary transmission, Correlative level coding, Baseband M-ary PAM transmission, QAM, MAP and ML decoding, Equalization, Eye pattern.

UNKT - IV Digital Passband Transmission

8 Hrs

Introduction, Passband Transmission Model, Gram-Schmidt Orthogonalization Procedure, Geometric Interpretation of Signals, Response of bank of correlators in noise, Correlation receiver, Probability of Error, Detection of Signals with unknown phase.

Coherent Digital Modulation Schemes – ASK, BPSK, BFSK, QPSK, Non-coherent BFSK, DPSK. Mary Modulation Techniques, Power Spectra, Bandwidth Efficiency, Timing and Frequency synchronization.

Information theory: Entropy, Mutual Information and Channel capacity theorem.

Textbooks

- 1. Simon Haykin, "Communication Systems", JohnWiley& Sons, 4th Edition, 2004.
- 2. B. P. Lathi, Zhi Ding "Modern Digital and Analog Communication Systems", Oxford press, 2011.

- 1.Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley & Sons, 1999.
- 2. Bernard Sklar, F. J. harris "Digial Communications: Fundamentals and Applications", Pearson Publications, 2020.
- 3. Taub and Schilling, "Principles of Communication Systems", Tata McGraw Hill, 2007.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 3 0 0 3

20A04403T LINEAR AND DIGITAL IC APPLICATIONS

Pre-requisite Analog circuits, Digital Logic Design

Course Objectives:

- To introduce the basic building blocks of linear integrated circuits.
- To teach the linear and non-linear applications of operational amplifiers.
- To introduce the theory and applications of PLL.
- To introduce the concepts of waveform generation and introduce some special function ICs.
- Exposure to digital IC's

Course Outcomes (CO):

CO1: List out the characteristics of Linear and Digital ICs.

CO2: Discuss the various applications of linear & Digital ICs.

CO3: Solve the application based problems related to linear and digital ICs.

CO4: Analyze various applications based circuits of linear and digital ICs.

CO5: Design the circuits using either linear ICs or Digital ICs from the given specifications.

UNIT – I ICs and OP- AMPS

INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER: Introduction, Classification of IC's, IC chip size and circuit complexity, basic information of Op-Amp IC741 Op-Amp and its features, the ideal Operational amplifier, Op-Amp internal circuit, Op-Amp characteristics - DC and AC.

UNIT – II **Applications of OP- AMP**

LINEAR APPLICATIONS OF OP-AMP: Inverting and non-inverting amplifiers, adder, subtractor, Instrumentation amplifier, AC amplifier, V to I and I to V converters, Integrator and differentiator.

NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators, Oscillators

UNIT - III Active Filters and other ICs

ACTIVE FILTERS: Introduction, Butterworth filters -1^{st} order, 2^{nd} order low pass and high pass filters, band pass, band reject and all pass filters.

TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL.

UNIT – IV Voltage Regulators and Converters

VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator.

D to A AND A to D CONVERTERS: Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

UNIT - V Digital ICs

CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function using CMOS logic.

COMBINATIONAL CIRCUITS USING TTL 74XX ICS: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC74138, IC 74154), BCD-to-7-segment decoder (IC 7447), Encoder (IC 74147), Multiplexer (IC 74151), Demultiplexer (IC74154).

SEQUNTIAL CIRCUITS USING TTL 74XX ICS: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).

Textbooks:

- 1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuit", 4th edition (2012), New Age International Pvt.Ltd., New Delhi, India
- 2. Ramakant A. Gayakwad, "OP-AMP and Linear Integrated Circuits", 4th edition (2012), Prentice Hall / Pearson Education, New Delhi.

Floyd, Jain, "Digital Fundamentals", 8th edition (2009), Pearson Education, New Delhi.

- 1. Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- 2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 0 0 3 1.5

20A04303P DIGITAL LOGIC DESIGN LAB (Common to ECE and EEE)

Course Objectives:

- To understand various pin configurations of the Digital ICs used in the laboratory
- To conduct the experiments and verify the truth tables of various logic circuits.
- To analyze the logic circuits
- To design sequential and combinational logic circuits and verify their properties.
- To design of any sequential/combinational circuit using Hardware Description Language.

Course Outcomes (CO):

- CO1: Understand the pin configuration of various digital ICs used in the lab
- CO2: Conduct the experiment and verify the properties of various logic circuits.
- CO3: Analyze the sequential and combinational circuits.
- CO4: Design of any sequential/combinational circuit using Hardware/ HDL.

List of Experiments:

- 1. Verification of truth tables of the following Logic gates
 Two input (i) OR (ii) AND (iii) NOR (iv) NAND (v) Exclusive-OR (vi) Exclusive-NOR
- 2. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital Trainer Kit.
- 3. Verification of functional table of 3 to 8-line Decoder /De-multiplexer
- 4. 4variable logic function verification using 8 to 1 multiplexer.
- 5. Design full adder circuit and verify its functional table.
- 6. Verification of functional tables of (i) JK Edge triggered Flip–Flop (ii) JK Master Slav Flip–Flop (iii) D Flip-Flop
- 7. Design a four-bit ring counter using D Flip-Flops/JK Flip Flop and verify output
- 8. Design a four bit Johnson's counter using D Flip-Flops/JK Flip Flops and verify output
- 9. Verify the operation of 4-bit Universal Shift Register for different Modes of operation.
- 10. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-Flip-Flops and Test It with a low frequency clock and sketch the output waveforms.
- 11. Design MOD–8 synchronous counter using T Flip-Flop and verify the result and sketch the output waveforms.
- 12. (a) Draw the circuit diagram of a single bit comparator and test the output
 - (b) Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and test it.

ADD on Experiments:

- 1. Design BCD Adder Circuit and Test the Same using Relevant IC
- 2. Design Excess-3 to 9- Complement convertor using only four Full Adders and test the Circuit.
- 3. Design an Experimental model to demonstrate the operation of 74154 De-Multiplexer using LEDs for outputs.
- 4. Design of any combinational circuit using Hardware Description Language
- 5. Design of any sequential circuit using Hardware Description Language

References:

M. Morris Mano, "Digital Design", 3rd Edition, PHI

Online learning resources/virtual labs:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 0 0 3 1.5

20A04402P COMMUNICATION SYSTEMS LAB

Course Objectives:

- To understandthe basics of analog and digital modulation techniques.
- To Integrate theory with experiments so that the students appreciate the knowledge gained from the theory course.
- To design and implement different modulation and demodulation techniques and their applications.
- To develop cognitive and behavioral skills for performance analysis of various modulation techniques.

Course Outcomes (CO):

CO1: Know about the usage of equipment/components/software tools used to conduct the experiments in analog and digital modulation techniques.

CO2: Conduct the experiment based on the knowledge acquired in the theory about modulation and demodulation schemes to find the important metrics of the communication system experimentally.

CO3: Analyze the performance of a given modulation scheme to find the important metrics of the system theoretically.

CO4: Draw the relevant graphs between important metrics of the system from the observed measurements.

CO5: Compare the experimental results with that of theoretical ones and infer the conclusions.

List of Experiments:

Design the circuits and verify the following experiments taking minimum of six from each section shown below.

Section-A

- 1. AM Modulation and Demodulation
- 2. DSB-SC Modulation and Demodulation
- 3. Frquency Division Multiplexing
- 4. FM Modulation and Demodulation
- 5. Radio receiver measurements
- 6. PAM Modulation and Demodulation
- 7. PWM Modulation and Demodulation
- 8. PPM Modulation and Demodulation

Section-B

- 1. Sampling Theorem.
- 2. Time Division Multiplexing
- 3. Delta Modulation and Demodulation
- 4. PCM Modulation and Demodulation
- 5. BASK Modulation and Demodulation
- 6. BFSK Modulation and Demodulation
- 7. OPSK Modulation and Demodulation
- 8. DPSK Modulation and Demodulation

Note: Faculty members (who are handling the laboratory) are requested to instruct the <u>students not to use readymade kits for conducting the experiments</u>. They are advised to make the students work in the laboratory by constructing the circuits and analysing them during the lab sessions.

Online learning resources/virtual labs:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 0 0 3 1.5

20A04403P LINEAR AND DIGITAL IC APPLICATIONS LAB

Pre-requisite Analog Circuits Lab, Digital Logic

Design Lab

Course Objectives:

The objective of the course is to learn design, testing and characterizing of circuit behaviour with digital and analog ICs.

Course Outcomes (CO):

CO1: Understand the pin configuration of each linear/ digital IC and its functional diagram.

CO2: Conduct the experiment and obtain the expected results.

CO3: Analyze the given circuit/designed circuit and verify the practical observations with the analyzed results.

CO4: Design the circuits for the given specifications using linear and digital ICs.

CO5: Acquaintance with lab equipment about the operation and its use.

List of Experiments:

PART – I: Linear IC Experiments

- 1. OP AMP Applications Adder, Subtractor, Comparators.
- 2. Integrator and Differentiator Circuits using IC 741.
- 3. Active Filter Applications LPF, HPF (first order)
- 4. IC 741 Waveform Generators Sine, Square wave and Triangular waves.
- 5. IC 555 Timer Monostable and Astable Multivibrator Circuits.
- 6. Schmitt Trigger Circuits using IC 741
- 7. IC 565 PLL Applications.
- 8. Voltage Regulator using IC 723, Three Terminal Voltage Regulators 7805, 7809, 7912.

PART – II: Digital IC Applications

- 1. 3-8 decoder using 74138
- 2. 4-bit comparator using 7485.
- 3. 8*1 Multiplexer using 74151 and 2*4 Demultiplexer using 74155.
- 4. D, JK Flip Flops using 7474, 7483.
- 5. Decade counter using 7490.
- 6. UP/DOWN counter using 74163
- 7. Universal shift registers using 74194/195.
- 8. RAM (16*4) using 74189 (Read and Write operations).

Note: At least 12 experiments shall be performed.

References:

- 1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuit", 4th edition (2012), New Age International Pvt.Ltd., New Delhi, India
- 2. Ramakant A. Gayakwad, "OP-AMP and Linear Integrated Circuits", 4th edition (2012), Prentice Hall / Pearson Education, New Delhi.
- 3. Floyd, Jain, "Digital Fundamentals", 8th edition (2009), Pearson Education, New Delhi.

Online Learning Resources/Virtual Labs:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T P C 1 0 2 2

20A52401 Soft Skills

Course Objectives:

- To encourage all round development of the students by focusing on soft skills
- To make the students aware of critical thinking and problem-solving skills
- To develop leadership skills and organizational skills through group activities
- To function effectively with heterogeneous teams

Course Outcomes (CO):

By the end of the program students should be able to

- Memorize various elements of effective communicative skills
- Interpret people at the emotional level through emotional intelligence
- apply critical thinking skills in problem solving
- analyse the needs of an organization for team building
- Judge the situation and take necessary decisions as a leader
- Develop social and work-life skills as well as personal and emotional well-being

UNIT – I Soft Skills & Communication Skills 10 Hrs

Introduction, meaning, significance of soft skills – definition, significance, types of communication skills - Intrapersonal & Inter-personal skills - Verbal and Non-verbal Communication

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self- expression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincing-negotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation

UNIT – II Critical Thinking 10 Hrs

Activities:

Gathering information and statistics on a topic - sequencing - assorting - reasoning - critiquing issues - placing the problem - finding the root cause - seeking viable solution - judging with rationale - evaluating the views of others - Case Study, Story Analysis

UNIT – III Problem Solving & Decision Making 10 Hrs

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Methods of decision making – Effective decision making in teams – Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision.

Case Study & Group Discussion

UNIT – IV Emotional Intelligence & Stress Management

10 Hrs

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT – V Leadership Skills 10 Hrs

Team-Building – Decision-Making – Accountability – Planning – Public Speaking – Motivation – Risk-Taking - Team Building - Time Management

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice – sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

- 1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill
- 2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra BarunK.)Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- 2. Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr Shikha Kapoor</u>Publisher: I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- 1. Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018
- 2. Soft Skills By Alex K. Published by S.Chand
- **3.** Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: Notion Press
- **6.** Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. https://youtu.be/DUlsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q
- 2. https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hDl7lU
- **4.** https://youtu.be/gkLsn4ddmTs
- **5.** https://youtu.be/2bf9K2rRWwo
- **6.** https://youtu.be/FchfE3c2jzc

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– II-II Sem L T I

2 1 0 0

20A99401Design Thinking for Innovation (Common to All branches of Engineering)

Course Objectives:

The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcomes (CO):

- Define the concepts related to design thinking.
- Explain the fundamentals of Design Thinking and innovation
- Apply the design thinking techniques for solving problems in various sectors.
- Analyse to work in a multidisciplinary environment
- Evaluate the value of creativity
- Formulate specific problem statements of real time issues

UNIT - I Introduction to Design Thinking

10 Hrs

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II Design Thinking Process

10 Hr

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brain storming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III Innovation

8 Hrs

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV Product Design

8 Hrs

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies.

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT - V Design Thinking in Business Processes

10 Hrs

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

- 1. Change by design, Tim Brown, Harper Bollins (2009)
- 2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books:

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press

- 3. Universal principles of design- William lidwell, kritinaholden, Jill butter. 4. The era of open innovation chesbrough.H Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/https://nptel.ac.in/courses/109/104/109104109/https://swayam.gov.in/nd1_noc19_mg60/preview

COMMUNITY SERVICE PROJECT

.....Experiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a 6 weeksfor the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like - youth, women, house-wives, etc
- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty incharge.
- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or
 municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to
 commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas.
 A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area.
 The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- · New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition

- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmesare;

Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps

- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

 Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks
work to be drafted and a copy shall be submitted to the local administration. This report will be a basis
for the next batch of students visiting that particular habitation. The same report submitted to the
teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission
to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teachermentor, who is required to periodically visit the students and guide them.

B.Tech (ECE)- III-I Sem

(20A04501) CONTROL SYSTEMS ENGINEERING

Course Objectives:

- To introduce concepts of open loop and closed loop systems, mathematical models of mechanical and electrical systems and concept of feedback.
- To describe characteristics of the given system in terms of the transfer function.
- To provide knowledge in analyzing the system response in time-domain and frequency domain
- To impart skills for designing different control systems for different applications as per given specifications.
- To introduce concepts of state variable analysis and design.

Course Outcomes:

- Identify open and closed loop control system
- Formulate mathematical model for physical systems
- Use standard test signals to identify performance characteristics of first and second-order systems
- Analyze stability of the closed and open loop systems
- Design closed-loop control system to satisfy dynamic performance specifications using frequency response, root-locus, and state-space techniques

UNIT I Introduction

Introduction: Overview of System, Control System, Open Loop Control System, Closed loop Control System, Different Examples, Mathematical models of Physical Systems, Differential equations of physical systems, Transfer functions, Block diagram Algebra, Signal flow graphs with illustrative examples Effects of Feedback, Feedback Characteristics and its advantages, Line arising effect of feedback.

UNIT II Time Response Analysis

Controller Components, DC Servomotor (Armature Controlled and Field Controlled) with necessary derivation for transfer function, AC Servomotor and its transfer function, AC Tachometer, Potentiometer, Synchros, AC Position Control Systems.

Time Response Analysis, Standard test Signals, Time response of first and second order systems, steady state errors and error constants, Effect of adding a zero to a system, Design specifications of second order systems, Performance indices

UNIT III Concepts of Stability

Concepts of Stability and Algebraic Criteria: The concept of Stability, Necessary Conditions for Stability, Routh-Hurwitz Stability Criterion, Relative stability analysis,

The Root Locus Technique: Introduction, The Root Locus concepts, Construction of Root Loci

UNIT IV Frequency Response Analysis

Frequency response analysis: Introduction, Correlation between time and frequency response, Polar Plots, Bode Plots, Nyquist Stability Criterion

UNIT V State Variable Analysis and Design

State Variable Analysis and Design: Introduction, Concepts of State, State Variables and State models, State models for linear continuous-time systems, State variables and linear discrete-time systems, Solution of state equations and Concepts of Controllability and Observability.

Textbooks:

1. I. J. Nagarath and M. Gopal, "Control System Engineering," New Age International Publishers, Fifth Edition.

- 1. Katsuhiko Ogata, Modern Control Engineering, Pearson, 5th Edition, 2010.
- 2. S. Salivahanan, R. Rengaraj, and G. R. Venkata Krishnan, Control Systems Engineering, Pearson, 5th edition, 2015.
- 3. Benjamin C. Kuo, FraridGolnaraghi, Automatic Control Systems, Wiley Student Edition, Eighth Edition2015.

B.Tech (ECE)- III-I Sem

L T P C 3 0 0 3

(20A04502T) DIGITAL SIGNAL PROCESSING

Course Objectives:

- To describe discrete time signals and systems.
- To teach importance of FFT algorithm for computation of Discrete Fourier Transform.
- To expose various implementations of digital filter structures.
- To present FIR and IIR Filter design procedures.
- To outline need of Multi-rate Processing.

Course Outcomes:

- Formulate difference equations for the given discrete time systems
- Apply FFT algorithms for determining the DFT of a given signal
- Compare FIR and IIR filter structures
- Design digital filter (FIR & IIR) from the given specifications
- Outline the concept of multirate DSP and applications of DSP.

UNIT I

Introduction to discrete time signals and systems

Introduction to digital signal processing, review of discrete-time signals and systems, analysis of discrete-time linear time invariant systems, frequency domain representation of discrete timesignals and systems, analysis of linear time-invariant systems in the z-domain, pole-zero stability.

UNIT II

Discrete Fourier Transform - Introduction, Discrete Fourier Series, properties of DFS, Discrete Fourier Transform, Inverse DFT, properties of DFT, Linear and Circular convolution, convolution using DFT.

Fast Fourier Transform = Introduction, Fast Fourier Transform, Radix-2 Decimation in time and Decimation in frequencyFFT, Inverse FFT (Radix-2).

UNIT III

IIR Filters-Introduction to digital filters, Analog filter approximations — Butterworth and Chebyshev, Designof IIR Digital filters from analog filters by Impulse invariant and bilinear transformation methods, Frequency transformations, Basic structures of IIR Filters - Direct form-I, Direct form-II, Cascadeform and Parallel form realizations.

UNIT IV

FIR Filters-Introduction, Characteristics of FIR filters with linear phase, Frequency response of linear phaseFIR filters, Design of FIR filters using Fourier series and windowing methods (Rectangular, Triangular, Raised Cosine, Hanging, Hamming, Blackman), Comparison of IIR & FIR filters, Basic structures of FIR Filters – Direct form, Cascade form, Linear phase realizations.

UNIT V

Quantization Errors in Digital Signal Processing: Representation of numbers, Quantization of filter coefficients, Round-off Effects in digital filters.

Multirate Digital Signal Processing: Decimation, Interpolation, Sampling rate conversion by a rational factor; Frequency domain characterization of Interpolator and Decimator; Polyphase decomposition.

Textbooks:

- 1. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, Pearson Education, 2007.
- 2. A.V.Oppenheim and R.W. Schaffer, Discrete Time Signal Processing ,PHI.

- 1. S.K.Mitra, Digital Signal Processing A practical approach , 2nd Edition, Pearson Education, New Delhi, 2004.
- 2. MH Hayes, Digital Signal Processing, Schaum's Outline series, TATA Mc-Graw Hill, 2007.
- 3. Robert J. Schilling, Sandra L. Harris, Fundamentals of Digital Signal Processing using Matlab, Thomson, 2007.

B.Tech (ECE)- III-I Sem

L T P C 3 0 0 3

(20A04503T) MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

- To introduce fundamental architectural concepts of microprocessors and microcontrollers.
- To impart knowledge on addressing modes and instruction set of 8086 and 8051
- To introduce assembly language programming concepts
- To explain memory and I/O interfacing with 8086 and 8051
- To introduce16 bit and 32 bit microcontrollers.

Course Outcomes:

- Distinguish between microprocessors & microcontrollers
- Develop assembly language programming
- Describe interfacing of 8086 with peripheral devices
- Design applications using microcontrollers

UNIT I

8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.

UNIT II

8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT III

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.

UNIT IV

Microcontroller - Architecture of 8051 - Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V

Interfacing Microcontroller - Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

Textbooks:

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rdEdition,1994.
- 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw Hill Education, 2017.
- 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012.

- 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the 8085, 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

B.Tech (ECE)- III-I Sem

L T P C 3 0 0 3

(20A05602T) MACHINE LEARNING

Course Objectives:

The course is introduced for students to

- Gain knowledge about basic concepts of Machine Learning
- Study different learning algorithms
- Learn about of evaluation of learning algorithms
- Learn about Dimensionality reduction

Course Outcomes:

After completion of the course, students will be able to

- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques
- Apply Dimensionality reduction techniques
- Design application using machine learning techniques

UNIT I Lecture 8Hrs

Introduction: Definition of learning systems, Goals and applications of machine learning, Aspects of developing a learning system: training data, concept representation, function approximation.

Inductive Classification: The concept learning task, Concept learning as search through a hypothesis space, General-to-specific ordering of hypotheses, Finding maximally specific hypotheses, Version spaces and the candidate elimination algorithm, Learning conjunctive concepts, The importance of inductive bias.

UNIT II Lecture 8Hrs

Decision Tree Learning: Representing concepts as decision trees, Recursive induction of decision trees, Picking the best splitting attribute: entropy and information gain, searching for simple trees and computational complexity, Occam's razor, Overfitting, noisy data, and pruning.

Experimental Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses.

Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis testing.

UNIT III Lecture 9Hrs

Computational Learning Theory: Models of learnability: learning in the limit; probably approximately correct (PAC) learning. Sample complexity for infinite hypothesis spaces, Vapnik- Chervonenkis dimension.

Rule Learning: Propositional and First-Order, Translating decision trees into rules, Heuristic rule induction using separate and conquer and information gain, First-order Horn-clause induction (Inductive Logic Programming) and Foil, Learning recursive rules, Inverse resolution, Golem, and Progol.

UNIT IV Lecture 9Hrs

Artificial Neural Networks: Neurons and biological motivation, Linear threshold units. Perceptrons: representational limitation and gradient descent training, Multilayer networks and back propagation, Hidden layers and constructing intermediate, distributed representations. Over fitting, learning network structure, recurrent networks.

Support Vector Machines: Maximum margin linear separators. Quadratic programming solution to finding maximum margin separators. Kernels for learning non-linear functions.

UNIT V Lecture 9Hrs

Bayesian Learning: Probability theory and Bayes rule. Naive Bayes learning algorithm. Parameter smoothing. Generative vs. discriminative training. Logistic regression. Bayes nets and Markov nets for representing dependencies.

Instance-Based Learning: Constructing explicit generalizations versus comparing to past specific examples. k-Nearest-neighbor algorithm. Case-based learning.

Textbooks:

- 1) T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 2) Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019.

Reference Books:

- 1. EthernAlpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 2. Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 3. Andreas C. Müller and Sarah Guido "Introduction to Machine Learning with Python: A Guide for Data Scientists", Oreilly.

Online Learning Resources:

- 1. Andrew Ng, "Machine Learning" https://www.deeplearning.ai/machine-learning-yearning/
- 2. Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press. https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
- 3. http://nptel.ac.in/courses/106106139/

B.Tech (ECE)- III-I Sem

L T P C

3 0 0 3

(20A04504a) COMPUTER ARCHITECTURE & ORGANIZATION

Course Objectives:

The purpose of the course is to introduce principles of computer organization and the basicarchitectural concepts.

Course Outcomes:

- Understand the basics of instructions sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers.

UNIT I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT II

Micro programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation. Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

Textbook:

1. Computer System Architecture – M. Moris Mano, Third Edition, Pearson/PHI.

- 1. Computer Organization Car Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

B.Tech (ECE)- III-I Sem

L T P C 3 0 0 3

(20A04504b) INFORMATION THEORY AND CODING

Course Objectives:

- To teach basic parameters of Information, concepts of source coding techniques and error control coding techniques.
- To transmit knowledge on Information theory and error control coding technique for solving problems.
- To Introduce various source coding and channel coding techniques for error detection and error correction in the information bearing signals.
- To dissimilate block to variable length coding and variable to block length codingtechniques for merits and demerits.
- To describe various systems for linear block codes and convolutional codes.

Course Outcomes:

- Describe basic parameters of Information, the concepts of source coding techniques, and Error Control coding techniques
- Apply knowledge of Information theory and error control coding techniques to solve problems
- Analyze various source coding and channel coding techniques for error detection and error correction in the information bearing signals
- Compare various block to variable length coding and variable to block length coding techniques for merits and demerits
- Design various systems for linear block codes and convolutional codes

UNIT I

Information Theory: Introduction, Definition of Entropy, Conditional Entropy, Relative Entropy, Basic Properties of Entropy, Mutual Information, Information Inequalities, Problem solving.

Block to Variable length Coding: Prefix-free Code, Coding a single Random Variable, Prefix, Free Code, Kraft Inequality, Bounds on optimal Code length, Coding a Single Random Variable, Rooted Tree with Probabilities, Shanon-Fano Coding, Free fix code, Coding an information Source, Huffman Coding, Example.

Variable to Block Length Coding: Proper message set, Assigning probabilities to K-ary rooted tree corresponding to a proper message set, Prefix free Coding of a proper message set, Tunstall message set, Tunstall coding.

UNIT II

Asymptotic Equi-partition Property, Chebyshev inequality, Weak law of large numbers, Typical Sequences, Block to Block Coding of DMS: Consequences of Asymptotic Equipartition Property, Problem solving.

Universal Source Coding: Lempel-Ziv Algorithm, LZ -77 Encoding and Decoding, Lempel- Ziv Welch (LZW) Algorithm, LZW Encoding, and Decoding.

Coding of Sources with memory, Channel Capacity, Noisy Channel Coding Theorem, Differential Entropy, Gaussian Channel, Rate Distortion Theory, Blahut-Arimoto Algorithm, problem solving.

UNIT III

Error Control Coding: Introduction to Error Control Codes, Error Probability with Repetition in the Binary Symmetric Channel, Parity Check Bit Coding for Error Detection, Block Coding for Error Detection and Correction, The Hamming Distance, The upper bound of the Probability of Error with Coding, Soft Decision Decoding, Hard Decision Decoding.

UNIT IV

Linear Block Codes, Introduction to Linear Block Codes, Syndrome and Error Detection, Encoding Block Codes, Decoding of Block Codes, Single Parity Check bit Code, Repeated Codes, Hadamard Code, Hamming Code, Cyclic Codes, Generator and Parity-Check Matrices of Cyclic Codes, Encoding and Decoding of Cyclic Codes, BCH codes, Reed-Solomon Code.

UNIT V

Convolutional Coding, Code Generation, Decoding Convolutional Code, the Code Tree, Decoding in the presence of Noise, State and Trellis Diagrams, The Viterbi Algorithm, Comparison of Error Rates in Coded and Uncoded Transmission, Turbo Codes, LDPC codes, Hard and Soft Decision Decoding.

Textbooks:

- 1. Thomas M.Cover, Joy A. Thomas, Elements of Information Theory, John Wiley & Sons, 2nd Edition, 2006.
- 2. Herbert Taub, Donald L Shilling, Goutam Saha, Principles of Communication Systems, 4th Edition, McGraw Hill, 2017.

- 1. Shu Lin, Daniel J. Costello Jr., Error Control Coding, Pearson, Second Edition, 2013.
- 2. Simon Haykin, Communication Systems, John Wiley, 4th Edition, 2010.

B.Tech (ECE)- III-I Sem

L T P C

0 0 3 1.5

(20A04502P) DIGITAL SIGNAL PROCESSING LAB

Course Outcomes:

- Implement various DSP Algorithms using software packages.
- Implement DSP algorithms with Digital Signal Processor.
- Analyze and observe magnitude and phase characteristics (Frequency response Characteristics) of digital IIR-Butterworth, Chebyshev filters.
- Analyze and observe magnitude and phase characteristics (Frequency response Characteristics) of digital FIR filters using window techniques.
- Analyze digital filters using Software Tools.

The Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors).

List of Experiments:

- 1. Generate the following standard discrete time signals.
 - i) Unit Impulse ii) Unit step iii) Ramp iv) Exponential v) Sawtooth
- 2. Generate sum of two sinusoidal signals and find the frequency response (magnitude and phase).
- 3. Implement and verify linear and circular convolution between two given signals.
- 4. Implement and verify autocorrelation for the given sequence and cross correlation between two given signals.
- 5. Compute and implement the N-point DFT of a given sequence and compute the power density spectrum of the sequence.
- 6. Implement and verify N-point DIT-FFT of a given sequence and find the frequency response (magnitude and phase).
- 7. Implement and verify N-point IFFT of a given sequence.
- 8. Design IIR Butterworth filter and compare their performances with different orders (Low Pass Filter /High Pass Filter)
- 9. Design IIR Chebyshev filter and compare their performances with different orders (Low Pass Filter /High Pass Filter).
- 10. Design FIR filter (Low Pass Filter /High Pass Filter) using windowing technique.
 - i. Using rectangular window
 - ii. Using hamming window
 - iii. Using Kaiser window
- 11. Design and verify Filter (IIR and FIR) frequency response by using Filter design and Analysis Tool.
- 12. Compute the Decimation and Interpolation for the given signal.
- 13. Real time implementation of an audio signal using a digital signal processor.
- 14. Compute the correlation coefficient for the two given audio signals of same length using a digital signal processor.

Note: Any TWELVE of the experiments are to be conducted.

References:

- 1. Digital Signal Processing: Alon V. Oppenhelm, PHI
- 2. Digital Signal processing(II-Edition): S.K. Mitra, TMH

Online Learning Resources/Virtual Labs:

1. http://vlabs.iitkgp.ac.in/dsp/#

B.Tech (ECE)- III-I Sem

L T P C

$\begin{array}{ccc} 0 & 0 & 3 & 1.5 \\ (20A04503P) & MICROPROCESSORS & AND & MICROCONTROLLERS & LAB \end{array}$

Course Objectives:

To acquire the knowledge on microprocessors and microcontrollers, interfacing various peripherals, configure and develop programs to interface peripherals/sensors.

Course Outcomes:

- Formulate problems and implement algorithms using Assembly language.
- Develop programs for different applications.
- Interface peripheral devices with 8086 and 8051.
- Use Assembly/Embedded C programming approach for solving real world problems

List of Experiments:

- 1. PROGRAMS FOR 16 BIT ARITHMETIC OPERATIONS (Using various addressing modes)
 - a) Write an ALP to Perform Addition and Subtraction of Multi precision numbers.
 - b) Write an ALP to Perform Multiplication and division of signed and unsigned Hexadecimal numbers
 - c) Write an ALP to find square, cube and factorial of a given number.
- 2. PROGRAMS INVOLVING BIT MANIPULATION INSTRUCTIONS
 - a) Write an ALP to find the given data is positive or negative.
 - b) Write an ALP to find the given data is odd or even.
 - c) Write an ALP to find Logical ones and zeros in a given data.
- 3. PROGRAMS ON ARRAYS FOR 8086
 - a) Write an ALP to find Addition/subtraction of N no's.
 - b) Write an ALP for finding largest/smallest no.
 - c) Write an ALP to sort given array in Ascending/descending order.
- 4. PROGRAM FOR STRING MANIPULATIONS FOR 8086
 - a) Write an ALP to find String length.
 - b) Write an ALP for Displaying the given String.
 - c) Write an ALP for Comparing two Strings.
 - d) Write an ALP to reverse String and Checking for palindrome.
- 5. PROGRAM FOR DIGITAL CLOCK DESIGN USING 8086
 - a) Write an ALP for Designing clock using INT 21H Interrupt.
 - b) Write an ALP for Designing clock using DOS Interrupt Functions.
 - c) Write an ALP for Designing clock by reading system time.
- 6. INTERFACING STEPPER MOTOR WITH 8086
 - a) Write an ALP to 8086 processor to Interface a stepper motor and operate it in clockwise by choosing variable step-size.
 - b) Write an ALP to 8086 processor to Interface a stepper motor and operate it in Anti-clockwise bychoosing variable step-size.
- 7. INTERFACING ADC/DAC WITH 8086
 - a) Write an ALP to 8086 processor to Interface ADC.
 - b) Write an ALP to 8086 processor to Interface DAC and generate Square Wave/Triangular Wave/Stepsignal.
- 8. COMMUNICATION BETWEEN TWO MICROPROCESSORS
 - a) Write an ALP to have Parallel communication between two microprocessors using 8255
 - b) Write an ALP to have Serial communication between two microprocessor kits using 8251.
- 9. PROGRAMS USING ARITHMETIC AND LOGICAL INSTRUCTIONS FOR 8051
 - a) Write an ALP to 8051 Microcontroller to perform Arithmetic operations like addition, subtraction,
 - b) Multiplication and Division.
 - c) Write an ALP to 8051 Microcontroller to perform Logical operations like AND, OR and XOR.
 - d) Programs related to Register Banks.
- 10. PROGRAM TO VERIFY TIMERS/COUNTERS OF 8051

- a) Write a program to create a delay of 25msec using Timer0 in mode 1 and blink all the Pins of P0.
- b) Write a program to create a delay of 50 µsec using Timer1 in mode 0 and blink all the Pins of P2.
- c) Write a program to create a delay of 75msec using counter0 in mode 2 and blink all the Pins of P1.
- d) Write a program to create a delay of 80 µsec using counter1 in mode 1 and blink all the Pins of P3.

11. UART OPERATION IN 8051

- a) Write a program to transfer a character serially with a baud rate of 9600 using UART.
- b) Write a program to transfer a character serially with a baud rate of 4800 using UART.
- c) Write a program to transfer a character serially with a baud rate of 2400 using UART.

12. INTERFACING LCD WITH 8051

- a) Develop and execute the program to interface 16*2 LCD to 8051.
- b) Develop and execute the program to interface LCD to 8051 in 4-bit or 8-bit mode.

Reference Books:

- 1. Kenneth.J.Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010.
- 2. Advanced microprocessors and peripherals-A.K ray and K.M.Bhurchandani, TMH, 2nd edition2006.
- 3. The 8051 Microcontroller and Embedded Systems: Using Assembly and C by Muhammad AliMazidi, Janice GillispieMazidi, Second Edition.

Note: Any TEN of the experiments are to be conducted.

B.Tech (ECE)- III-I Sem

L T P C 1 0 2 2

(20A04509) PCB DESIGN AND PROTOTYPE DEVELOPMENT (Skill Oriented Course – III)

Course Objectives:

This course will teach teams of students how to design and fabricate PCB for prototyping as well as in Industrial Production environment. This will help students to innovate faster with electronics technology.

Course Outcomes:

- Understand a single layer and multilayer PCB
- Create and fabricate a PCB
- Evaluate and test a PCB

UNIT I

Fundamental of basic electronics: Component identification, Component symbols & their footprints, understand schematic, Creating new PCB, Browsing footprints libraries, Setting up the PCB layers, Design rule checking, Track width selection, Component selection, Routing and completion of the design

UNIT II

Introduction to PCB: Definition and Need/Relevance of PCB, Background and History of PCB, Types of PCB, Classes of PCB Design, Terminology in PCB Design, Different Electronic design automation (EDA)tools and comparison.

UNIT III

PCB Design Process: PCB Design Flow, Placement and routing, Steps involved in layout design, Artwork generation Methods - manual and CAD, General design factors for digital and analogue circuits, Layout and Artwork making for Single-side, double-side and Multilayer Boards, Design for manufacturability, Design-specification standards

Practice Exercises: Any twelve experiments are to be done

- 1. Practice following PCB Design steps
 - SchematicDesign:FamiliarizationoftheSchematicEditor,Schematiccreation,Annotation, Netlist generation.
 - LayoutDesign:FamiliarizationofFootprintEditor,Mappingofcomponents,Creationof PCB layout Schematic.
 - Create new schematic components.
 - Create new component footprints.
- 2. Regulator circuit using 7805
- 3. Inverting Amplifier or Summing Amplifier using op-amp
- 4. Full-wave Rectifier
- 5. Astable multivibrator using IC555
- 6. Monostable multivibrator using IC555
- 7. RCPhase-shiftorWein-bridgeOscillatorusingtransistor.
- 8. Full-Adder using half-adders.
- 9. 4-bit binary /MOD N counter using D-Flip flops.
- 10. One open-ended (analog/ digital/mixed circuit) experiments of similar nature andmagnitude to the above are to be assigned by the teacher
 - (Student is expected to solve and execute/simulate independently).
- 11. Design an 8051 Development board havingPowersectionconsistingofIC7805,capacitor,resistor,headers,LED.
- 12. Design an 8051 Development board having Serial communication section consisting of MAX 232, Capacitors, DB9connector, Jumper, LEDs
- 13. Design an 8051 Development board having Reset&Input/outputsectionsconsistingof89C51Microcontroller,ElectrolyticCapacitor,Resistor,Jumper,CrystalOsci llator,Capacitors
- 14. Fabricate a single-sided PCB, mount the components and assemble them in acabinet for any one of the circuits mentioned in the above exercises.

References:

1. Jon Varteresian, Fabricating Printed Circuit Boards, Newnes, 2002

- 2. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill 2001
- 3. C. Robertson. PCB Designer's Reference. Prentice Hall, 2003
- 4. Open-source EDA Tool KiCad Tutorial: http://kicad-pcb.org/help/tutorials/ 13. PCB Fabrication user guide page:

http://www.wikihow.com/Create-Printed-Circuit-Boards

http://www.siongboon.com/projects/2005-09-07_home_pcb_fabrication/

http://reprap.org/wiki/MakePCBInstructions#Making PCBs_yourself

 $PCB \quad Fabrication \quad at \quad home(video): \quad https://www.youtube.com/watch?v=mv7Y0A9YeUc, \\ https://www.youtube.com/watch?v=imQTCW1yWkg$

B.Tech. R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-I Sem L T P C 3 0 0 0

(20A99201) ENVIRONMENTAL SCIENCE

(Common to All Branches of Engineering)

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

UNIT - I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources — Natural resources and associated problems — Forest resources — Use and over — exploitation, deforestation, case studies — Timber extraction — Mining, dams and other effects on forest and tribal people — Water resources — Use and over utilization of surface and ground water — Floods, drought, conflicts over water, dams — benefits and problems — Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies — Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. — Energy resources:

Learning outcomes:

At the end of this unit, the students will be able to

- To know the importance of public awareness
- To know about the various resources

UNIT - II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about various echo systems and their characteristics
- To know about the biodiversity and its conservation

UNIT - III

Environmental Pollution: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the various sources of pollution.
- To know about the various sources of solid waste and preventive measures.
- To know about the different types of disasters and their managerial measures.

UNIT - IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the social issues related to environment and their protection acts.
- To know about the various sources of conservation of natural resources.
- To know about the wild life protection and forest conservation acts.

UNIT - V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds — river, hill slopes, etc..

Learning outcomes:

At the end of this unit, the students will be able to

- To know about the population explosion and family welfare programmes.
- To identify the natural assets and related case studies.

TEXT BOOKS:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

REFERENCES:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

Course Outcomes:

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

B.Tech (ECE)– III-II Sem

L T P C

3 0 0 3

(20A04601T)ANTENNAS&MICROWAVE ENGINEERING

Course Objectives:

- To enable the student to understand the basic principles in antenna and microwave system design
- To make the student to acquire knowledge in the area of various antenna designs.
- To enhance the student knowledge in the area of microwave components and antenna for practical applications.

Course Outcomes: At the end of this course, the students will be able to

- Learn about the antenna's basics and wire antennas.
- Gain knowledge on few types of antennas, their operation and applications.
- Understand the uses of antenna arrays and analyze waveguides and resonators
- Analyze various microwave components and understand the principles of different microwave sources.
- Gain knowledge on microwave semiconductor devices and microwave measurements.

UNIT I

Antenna Basics & Wire Antennas: Definition of antenna, Radiation Mechanism – single wire, two wire, dipoles, Antenna Parameters - Radiation Patterns, Main Lobe and Side Lobes, Beam widths, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Aperture Efficiency, Effective Height and length, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field Components, Radiated power, Radiation Resistance, Loop Antennas - Introduction, Small Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements - Yagi - Uda Arrays, Folded Dipoles & their characteristics

UNIT II

VHF, UHF and Microwave Antennas: Helical Antennas-Helical Geometry, Helix modes, Horn Antennas-Types, Fermat's Principle, Optimum Horns, Design considerations of Pyramidal Horns, Micro strip Antennas-Introduction, features, advantages and limitations, Rectangular patch antennas- Geometry and parameters, characteristics of Micro strip antennas, reflector antennas - Introduction, corner reflectors, parabola reflectors-geometry, pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications

UNIT III

Antenna Arrays and propagation: Arrays of 2 Isotropic sources- Different cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, End fire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, Bionomial Arrays, Different modes of wave propagation, Ground wave propagation Space wave propagation - Sky wave propagation (Qualitative treatment).

Waveguides: Introduction, Rectangular waveguides, Field expressions for TE and TM modes, Wave propagation in the guide, Phase and group velocities, Power transmission and attenuation, Waveguide current and mode excitation, Circular waveguide – TE and TM modes, Wave propagation, waveguide resonators.

UNIT IV

Passive Microwave Devices: Introduction to scattering parameters and their properties, Terminations, Variable short circuit, Attenuators, Phase shifters, Hybrid Tees (H-plane, E-plane, Magic Tees), Hybrid ring, Directional Couplers – Bethe hole and Two hole Couplers, Microwave propagation in Ferrites, Microwave devices employing Faraday rotation – Isolator, Circulator, Deriving Scattering matrix for Microwave passive devices.

Microwave Amplifiers and Oscillators: Microwave Tubes: Linear Beam Tubes – Two cavity Klystron amplifier -velocity modulation, bunching process, output power, Reflex Klystron oscillator, power output and efficiency, Travelling Wave Tube (TWT) – Bunching process and amplification process (Qualitative treatment only). Crossed Field Tubes – Magnetron oscillator, pi-mode operation, power output and efficiency, Hartree Condition.

UNIT V

Microwave Semiconductor Devices: Gunn Oscillator – Principle of operation, Characteristics, Two valley model, IMPATT, TRAPATT diodes.

Antennas and Microwave Measurements: Sources of errors, Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by comparison, Absolute and 3-Antenna Methods). Description of Microwave bench-different blocks and their features, errors and precautions, Microwave power measurements, Measurement of attenuation, frequency, VSWR (low, medium, high), Measurement of 'Q' of a cavity, Impedance measurements.

Textbooks:

- 1. John D. Kraus, Ronald J. Marhefka and Ahmad S.Khan, "Antennas and Wave propagation", TMH, New Delhi, 4th Ed., 2010.
- 2. Samuel Y. Liao, "Microwave devices and circuits", 3rd Edition, Pearson Publishing, 2003.

- 1. R. E. Collin, "Foundations for microwave engineering", 2nd Edition, John Wiley, 2002.
- 2. C.A. Balanis, "Antenna Theory- Analysis and Design", John Wiley & Sons, 2nd Edn., 2001.
- 3. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications, 4th edition 2009.
- 4. G.S.N Raju, "Antenna and Wave Propagation", Pearson Education India, 3rd Edition 2009.

B.Tech (ECE)– III-II Sem

L T P C
3 0 0 3

(20A04602T)VLSI DESIGN

Course Objectives:

- To give exposure to different steps involved in fabrication of ICs using MOS transistor, CMOS/BICOM transistors and passive components.
- To provide knowledge on electrical properties of MOS &BICMOS devices to analyze the behavior of inverters designed with various loads.
- To provide concepts to design building blocks of data path of any system using gates.
- To teach about basic programmable logic devices and testing of CMOS circuits.

Course Outcomes:

- Acquire qualitative knowledge about the fabrication process of integrated circuit using MOS transistors,
- Draw the layout of any logic circuit which helps to understand and estimate parasitic of any logic circuit
- Design building blocks of data path using gates.
- Design simple memories using MOS transistors and can understand design of large memories
- Understand the concept of testing and adding extra hardware to improve testability of system

UNIT I

Introduction: Brief Introduction to IC technology MOS, PMOS, NMOS, CMOS &BiCMOS Technologies Basic Electrical Properties of MOS and BiCMOS Circuits: I_{DS} - V_{DS} relationships, MOS transistor Threshold Voltage- V_T , figure of merit- ω_0 , Transconductance - g_m , g_{ds} ; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, Lambda(λ)-based design rules for wires, contacts and Transistors, Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT III

Gate level Design: Logic gates and other complex gates, Switch logic, Alternate gate circuits. Basic Circuit Concepts: Sheet Resistance Rs and its concepts to MOS, Area Capacitances calculations, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fan-out

UNIT IV

Subsystem Design: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters. VLSI Design styles: Full-custom, Standard Cells, Gate-arrays, FPGAs, CPLDs and Design Approach for Full-custom and Semi-custom devices, parameters influencing low power design.

UNIT V

CMOS Testing: Need for testing, Design for testability - built in self-test (BIST) – testing combinational logic – testing sequential logic – practical design for test guide lines – scan design techniques.

Textbooks:

- 1. Essentials of VLSI Circuits and Systems, Kamran Eshraghian, EshraghianDougles, A. Pucknell, 2005, PHI
- 2. Modern VLSI Design Wayne Wolf, 3 Ed., 1997, Pearson Education.

- 1. CMOS VLSI Design-A Circuits and Systems Perspective, Neil H.E Weste, David Harris, Ayan Banerjee, 3rd Edn, Pearson, 2009.
- 2. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2003.
- 3. Jan M. Rabaey, "Digital Integrated Circuits", AnanthaChandrakasan and Borivoje Nikolic, Prentice-Hall of India Pvt.Ltd, 2nd edition, 2009.

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(20A04603T) COMMUNICATION NETWORKS

Course Objectives:

To provide a solid conceptual understanding of the fundamentals of data communications and computer networks.

Course Outcomes:

- Understand the basics of data communication, networking, internet and their importance.
- Analyze the services and features of various protocol layers in data networks.
- Differentiate wired and wireless computer networks
- Analyse TCP/IP and their protocols.
- Recognize the different internet devices and their functions.

UNIT I

Data Communications: Components, protocols and standards, Network and Protocol Architecture, Reference Model ISO-OSI, TCP/IP-Overview, topology, transmission mode, digital signals, digital to digital encoding, digital data transmission, DTE-DCE interface, interface standards, modems, cable modem, transmission media guided and unguided, transmission impairment, Performance, wavelength and Shannon capacity. Review of Error Detection and Correction codes. Switching: Circuit switching (space-division, time division and space-time division), packet switching (virtual circuit and Datagram approach), message switching.

IINITII

Data Link Layer: Design issues, Data Link Control and Protocols: Flow and Error Control, Stop-and-waitARQ. Sliding window protocol, Go-Back-N ARQ, Selective Repeat ARQ, HDLC, Point-to-Point Access: PPPPoint – to-Point Protocol, PPP Stack

UNIT III

Medium Access Sub layer: Channel allocation problem, Controlled Access, Channelization, multiple access protocols, IEEE standard 802.3 & 802.11 for LANS and WLAN, high-speed LANs, Token ring, Token Bus, FDDI based LAN, Network Devices-repeaters, hubs, switches bridges.

UNITIV

Network Layer: Design issues, Routing algorithms, Congestion control algorithms, Host to Host Delivery: Internetworking, addressing and routing, IP addressing (class full & Classless), Subnet, Network Layer Protocols: ARP, IPV4, ICMP, IPV6 ad ICMPV6.

UNIT V

Transport Layer: Process to Process Delivery: UDP; TCP, congestion control and Quality of service.

Application Layer: Client Server Model, Socket Interface, Domain Name System (DNS): Electronic Mail(SMTP), file transfer (FTP), HTTP and WWW.

Textbooks:

- 1. S. Tannenbum, D. Wetherall, —Computer Networks, Prentice Hall, Pearson, 5thEd
- 2. Behrouz A. Forouzan, —Data Communications and Networking, Tata McGraw-Hill, 4th Ed

- 1. Fred Halsall, —Computer Networksl, Addison Wesley Pub. Co. 1996.
- 2. Larry L, Peterson and Bruce S. Davie, —Computer Networks: A system Approachl, Elsevier, 4thEd
- 3. Tomasi, —Introduction To Data Communications & Networking, Pearson 7th impression 2011
- 4. William Stallings, —Data and Computer Communications, Prentice Hall, Imprint of Pearson, 9thEd.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 3 0 0 3

(20A04604a) ELECTRONIC MEASUREMENTS AND INSTRUMENTATION (Professional Elective Course- II)

Course Objectives:

The objective of the course is to introduce the fundamentals of Electronics Instruments and Measurement providing an in-depth understanding of Measurement errors, Bridge measurements, Digital Storage Oscilloscope, Function Generator and Analyzer, Display devices, Data acquisition systems and transducers.

Course Outcomes:

- Explain operation of various instruments required in measurements
- Apply measurement techniques for different types of tests
- Select specific instruments for specific measurement function
- Use oscilloscope to determine frequency and phase of a sinusoidal signal
- Compare different types of bridge circuits
- Analyze various measuring techniques for both electrical and nonelectrical quantities

UNIT 1

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters, AC voltmeters Thermocouple type RF ammeter, ohm meters, series type, shunt type, multi meter for voltage, current and resistance measurements.

UNIT II

Oscilloscopes: Standard specifications of CRO,CRT features, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive, and attenuator type, dual trace/beam CRO, Principles of sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

UNIT III

Signal Generators and Analyzers: Fixed and variable frequency AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach); Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

UNIT IV

Bridges: Wheatstone bridge, We in Bridge, errors and precautions in using bridges, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance- Schearing Bridge, Kelvin Bridge, Q-meter, EMI and EMC, Interference and noise reduction techniques.

UNIT V

Sensors and Transducers: Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples, and thermistors), Velocity, Acceleration, Vibration, pH measurement.

Textbooks:

1. H.S.Kalsi, Electronic Instrumentation, 3rdedition, McGraw Hill Education, 2017.

- 1. D. Helfrick, W.D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, 1st edition, Pearson Education India, 2015
- 2. David A. Bell, Electronic Instrumentation and Measurements, Oxford Univ. Press, 2007
- 3. B.M. Oliver, J.M. Cage, Electronic Measurements and Instrumentation, TMH Reprint 2009.
- 4. Ernest O. Doebelin and Dhanesh N Manik, Measurement Systems, 6th Ed., TMH,2010.

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(20A04604b) EMBEDDED SYSTEM DESIGN (Professional Elective Course- II)

Course Objectives:

- To teach the basics of an embedded system and RTOS.
- To introduce the typical components of an embedded system & different communication interfaces.
- To provide knowledge on the design process of embedded system applications

Course Outcomes:

- Identify hardware and software components of an embedded system
- Learn the basics of OS and RTOS
- Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment
- Design simple embedded system-based applications

UNITI INTRODUCTION TO EMBEDDED SYSTEMS

History of embedded systems, Classification of embedded systems based on generation and complexity, Purpose of embedded systems, The embedded system design process-requirements, specification, architecture design, designing hardware and software, components, system integration, Applications of embedded systems, and characteristics of embedded systems.

UNITH TYPICAL EMBEDDED SYSTEM

Core of the embedded system-general purpose and domain specific processors, ASICs, PLDs, COTs; Memory-ROM, RAM, memory according to the type of interface, memory shadowing, memory selection for embedded systems, Sensors, actuators, I/O components: seven segment LED, relay, piezo buzzer, push button switch, other sub-systems: reset circuit, brownout protection circuit, oscillator circuit real time clock, watch dog timer.

UNITHI COMMUNICATION INTERFACE

Onboard communication interfaces-I2C, SPI, CAN, parallel interface; External communication interfaces-RS232 and RS485, USB, infrared, Bluetooth, Wi-Fi, ZigBee, GPRS, GSM.

UNITIV EMBEDDED FIRMWARE DESIGN AND DEVELOPMENT

Embedded firmware design approaches-super loop based approach, operating system based approach; embedded firmware development languages-assembly language based development, high level language based development.

UNITY RTOS BASED EMBEDDED SYSTEM DESIGN

Operating system basics, types of operating systems, tasks, process and threads, multiprocessing and multitasking, task scheduling: non-pre-emptive and pre-emptive scheduling; task communication-shared memory, message passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques

Textbooks:

- 1. Introduction to Embedded Systems Shibu KV, Mc Graw Hill Education.
- 2. Computers as Components Wayne Wolf, Morgan Kaufmann (second edition).

- 1. Embedded System Design -frank vahid, tony grivargis, john Wiley.
- 2. Embedded Systems- An integrated approach Lyla b das, Pearson education 2012.
- 3. Embedded Systems Raj Kamal, TMH

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(20A04604c) OPTICAL COMMUNICATIONS (Professional Elective Course- II)

Course Objectives:

- To understand the construction and characteristics of optical fibre cable.
- To develop the knowledge of optical signal sources and power launching.
- To identify and understand the operation of various optical detectors.
- To understand the design of optical systems and WDM.

Course Outcomes:

At the end of the course, the student will be able to:

- Understand and analyze the constructional parameters of optical fibres.
- Estimate the losses due to attenuation, absorption, scattering and bending.
- Compare various optical detectors and choose suitable one for different applications.

UNIT I

Overview of Optical Fiber Communication: - Historical development, The general system, Advantages of Optical Fiber Communications, Optical Fiber Wave Guides- Introduction, Ray Theory Transmission, Total Internal Reflection, Acceptance Angle, Numerical Aperture, Skew Rays, Cylindrical Fibers- Modes, V number, Mode Coupling, Step Index Fibers, Graded Index Fibers. Single Mode Fibers- Cut Off Wavelength, Mode Field Diameter, Effective Refractive Index, Fiber Materials Glass, Halide, Active Glass, Chalgenide Glass, Plastic Optical Fibers.

UNIT II

Signal Distortion in Optical Fibers: Attenuation, Absorption, Scattering and Bending Losses, Core and Cladding Losses, Information Capacity Determination, Group Delay, Types of Dispersion - Material Dispersion, Wave-Guide Dispersion, Polarization Mode Dispersion, Intermodal Dispersion, Pulse Broadening, Optical Fiber Connectors- Connector Types, Single Mode Fiber Connectors, Connector Return Loss.

UNIT III

Fiber Splicing: Splicing Techniques, Splicing Single Mode Fibers, Fiber Alignment and Joint Loss-Multimode Fiber Joints, Single Mode Fiber Joints. Optical Sources- LEDs, Structures, Materials, Quantum Efficiency, Power, Modulation, Power Bandwidth Product, Injection Laser Diodes- Modes, Threshold Conditions, External Quantum Efficiency, Laser Diode Rate Equations, Resonant Frequencies, Reliability of LED & ILD.

UNIT IV

Optical Detectors: Physical Principles of PIN and APD, Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors, Optical Receiver Operation- Fundamental Receiver Operation, Digital Signal Transmission, Error Sources, Receiver Configuration, Digital Receiver Performance, Probability of Error, Quantum Limit, Analog Receivers.

UNIT V

Optical System Design: Considerations, Component Choice, Multiplexing, Point-to- Point Links, System Considerations, Link Power Budget with Examples, Overall Fiber Dispersion in Multi-Mode and Single Mode Fibers, Rise Time Budget with Examples. Transmission Distance, Line Coding in Optical Links, WDM, Necessity, Principles, Types of WDM, Measurement of Attenuation and Dispersion, Eye Pattern.

Textbooks:

- 1. Optical Fiber Communications Gerd Keiser, MC GRAW HILL EDUCATION, 4th Edition, 2008.
- 2. Optical Fiber Communications John M. Senior, Pearson Education, 3rd Edition, 2009.

- 1. Fiber Optic Communications D.K. Mynbaev , S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
- 2. Text Book on Optical Fibre Communication and its Applications S.C.Gupta, PHI, 2005.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Edition, 2004.
- 4. Introduction to Fiber Optics by Donald J.Sterling Jr. Cengage learning, 2004.

B.Tech (ECE)- III-II Sem

L T P C 0 0 3 1.5

(20A04601P) ANTENNAS &MICROWAVE ENGINEERING LAB

Course Objectives:

- To understand the working, different microwave components and verify characteristics using microwave bench setup.
- To study various antennas

Course Outcomes:

At the end of this course, the students will be able to

- Understand the working, different microwave components and sources in a microwave bench
- Verify the characteristics of various microwave components using microwave bench setup
- Design and study of various antennas
- Analyze performance characteristics of Antennas

Part-A Antennas Lab

- 1. To analyze the characteristics of Simple Dipole $\lambda/2$ and $\lambda/4$ Antenna
- 2. To analyze the variation in the Radiation Strength at given distance from Antenna
- 3. To analyze the Reciprocity Theorem for Antennas
- 4. To study Folded Dipole λ /2 Antenna
- 5. Study of Yagi Uda 3 element Folded Dipole, 5 element folded dipole.
- 6. To analyze the characteristics of micro strip antennas
- 7. To analyze the characteristics and radiation pattern of broad side and end fire arrays.

Part-B Microwave Engineering lab

- 1. Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- 3. Directional Coupler Characteristics.
- 4. VSWR Measurement.
- 5. Measurement of Wave Guide Parameters.
- 6. Measurement of Impedance of a given load.
- 7. Measurement of Scattering Parameters of a Magic Tee.
- 8. Measurement of Scattering Parameters of a Circulator.
- 9. Attenuation Measurement.
- 10. Microwave Frequency Measurement

NOTE: At least 5 Experiments from each section must be done in the semester.

B.Tech (ECE)- III-II Sem

L T P C 0 0 3 1.5

(20A04602P) VLSI DESIGN LAB

Course Outcomes:

- Design any logic circuit using CMOS transistor.
- Use different software tools for analysis of circuits.
- Design layouts to the CMOS circuits.
- Use different software tools for analog layout

List of Experiments:

- 1. Design and analysis of CMOS Inverter
 - a) Implement CMOS inverter schematic using 180 nm technology and design its symbol.
 - b) Implement test bench for CMOS Inverter and check its output response.
 - c) Perform DC and AC analysis for CMOS inverter.
 - d) Check the performance of CMOS inverter using parametric sweep.
- 2. Design and analysis of NAND and NOR Logic gates
 - a) Implement NAND/NOR schematic using 180 nm technology and design its symbol.
 - b) Implement test bench for NAND/NOR and check its output response.
 - c) Perform DC and AC analysis for NAND/NOR.
 - d) Check the performance of NAND/NOR using parametric sweep.
- 3. Design and analysis of XOR and XNOR Logic gates
 - a) Implement XOR/XNOR schematic using 180 nm technology and design its symbol.
 - b) Implement test bench for XOR/XNOR and check its output response.
 - c) Perform DC and AC analysis for XOR/XNOR.
 - d) Check the performance of XOR/XNOR using parametric sweep.
- 4. Design of AOI logic
 - a) Design Schematic for AB+C'D and check its output response.
 - b) Design Schematic for AB'+C'D and check its output response.
 - c) Design Schematic for (A+B')(C+D) and check its output response.
 - d) Design Schematic for (A+B')(C'+D) and check its output response.
- 5. Design and analysis of Full adder
 - a) Design full adder using Full custom IC design.
 - b) Design full adder using Semi custom IC design.
- **6.** Analysis of NMOS and PMOS characteristics
 - a) Implement test bench for NMOS/PMOS transistor.
 - b) Perform DC and AC analysis for NMOS/PMOS transistor
 - c) Check the performance of NMOS/PMOS transistor using parametric sweep.
- 7. Design and analysis of Common source amplifier
 - a) Implement CS amplifier schematic using 180 nm technology and design its symbol.
 - b) Implement test bench for CS amplifier and check its output response.
 - c) Perform DC and AC analysis for CS amplifier.
 - d) Check the performance of CS amplifier using parametric sweep.
- **8.** Design and analysis of Common drain amplifier
 - a) Implement CD amplifier schematic using 180 nm technology and design its symbol.
 - b) Implement test bench for CD amplifier and check its output response.
 - c) Perform DC and AC analysis for CD amplifier.
 - d) Check the performance of CD amplifier using parametric sweep.
- **9.** Design of MOS differential amplifier
 - a) Design differential amplifier schematic using 180 nm technology and its symbol.
 - b) Implement test bench for differential amplifier and check its output response.
 - c) Perform DC and AC analysis for differential amplifier.
 - d) Check the performance of differential amplifier using parametric sweep.

- **10.** Design of two stage differential amplifier
 - a) Design two stage differential amplifier schematic using 180 nm technology and its symbol. b) Implement test bench for two stage differential amplifier and check its output response.
 - c) Perform DC and AC analysis for two stage differential amplifier.
 - d) Check the performance of two stage differential amplifier using parametric sweep.
- 11. Design of Inverter Layout
 - a) Design and implement inverter schematic.
 - b) Design the layout for inverter using 180 nm tech file.
 - c) Perform LVS for schematic and layout
 - d) Check and remove all DRC violations.
 - e) Extract parasitic R and C in layout.
- 12. Design of NAND/NOR Layout
 - a) Design and implement NAND/NOR schematic.
 - b) Design the layout for inverter using 180 nm tech file.
 - c) Perform LVS for schematic and layout
 - d) Check and remove all DRC violations.
 - e) Extract parasitic R and C in layout

Note: Any TEN of the experiments are to be conducted

The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the experiments with the Industry standard EDA Tools.

Software Required: i. Mentor Graphics/ Synopsis/ Cadence / Equivalent Industry Standard Software. ii. Personal computer system with necessary software to run the programs and to implement.

B.Tech (ECE)- III-II Sem

L T P C 0 0 3 1.5

(20A04603P) COMMUNICATION NETWORKS LAB

Course Objectives:

To introduce Computer Network laboratory and familiarize with the tools by simulating various aspects of networking.

Course Outcomes:

- Familiarize with the network simulation tools
- Usage of the network simulators to study the various aspects that effect network performance

List of Experiments:

Introduction to Computer Network laboratory

Introduction to Discrete Event Simulation

Discrete Event Simulation Tools - ns2/ns3, Omnet++

Usage of the tool ns2/ns3 to:

- 1. Simulate telnet and ftp between N sources N sinks (N = 1, 2, 3). Evaluate the effect of increasing data rate on congestion.
- 2. Simulating the effect of queueing disciplines on network performance Random Early Detection/Weighted RED / Adaptive RED (This can be used as a lead up to DiffServ / IntServ later).
- 3. Simulate http, ftp and DBMS access in networks
- 4. Effect of VLAN on network performance –i) multiple VLANs and single router ii) multiple VLANs with separate multiple routers
- 5. Implementation of IP address configuration.
- 6. To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- 7. Implementation of a routing algorithm
- 8. Simulation of Congestion Control Algorithms
- 9. Simulating the effect of DiffServ / IntServ in routers on throughput enhancement.
- 10. Simulating the performance of wireless networks
- 11. Case Study I: Evaluating the effect of Network Components on Network Performance To Design and Implement LAN With Various Topologies and To Evaluate Network Performance Parameters for DBMS etc)
- 12. Case Study II: Evaluating the effect of Network Components on Network Performance To Design and Implement LAN Using Switch/Hub/Router As Interconnecting Devices For Two Different LANs and To Evaluate Network Performance Parameters.

NOTE: At least 10 Experiments out of the list must be done in the semester.

B.Tech (ECE)- III-II Sem

L T P C 1 0 2 2

(20A04607) RF SYSTEM DESIGN Skill Oriented Course – IV

Course Objectives:

To be well-versed in functionalities of basic RF electronics utilized in the industry

Course Outcomes: After the completion of this course, students will be able to

- Verify the basic principles and design aspects involved in high frequency communication systems components
- Conduct the experiments on different high frequency components to analyze and interpret data to produce meaningful conclusion and match with theoretical concepts.
- Design and develop RF components using microstrip technology
- Apply knowledge of basic RF Electronics for realizing any RF system.

UNIT I

Basic Concepts in RF Design: Introduce any RF design software and orient students with the tools of the laboratory. Practice the tool to use it for significant design.Introduction to RF Design, Time Variance and Nonlinearity, Effects of nonlinearity, Passive impedance transformation, Scattering parameters, impedance matching, L match, Pi match, Passive IC Components- Resistors, capacitors Inductors, Schottky Diode, RF Switch.

UNIT II

RF Power Amplifiers and Filters: RF Power amplifier design examples, Gain equalizers, Voltage controlled oscillators, Phase locked loops, Linearized PLL models, PLL design examples, High frequency oscillators, Loop filters, lumped filter. LPF, HPF and BPF.

UNIT III

LNA, VCO and Mixers: General considerations, Problem of input matching, Low Noise Amplifiers design in various topologies, Gain Switching, Band Switching, Voltage Controlled Oscillators, Mixers-General considerations, Passive down conversion mixers, Active down conversion mixers, Up conversion mixers.

UNIT IV

Microstrip transmission lines and discontinuities: S parameters of a Microstrip Transmission Line, Smith Chart, Analysis of Microstrip Transmission Line standing wave patterns at various frequencies, Different types of Transmission lines like CPW, Microstrip and Co-axial cable. Different types of Microstrip discontinuities like Bend, T, Via, Gap etc., Microstrip Ring Resonator.

List of Experiments

(ADS/IE3D/HFSS or any similar/ equivalent tool may be used for the design)

- 1. Design of $\lambda/2$, $\lambda/4$ micro strip transmission line.
- 2. Design of microstrip inductor and capacitor
- 3. Design of impedance matching network
- 4. Design and Simulate a Schottky Diode and RF Switch.
- 5. Design and characterization of RF BJT Amplifier and LNA
- 6. Analyse and measure the gain of a Power Amplifier and equalise its gain using an Equalizer.
- 7. Design of low pass, high pass, band pass and band stop filter at RF
- 8. Design and characterization of RF Mixer
- 9. Design and characterization of VCO
- 10. Measure the S parameters of a Micro strip Transmission Line and plot the normalised impedance on a smith chart
- 11. Analysis of Microstrip Transmission Line standing wave pattern at various frequencies.
- 12. Study of different types of Transmission lines like CPW, Microstrip and Co-axial and find/measure its Insertion Loss (S21 and S12)
- 13. Study of different types of Microstrip discontinuities like Bend, T, Via, Gap etc and find/measure its Insertion loss.

- 14. Design and characterization of micro strip patch antennas
- 15. Determine the Bandwidth and Quality Factor of a Microstrip Ring Resonator.

NOTE: Any TWELVE experiments are to be conducted

- 1. T.Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004
- 2. Reinhold Ludwig and PavelBretchko, "RF circuit design," Pearson Education, 2007.
- 3. B.Razavi, "RF Microelectronics", Pearson Education, 2012

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– III-II Sem L T P C 2 0 0 0

(20A99601) INTELLECTUAL PROPERTY RIGHTS AND PATENTS (Mandatory Non-Credit Course)

Course Objectives:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws, Cyber Laws, Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations

Course Outcomes:

- Understand IPR law& Cyber law
- Discuss registration process, maintenance and litigations associated with trademarks
- Illustrate the copy right law
- Enumerate the trade secret law.

UNIT I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics – Types of Intellectual Property – Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement – Regulatory – Overuse or Misuse of Intellectual Property Rights – Compliance and Liability Issues.

UNIT II

Introduction to Copyrights – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

UNIT III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

UNIT IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

UNIT V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law.Introduction to Cyber Law – Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

Textbooks:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections

- 1. Prabhuddha Ganguli: 'Intellectual Property Rights' Tata Mc-Graw Hill, New Delhi
- 2. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- 4. M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub.

B.Tech (ECE)- IV-I Sem

L T P C 3 0 0 3

(20A04701a) DSP PROCESSORS & ARCHITECTURES (Professional Elective Course –III)

Course Objectives:

- To describe unique features of Digital signal processing.
- To demonstrate various computational parameters of DSP devices.
- To introduce architectural improvements in programmable DSP devices.
- To expose to basic DSP algorithms.
- To outline DSP processors for developing various applications.

Course Outcomes:

- Summarize features of Digital Signal Processing
- Evaluate dynamic ranges and precision for the given DSP system
- Explain architectural features of DSP processors
- Analyze performance of DSP algorithms on programmable DSP platform for given application
- Select DSP processors for building real time applications

UNIT I

Introduction to Digital Signal Processing: A Digital signal processing system, the sampling process, Discrete time sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time invariant systems, Digital filters, Decimation and interpolation.

UNIT II

Computational Accuracy in DSP Implementations: Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of Error in DSP Implementation, A/D Conversion Errors, D/A Conversion Errors

UNIT III

Architecture for Programmable DSP Devices: DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Programmability and Program Execution, Speed Issues, Commercial Digital Signal Processing Devices, Data Addressing Modes of TMS320C54xx Processors, Memory space of TMS320C54xx Processors, TMS320C54xx Instructions and Programs

UNIT IV

Implementation of Basic DSP Algorithms: The Q-notation, FIR Filters, IIR Filters, Interpolation Filters, PID Controller, Adaptive Filters, 2-D Signal Processing, An FFT Algorithm for DFT Computation, A Butterfly Computation, Bit Reversed Index Generation, 4-point FFT Implementation on the TMS320C54xx, Computation of the Signal Spectrum .

UNIT V

Applications of Programmable DSP Devices: A DSP System, DSP Based Biotelemetry Receiver, A Speech Processing System, An Image Processing System.

Textbooks:

- 1. B. Venkataramani and M. Bhaskar, Digital Signal Processors, Architecture, Programming and Applications, TMH, 2002.
- 2. Avtar Singh and S. Srinivasan, Digital Signal Processing, Thomson Publications, 2004.

- 1. J.G.Proakis, Algorithms for Statistical Signal Processing, Pearson, 2002.
- 2. Jonatham Stein, Digital Signal Processing, John Wiley, 2005.
- 3. K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, A Practical Approach to Digital Signal Processing. New Age International, 2006/2009
- 4. Lapsley et al., DSP Processor Fundamentals Architectures & Features, S. Chand & Co., 2000

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C

3 0 0 3

(20A04701b) INTRODUCTION TO INTERNET OF THINGS (Professional Elective Course –III)

Course Objectives:

Students will understand the concepts of Internet of Things and can able to build IoT applications.

Course Outcomes:

- Understand the concepts of Internet of Things
- Identify hardware and software components of Internet of Things
- Analyze basic communication protocols
- Design IoT applications in different domain and be able to analyze their performance

UNIT 1

Introduction to IoT: Architectural overview, Design principles and needed capabilities, IoT Applications, Sensing, Actuation, Basics of Networking, M2M and IoT Technology Fundamentals-Devices and gateways, Data management, Business processes in IoT, Role of cloud in IoT

UNIT II

Elements of IoT:Hardware components – computing (Arduino, Raspberry Pi), communication, Sensing, Actuation, I/O interfaces Software Components- Programming APIs (Using python/Arduino) for communication protocols-MQTT, Zigbee, Bluetooth, CoAP, UDP, TCP

UNIT III

Sensing and Actuation: Definition of Sensor, Sensor features, Resolution, Classes, Different types of sensors, Actuator, Different types of Actuators, purpose of Sensors and Actuators in IoT

UNIT IV

IoT Application Development: Solution frame work for IoT Applications-Implementation of Device integration, Data acquisition and Integration, Device data storage on cloud/local server, Authentication, authorization of Devices

UNIT V

IoT Case Studies: IoT Case studies and mini projects based on industrial Automation, Transportation, Agriculture, Healthcare, Home Automation.

Textbooks:

1. Vijay Madisetti, ArshdeepBahga, "Internet of Things a Hands-On- Approach", 2014.

- 1. Dr SRN Reddy, RachitThukral and Manasi Mishra ," Introduction to Internet of Things": A practical Approach" ETI Labs
- 2. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill
- 3. Adrian McEwen, "Designing the Internet of Things", Wiley Publishers, 2013

B.Tech (ECE)- IV-I Sem

L T P C 3 0 0 3

(20A04701c) SATELLITE COMMUNICATIONS (Professional Elective Course –III)

Course Objectives:

To introduce various aspects in the design of systems for satellite communication.

Course Outcomes:

- Learn the dynamics of the satellite.
- Understand the communication satellite design.
- Understand how analog and digital technologies are used for satellite communication networks.
- Learn the design of satellite links.
- Study the design of Earth station and tracking of the satellites.

UNIT I

Elements of orbital mechanics. Equations of motion. Tracking and orbit determination. Orbital correction/control. Satellite launch systems. Multistage rocket launchers and their performance

UNIT II

Elements of communication satellite design. Spacecraft subsystems. Reliability considerations. Spacecraft integration.

UNIT III

Multiple access techniques. FDMA, TDMA, CDMA. Random access techniques. Satellite onboard processing.

UNIT IV

Satellite link design: Performance requirements and standards. Design of satellite links – DOMSAT, INSAT, INTELSAT and INMARSAT. Satellite - based personal communication. links.

UNIT V

Earth station design. Configurations. Antenna and tracking systems. Satellite broadcasting.

Textbooks:

D. Roddy, Satellite Communication (4/e), McGraw-Hill, 2009.

T. Pratt & C.W. Bostain, Satellite Communication, Wiley 2000.

References:

B.N. Agrawal, Design of Geosynchrons Spacecraft, Prentice-Hall, 1986

B.Tech (ECE)- IV-I Sem

L T P C 3 0 0 3

(20A04702a) REAL TIME OPERATING SYSTEMS (Professional Elective Course –IV)

Course Objectives:

- To introduce general idea, structure and functions of general purpose operating systems.
- To describe process & memory management techniques
- To teach concepts of how process is created and controlled with RTOs.
- To provide knowledge about the common problems in developing an RTOS.
- To discuss application development using RTOS

Course Outcomes:

- Describe real-time operating system requirements and design issues
- Illustrate role of operating systems in memory and I/O devices management
- Apply concepts of inter-task communication and synchronization via shared memory, message queues, signals, semaphores
- Examine challenges arising in design problems when developing embedded applications in multitasking systems
- Develop programs using system proved timers, signals, mutual exclusion, semaphores, message queues and exception handlers

UNIT I

Introduction: Operating Systems Objectives and functions, Computer System Architecture, OS Structure, OS Operations, Evolution of Operating Systems - Simple Batch, Multi programmed, time shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, Special - Purpose Systems, Operating System services, user OS Interface, System Calls, Types of System Calls, System Programs, Opening System Design and Implementation, OS Structure, Virtual machines

UNIT II

Process Concept, Process Scheduling, Operations on Processes, Scheduling criteria, Scheduling algorithms, Multiple-processor scheduling, Real time scheduling; Threads- Overview, Multithreading models, Threading issues; Process Synchronization - The critical-section problem, Synchronization hardware, Semaphores, Classic problems of synchronization, Monitors, Memory Management and Virtual Memory and File System Interface.

UNIT III

RTOs: Differences between General Purpose OS & RTOS, Real-time concepts, Hard Real time and Soft Real-time systems, Basic architecture of an RTOS, components in RTOS, kernel, objects, scheduler, Multitasking, context switch, Scheduling types, Task states, Task management. Kernel Objects, Semaphores, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization, message queue, Common pipe, pipe operation, Select operation on multiple pipes, Pipes for inter-task Synchronization, Event register, control block, Signals, Catch operation, Execution sequence of wait and signal operations.

UNIT IV

RTOS Services Overview- TCP/IP protocol- Stack- File system- Remote procedure calls- RTOS command shell Exceptions and Interrupts- Programmable interrupt controller-Priority scheme- Task and stack Interrupt nesting- Interrupt processing in two contexts. Timer and Timer Services - Real-time clock Soft-timer- Servicing the timer interrupt in the task context- Timeout event handlers. I/O Subsystem and Memory Management Portmapped I/O- Memory-mapped I/O- Write operation for a block-mode device- I/O function mapping-Associating devices with drivers-Memory allocation map, fragmentation, free operation, Management unit.

INIT V

Typical RTOS Introduction to RT Linux, Real-Time Linux Applications in Embedded system, Common Design Problems - Deadlock, priority inversion problem, Embedded RTOS for fault-Tolerant applications

Textbooks:

- 1. Operating System Principles, Abraham Silberchatz, Peter B. Galvin, Greg Gagne 8th Edition, Wiley Student Edition.
- 2. Real Time Concepts for Embedded Systems Qing Li, Elsevier, 2011

- 1. Operating systems Internals and Design Principles, W. Stallings, 6th Edition, Pearson.
- 2. Embedded Systems- Architecture, Programming and Design by Rajkamal, 2007, TMH.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C 3 0 0 3

(20A04702b) DIGITAL IMAGE PROCESSING (Professional Elective Course –IV)

Course Objectives:

This course is designed to enable the students to familiarize themselves with basic concepts of digital image processing and different image transforms and learn various image processing techniques like image enhancement, restoration, segmentation and compression

Course Outcomes:

After completion of the course, students will be able to

- Perform image manipulations and different digital image processing techniques
- Illustrate basic operations like Enhancement, segmentation, compression, Image transforms and restoration techniques on image.
- Analyze pseudo and full color image processing techniques.
- Apply various morphological operators on images

UNIT I Lecture 8Hrs

Introduction: Introduction to Image Processing, Fundamental steps in digital image processing, components of an image processing system, image sensing and acquisition, image sampling and quantization, some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing. Image Transforms: Need for image transforms, Discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform, Importance of Phase, Walsh Transform. Hadamard transform, Haar Transform, Slant transform, Discrete Cosine transform, KL Transform, SVD and Radon Transform, Comparison of different image transforms.

UNIT II Lecture 9Hrs

Intensity Transformations and Spatial Filtering: Background, Some basic intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods Filtering in the Frequency Domain: Preliminary concepts, The Basics of filtering in the frequency domain, image smoothing using frequency domain filters, Image Sharpening using frequency domain filters, Selective filtering.

UNIT III Lecture 9Hrs

Image Restoration and Reconstruction: A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimating the degradation function, Inverse filtering, Minimum mean square error (Wiener) filtering, constrained least squares filtering, geometric mean filter ,image reconstruction from projections.

UNIT IV Lecture 8Hrs

Image compression: Fundamentals, Basic compression methods: Huffman coding, Golomb coding, Arithmetic coding, LZW coding, Run-Length coding, Symbol-Based coding, Bit-Plane coding, Block Transform coding, Predictive coding Wavelets and Multiresolution Processing: Image pyramids, subband coding, Multiresolution expansions, wavelet transforms in one dimensions & two dimensions, Wavelet coding.

Lecture 9Hrs

UNIT V

Image segmentation: Fundamentals, point, line, edge detection, thresholding, region —based segmentation. Morphological Image Processing: Preliminaries, Erosion and dilation, opening and closing, basic morphological algorithms for boundary extraction, thinning, gray-scale morphology,

Segmentation using morphological watersheds.

Color image processing: color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

Textbooks:

- 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
- 2. Jayaraman, S. Esakkirajan, and T. Veerakumar," Digital Image Processing", Tata McGraw-Hill Education, 2011.

Reference Books:

- 1. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.
- 2. B.Chanda, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009

Online Learning Resources:

https://nptel.ac.in/courses/117105079 https://nptel.ac.in/courses/117105135

(20A04702c) RADAR ENGINEERING (Professional Elective Course –IV)

Course Objectives:

• To make student to acquire the knowledge on types of Radars, working principles, tracking a target, applications and understand on phased array antennas, navigational aids

Course Outcomes:

- Learn the basic working principle of Radar and target detection procedure
- Know the working and applications of CW and Frequency modulated Radar
- Gain the knowledge of about MTI and Pulse Doppler Radar
- Understand different methods of tracking a target and analyze the effect of noise at the receiver
- Learn about the phased array antennas and navigational aids

UNIT I

Basics of Radar: Introduction, Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation, Illustrative Problems. Radar Equation: SNR, Envelope Detector, False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Displays – types, Illustrative Problems.

UNIT II

CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.

UNIT III

MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, And Staggered PRFs. Range Gated Doppler Filters, MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler radar.

UNIT IV

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two-coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

Detection of Radar Signals in Noise: Introduction, Noise Figure and Noise Temperature, Matched Filter Receiver – Response Characteristics and Derivation, Correlation detection, Detection criteria, Detector Characteristics, Automatic Detection, Constant False Alarm Rate Receiver.

UNIT V

Phased Array Antennas and Navigational Aids: Introduction to Phased Array Antennas- Basic Concepts, Electronically Steered Phased Array Antennas, Phase Shifters, Frequency – scan Arrays, Radiation for Phased Array, Architecture for Phased Arrays. Radiation Pattern. Beam Steering and Beam Width changes. Navigational Aids: Direction Finder, VOR, ILS and Loran

Textbooks:

- 1. Merrill I. Skolnik, "Introduction to Radar Systems", 2nd Edition, TMH Special Indian Edition, 2007.
- 2. Byron Edde, "Radar Principals, Technology, Applications", Pearson Education, 1992.

- 1. F.E. Terman, Radio Engineering, Mc Graw Hill Book Co. (for Chapter 7 only), Fourth Edition 1955
- 2. Simon Kingsley & Shaun Quegan, Understanding RADAR Systems, McGraw Hill Book Co., 1993.

(20A04703a) SMART SENSORS (Professional Elective Course –V)

Course Objective:

To make student to acquire the knowledge on types of sensors/transducers, working principles, selection procedure, applications of sensing systems

Course Outcomes:

- Understand measuring parameters, measuring systems, effects of environment, characteristics and parameters to be considered for designing an instrument
- Understand different types of sensors/transducers, working principles, selection procedure, applications of sensing systems
- Select a sensor/sensing system for a requirement
- Derive sensor-based solution for different applications.

UNIT I

Introduction to Measurement: Measurement units, applications, elements, choosing appropriate measuring instruments. Instrument Types and Performance Characteristics: Review of instrument types, Static characteristics, dynamic characteristics Error during measurement process: Sources of systematic error, reduction and quantification of systematic errors, random errors, aggregation of measurement system errors. Calibration: Calibration of measuring instruments, Primary calibration, secondary calibration and field calibration. Calibration methods for different parameters (temperature, pressure, humidity, flow...etc.). Automatic Calibration mechanisms.

UNIT II

Temperature Sensors: Thermo-resistive, Resistance Temperature Detectors, Silicon Resistive, Thermistors, Semiconductor, Optical, Acoustic, Piezoelectric

Humidity and Moisture Sensors: Capacitive, Electrical Conductivity, Thermal Conductivity, Optical Hygrometer, Time Domain Reflect meter.

Pressure and Force Sensors: Mercury Pressure, Bellows, Membranes, and Thin Plates, Piezoresistive, Capacitive, Optoelectronic, Vacuum, Strain Gauges, Tactile, Piezoelectric Force

UNIT III

Occupancy and Motion Detectors: Ultrasonic, Microwave Motion, Capacitive Occupancy, Visible and Near-Infrared Light, Far-Infrared Motion, PIR Motion, Position, Displacement, and Level Sensors: Potentiometric, Gravitational, Capacitive, Inductive and Magnetic, Optical, Ultrasonic, Radar Velocity and Acceleration Sensors: Capacitive Accelerometers, Piezoresistive Accelerometers, Piezoelectric Accelerometers, Thermal Accelerometers, Heated-Plate Accelerometer, Heated Gas Accelerometer, Gyroscopes, Piezoelectric Cables

UNIT IV

Flow Sensors: Pressure Gradient Technique, Thermal Transport, Ultrasonic, Electromagnetic, and Micro flow, Coriolis Mass Flow, Acoustic Sensors: Resistive Microphones, Fiber-Optic, Piezoelectric, Solid-State microphone, Light & Radiation Sensors: Photodiodes, Phototransistor, Photo resistors, Thermal detectors Chemical Sensors: Metal-Oxide Chemical, ChemFET, Electro-chemical, Potentiometric, Conduct metric,

Amperometric, Optical Chemical, Mass Detector

UNIT V

Introduction to wireless sensor networks, Challenges for wireless sensor networks, Applications for wireless sensor networks, enabling technologies for wireless sensor networks.

Single node architecture – Hardware components, Energy consumption of Sensor nodes (only Operation states with different power consumption, Relationship between computation and communication, Power consumption of sensor and actuators is included), Deployment environments

Sensor Network Architecture - Sensor Network Scenarios, Optimization goals and figures of merit, Design principles of WSN, Service interfaces of WSNs, Gateway-concepts.

Textbooks

- 1. Measurement and Instrumentation Principles Morris, AlanS
- 2. An Introduction to Error Analysis by John R. Taylor
- 3. Sensor Technology Handbook, John S. Wilson
- 4. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor
- 5. Networks" John-Wiley, First-Edition-2014.

- 1. Mechanical Measurements Beckwith, Marangoni, Lienhard
- 2. Measurement of Systems Application and design Earnest O.Doeblin
- 3. Electronic Instrumentation and Measurement Technique Albert DHelfrick
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology,
- 5. Protocols, And Applications", John Wiley, 2007.

(20A04703b) NANO ELECTRONICS (Professional Elective Course -V)

Course Objectives

- To teach nano electronic systems and its building blocks
- To provide knowledge on spin electronic devices.
- To familiarize students with the present research trend in Nano electronics

Course Outcomes:

- Describe the fabrication process and limitations in the CMOS design
- Choose different models of MOS devices according to the requirement.
- Integrate and model the device with basic quantum structures.
- Compare MOSFET, CNFET and Spin FET devices

UNIT I

Challenges going to sub-100 nm MOSFETs Oxide layer thickness, tunneling, power density, non-uniform dopant concentration, threshold voltage scaling, lithography, hot electron effects, sub-threshold current, velocity saturation, interconnect issues, fundamental limits for MOS operation.

UNITII

Novel MOS-based devices Multiple gate MOSFETs, Silicon-on-insulator, Silicon-on-nothing, Fin FETs, vertical MOSFETs, strained Si devices.

UNITIII

Quantum structures quantum wells, quantum wires and quantum dots, Single electron devices charge quantization, energy quantization, Coulomb blockade, Coulomb staircase, Bloch oscillations.

UNIT IV

Hetero structure based devices Type I, II and III hetero junctions, Si-Ge hetero structure, hetero structures of III-V and II-VI compounds - resonant tunneling devices.

UNIT V

Carbon nanotubesbased devices CNFET, characteristics; Spin-based devices spin FET, characteristics, Applications of MOSFET, CNFET and Spin FET devices.

Textbooks:

- 1. Mircea Dragoman and Daniela Dragoman, "Nano electronics Principles & devices", Artech House Publishers, 2005.
- 2. Karl Goser, "Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices", Springer 2005.

- 1. Mark Lundstrom and Jing Guo, "Nanoscale Transistors: Device Physics Modelling and Simulation", Springer, 2005.
- 2. Vladimir VMitin, Viatcheslav A Kochelap and Michael A Stroscio, "Quantum hetero structures", Cambridge University Press, 1999.
- 3. S M Sze (Ed), "High speed semiconductor devices", Wiley, 1990.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (ECE)– IV-I Sem L T P C 3 0 0 3

(20A04703c) CELLUAR & MOBILE COMMUNICATIONS (Professional Elective Course –V)

Course Objectives:

- To explain cell coverage for signal and traffic, diversity techniques and mobile antennas by the use of Engineering Mathematics.
- To present impairments due to multipath fading channel, fundamental techniques to overcome different fading effects, frequency management, Channel assignment and types of handoffs.
- To teach concepts and solve problems on mobile antennas and cellular systems.

Course Outcomes:

- Know about cell coverage for signal and traffic, diversity techniques and mobile antennas by the use of Engineering Mathematics
- Explain impairments due to multipath fading channel, fundamental techniques to overcome different fading effects, frequency management, Channel assignment and types of handoff
- Apply concepts to solve problems on mobile antennas and cellular systems
- Analyze Co-channel and Non Co-channel interferences, different Hand-offs and dropped call rates
- Evaluate performance of dropped call rate and false alarm rate
- Compare different handoffs

UNIT I

Introduction to Cellular Mobile Radio Systems: Limitations of Conventional Mobile Telephone Systems, Basic Cellular Mobile System, Uniqueness of Mobile Radio Environment, Mobile Fading Characteristics, Operations of Cellular Systems, Evolution of Cellular Systems.

Fundamentals of Cellular Radio System Design: Concept of Frequency Reuse, Co-Channel Interference, Co-Channel Interference Reduction Factor, Desired C/I from a Normal Case in an Omni Directional Antenna System, System Capacity, Trunking and Grade of Service, Improving Coverage and Capacity in Cellular Systems- CellSplitting, Sectoring, Microcell Zone Concept.

UNIT II

Cell Coverage for Signal and Traffic: Signal Reflections in Flat and Hilly Terrain, Effect of Human Made Structures, Phase Difference between Direct and Reflected Paths, Constant Standard Deviation, Straight Line Path Loss Slope, General Formula for Mobile Propagation Over Water and Flat Open Area, Near and Long Distance Propagation, Path Loss from a Point to Point Prediction Model in Different Conditions, Merits of Lee Model.

Cell Site and Mobile Antennas: Space Diversity Antennas, Umbrella Pattern Antennas, Minimum Separation of Cell Site Antennas, Mobile Antennas.

IINIT III

Co-Channel Interference Reduction: Measurement of Real Time Co-Channel Interference, Design of Omnidirectional and directional Antenna System, Antenna Parameters and Their Effects, Diversity Techniques-Space Diversity, Polarization Diversity, Frequency Diversity, Time Diversity.

Non-Co-Channel Interference: Adjacent Channel Interference, Near End Far End Interference, Cross Talk, Effects on Coverage and Interference by Power Decrease, Antenna Height Decrease, Effects of Cell Site Components.

UNIT IV

Frequency Management and Channel Assignment: Numbering and Grouping, Setup Access and Paging Channels, Channel Assignments to Cell Site and Mobile Units, Channel Sharing and Borrowing, Sectorization, Overlaid Cells, Non Fixed Channel Assignment.

UNIT V

Handoffs and Dropped Calls: Handoff Initiation, Types of Handoff, Delaying Handoff, Advantages of Handoff, Power difference Handoff, Forced Handoff, Mobile Assisted and Soft Handoffs, Intersystem Handoff, Introduction to Dropped Call Rates and their Evaluation.

System Evaluation: Performance Evaluation, Blockage, Dropped-call rate, Signaling Evaluation- False Alarm Rate, Word error rate consideration and calculations, Measurement of averaged received signal level and level crossings.

Textbooks:

- 1. W.C.Y. Lee, Mobile Cellular Telecommunications, McGraw Hill, 2nd Edn., 1989.
- 2. Theodore. S. Rapport, Wireless Communications, Pearson Education, 2nd Edn., 2002.

- 1. W.C.Y Lee, Mobile Communications Engineering-Theory and Applications, McGraw Hill, Second Edition, ,2014.
- 2. Gordon L. Stuber, Principles of Mobile Communications, Springer International, 2nd Edn., 2001.
- 3. Simon Haykin, Michael Moher, Modern Wireless Communications, Pearson Education, 2005.

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(20A52701a) ENTREPRENEURSHIP & INCUBATION (HUMANITIES ELECTIVE II)

Course Objectives:

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Course Outcomes:

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

UNIT I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

UNIT II

Starting the New Venture - Generating business idea - Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

UNIT III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance - Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey-Institutions in aid of entrepreneurship development

UNIT IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants - Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

UNIT V

Fundamentals of Business Incubation - Principles and good practices of business incubation- Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Textbooks:

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit: login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.JanakiramandM.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-Resources

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
 http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

B.Tech (ECE)- III-II Sem L T P C

3 0 0 3

(20A52701b) MANAGEMENT SCIENCE (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training& Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Course Outcomes:

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

UNITI INTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - Organisational Designs - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

UNIT II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study -Statistical Quality Control- Deming's contribution to Quality. Material Management - Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management -Marketing Management - Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

UNIT IIIHUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning - Nature - Managerial and Operative functions - Evolution of HRM - Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept - Methods of Performance Appraisal -Placement - Employee Induction - Wage and Salary Administration

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - Project Management -Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis -Project Crashing (Simple problems).

UNIT V CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) - Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept - Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Re-engineering and Bench Marking - Balanced Score Card - Knowledge Management.

Textbooks:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

- 1. Koontz & Weihrich, "Essentials of Management", 6th edition, TMH, 2005.
- 2. Thomas N.Duening& John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- 3. Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
- 4. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

B.Tech (ECE)- III-II Sem

L T P C 3 0 0 3

(20A52701c) ENTERPRISE RESOURCE PLANNING (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Course Outcomes:

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

UNITI

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

UNITII

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Design-making Capability

UNITIII

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

UNITIV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

UNITY

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Textbooks:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

B.Tech (ECE)- IV-I Sem

L T P C 1 0 2 2

(20A04707) INDUSTRIAL IOT AND AUTOMATION (Skill Oriented Course- V)

Course Objectives:

To provide students with good depth of knowledge of Designing Industrial IOT Systems for various application. **Learning Outcomes:**

- Discover key IIoT concepts including identification, sensors, localization, wireless protocols, data storage and security
- Explore IoT technologies, architectures, standards, and regulation
- Realize the value created by collecting, communicating, coordinating, and leveraging the data from connected devices
- Examine technological developments that will likely shape the industrial landscape in the future
- Understand how to develop and implement own IoT technologies, solutions, and applications

Course Syllabus

MODULE 1: Introduction & Architecture

What is IIoT and connected world? the difference between IoT and IIoT, Architecture of IIoT, IOT node, Challenges of IIOT.

Practice

1. Introduction to Arduino, Introduction to raspberry Pi.

https://www.youtube.com/watch?v=AQdLQV6vhbk

MODULE 2: IIOT Components

Fundamentals of Control System, introductions, components, closed loop & open loop system.

Introduction to Sensors (Description and Working principle): What is sensor? Types of sensors, working principle of basicSensors -Ultrasonic Sensor, IR sensor, MQ2, Temperature and Humidity Sensors (DHT-11). Digital switch, Electro Mechanical switches.

Practice

- 1. Measurement of temperature & pressure values of the process using raspberry pi/node mcu.
- 2. Modules and Sensors Interfacing (IR sensor, Ultrasonic sensors, Soil moisture sensor) using Raspberry pi/node mcu.
- 3. Modules and Actuators Interfacing (Relay, Motor, Buzzer) using Raspberry pi/node mcu.

MODULE 3: Communication Technologies of HoT

Communication Protocols: IEEE 802.15.4, ZigBee, Bluetooth, BLE, NFC, RFIDIndustry standards communication technology (MQTT), wireless network communication.

Practice

1. Demonstration of MQTT communication.

MODULE 4: Visualization and Data Types of HoT

Connecting an Arduino/Raspberry pi to the Web: Introduction, setting up the Arduino/Raspberry pi development environment, Options for Internet connectivity with Arduino, Configuring your Arduino/Raspberry pi board for the IoT.

Practice

- 1. Visualization of diverse sensor data using dashboard (part of IoT's 'control panel')
- 2. Sending alert message to the user. ways to control and interact with your environment)

MODULE 5: Retrieving Data

Extraction from Web: Grabbing the content from a web page, Sending data on the web, Troubleshooting basic Arduino issues, Types of IoT interaction, Machine to Machine interaction (M2M).

Practice

- 1. Device control using mobile Apps or through Web pages.
- 2. Machine to Machine communication.

MODULE 6: Control & Supervisory Level of Automation

Programmable logic controller (PLC), Real-time control system, Supervisory Control & Data Acquisition (SCADA).

Practice

- 1. Digital logic gates programming using ladder diagram.
- 2. Implementation of Boolean expression using ladder diagram.
- 3. Simulation of PLC to understand the process control concept.

Projects:

IIoT based smart energy meter
Smart Agriculture system
Automation using controller via Bluetooth
Temperature controlled Fan/cooler using controller
Automatic streetlight
Smart Baggage Tracker

Textbooks

- 1. The Internet of Things in the Industrial Sector, Mahmood, Zaigham (Ed.) (Springer Publication)
- 2. Industrial Internet of Things: Cybermanufacturing System, Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat (Springer Publication)
- 3. Industrial IoT Challenges, Design Principles, Applications, and Security by Ismail Butun (editor)

OPEN ELECTIVES

B.Tech III-I Sem

L T P C
3 0 0 3

(20A01505) BUILDING TECHNOLOGY (Open Elective-I)

Course Objectives:

- To know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

Course Outcomes (CO):

- Understand the principles in planning and design the buildings
- To get different types of buildings, principles and planning of the buildings
- To know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

UNIT I

Overview of the course, basic definitions, buildings-types-components-economy and design-principles of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

UNIT II

Termite proofing: Inspection-control measures and precautions-lighting protection of buildings-general principles of design of openings-various types of fire protection measures to be considered while panning a building.

UNIT III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairs-planning of stairs-other modes of vertical transportation —lifts-ramps-escalators.

UNIT IV

Prefabrication systems in residential buildings-walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

UNIT V

Acoustics –effect of noise –properties of noise and its measurements, principles of acoustics of building. Sound insulation-importance and measures.

Textbooks:

- 1. Building construction by Varghese, PHI Learning Private Limited 2nd Edition 2015
- 2. Building construction by Punmia.B.C, Jain.A.K and Jain.A.K Laxmi Publications 11th edition 2016

Reference Books:

- 1. National Building Code of India, Bureau of Indian Standards
- 2. Building construction-Technical teachers training institute, Madras, Tata McGraw Hill.
- 3. Building construction by S.P.Arora and S.P.BrndraDhanpat Rai and Sons Publications, New Delh 2014 edition

https://nptel.ac.in/courses/105102206 https://nptel.ac.in/courses/105103206

B.Tech III-I Sem L T P C 3 0 0 3

(20A02505) ELECTRIC VEHICLES (Open Elective-I)

Course Objectives:

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

Course Outcomes:

- Understand and differentiate between conventional and latest trends in Electric Vehicles
- Analyze various EV resources, EV dynamics and Battery charging
- Apply basic concepts of EV to design complete EV system
- Design EV system with various fundamental concepts

UNIT I INTRODUCTION TO EV SYSTEMS AND PARAMETERS

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters.

UNIT II EV AND ENERGY SOURCES

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

UNIT III EV PROPULSION AND DYNAMICS

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

UNIT IV FUEL CELLS

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

UNIT V BATTERY CHARGING AND CONTROL

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electromechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2005.
- 2. li Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

Online Learning Resources: .https://onlinecourses.nptel.ac.in/noc22_ee53/preview

B.Tech III-I Sem

L T P C
3 0 0 3

(20A03505) 3D PRINTING TECHNOLOGY (Open Elective-I)

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

Course Outcomes:

- Use techniques for processing of CAD models for rapid prototyping.
- Understand and apply fundamentals of rapid prototyping techniques.
- Use appropriate tooling for rapid prototyping process.
- Use rapid prototyping techniques for reverse engineering.
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes.

UNIT I Introduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT II Solid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applicationsof Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT III Powder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IV Rapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

UNIT V Errors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc.

Software: Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Textbooks:

- 1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.
- 2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdf-compressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- https://www.youtube.com/watch?v=NkC8TNts4B4

B.Tech III-I Sem

L T P C
3 0 0 3

(20A05505a) JAVA PROGRAMMING (Open Elective Course – I)

Course Objectives:

- To understand object-oriented concepts and problem-solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

Course Outcomes:

- Solve real-world problems using OOP techniques.
- Apply code reusability through inheritance, packages and interfaces
- Solve problems using java collection framework and I/O classes.
- Develop applications by using parallel streams for better performance and develop applets for web applications.
- Build GUIs and handle events generated by user interactions and Use the JDBC API to access the database.

UNIT I Introduction

Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods

UNIT II Inheritance, Packages, Interfaces

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

UNIT III Exception handling, Stream based I/O

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built-in exceptions, creating own exception subclasses.

Stream based I/O (java.io) – The Stream Classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and Writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

UNIT IV Multithreading, The Collections Framework

Multithreading: The Java thread model, creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses-Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

UNIT V Applet, GUI Programming with Swings, Accessing Databases with JDBC

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons,

jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, show message dialog, show confirmdialog, show input dialog, show option dialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Textbooks:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Java How to Program, 10th Edition, Paul Dietel, Harvey Dietel, Pearson Education.

Reference Books:

- 1. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.
- 2. Core Java Volume 1 Fundamentals, Cay S. Horstmann, Pearson Education.
- 3. Java Programming for core and advanced learners, Sagayaraj, Dennis, Karthik andGajalakshmi, University Press
- 4. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 5. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 6. Programming in Java, S. Malhotra, S. Chaudhary, 2nd edition, Oxford Univ. Press.
- 7. Java Programming and Object-oriented Application Development, R.A. Johnson, Cengage Learning.

Online Learning Resources:

https://www.w3schools.com/java/java_oop.asp http://peterindia.net/JavaFiles.html

B.Tech III-I Sem L T P C 3 0 0 3

(20A05502T) ARTIFICIAL INTELLIGENCE Open Elective Course - I

Course Objectives:

This course is designed to:

- Introduce Artificial Intelligence
- Teach about the machine learning environment
- Present the searching Technique for Problem Solving
- Introduce Natural Language Processing and Robotics

Course Outcomes:

After completion of the course, students will be able to

- Apply searching techniques for solving a problem
- Design Intelligent Agents
- Develop Natural Language Interface for Machines
- Design mini robots
- Summarize past, present and future of Artificial Intelligence

UNIT I Introduction Lecture 9Hrs

Introduction: What is AI, Foundations of AI, History of AI, The State of Art.

Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT II Solving Problems by searching

Lecture 9 Hrs

Problem Solving Agents, Example problems, Searching for Solutions, Uninformed Search Strategies, Informed search strategies, Heuristic Functions, Beyond Classical Search: Local Search Algorithms and Optimization Problems, Local Search in Continues Spaces, Searching with Nondeterministic Actions, Searching with partial observations, online search agents and unknown environments.

UNIT III Reinforcement Learning & Natural Language Processing Lecture 8Hrs Reinforcement Learning: Introduction, Passive Reinforcement Learning, Active Reinforcement Learning,

Generalization in Reinforcement Learning, Policy Search, applications of RL

Natural Language Processing: Language Models, Text Classification, Information Retr

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction.

UNIT IV Natural Language for Communication

Lecture 8 Hrs

Natural Language for Communication: Phrase structure grammars, Syntactic Analysis, Augmented Grammars and semantic Interpretation, Machine Translation, Speech Recognition

Perception: Image Formation, Early Image Processing Operations, Object Recognition by appearance, Reconstructing the 3D World, Object Recognition from Structural information, Using Vision.

UNIT V Robotics

Lecture 10Hrs

Robotics: Introduction, Robot Hardware, Robotic Perception, planning to move, planning uncertain movements, Moving, Robotic software architectures, application domains

Philosophical foundations: Weak AI, Strong AI, Ethics and Risks of AI, Agent Components, Agent Architectures, Are we going in the right direction, What if AI does succeed.

Textbooks:

1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, Pearson Education, 2019.

Reference Books:

- 1. Nilsson, Nils J., and Nils Johan Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.
- 2. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting Education 27.1 (2009): 30-39.

Online Learning Resources:

http://peterindia.net/AILinks.html http://nptel.ac.in/courses/106106139/ https://nptel.ac.in/courses/106/105/106105152/

B.Tech III-I Sem L T P C 3 0 0 3

(20A12502) MOBILE APPLICATION DEVELOPMENT USINGANDROID (Open Elective-I)

Course Objectives:

- Facilitate students to understand android SDK.
- Help students to gain a basic understanding of Android application development.
- Inculcate working knowledge of Android Studio development tool.

Course Outcomes:

- Identify various concepts of mobile programming that make it unique from programming for other platforms.
- Evaluate mobile applications on their design pros and cons.
- Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces.
- Develop mobile applications for the Android operating system that use basic and advanced phone features.
- Demonstrate the deployment of applications to the Android marketplace for distribution.

UNIT I Introduction and Mobile User Interface Design

Introduction to Android: The Android Platform, Android SDK, Android Studio Installation, Android Installation, building you First Android application, Understanding Anatomy of Android Application, Android Manifest file.

UNIT II Activities, Intents and Android User Interface

Android Application Design Essentials: Anatomy of an Android applications, Android terminologies, Application Context, Activities, Services, Intents, Receiving and Broadcasting Intents, Android Manifest File and its common settings, Using Intent Filter, Permissions

UNIT III Advanced User Interface and Data Persistence

Android User Interface Design Essentials: User Interface Screen elements, Designing User Interfaces with Layouts, Drawing and Working with Animation.

UNIT IV Android Services, Publishing Android Applications

Testing Android applications, Publishing Android application, Using Android preferences, Managing Application resources in a hierarchy, working with different types of resources.

UNIT V Android Databases

Using Common Android APIs: Using Android Data and Storage APIs, managing data using SQLite, Sharing Data between Applications with Content Providers, Using Android Networking APIs, Using Android Web APIs, Using Android Telephony APIs, Deploying Android Application to the World. **Textbooks:**

- 1. Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd ed. (2011).
- 2. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development," Wiley India, FirstEdition, 2012.

Reference Books:

- 1. Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd
- 2. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd
- 3. Android Application Development All in one for Dummies by Barry Burd, Edition: I

Online Learning Resources:

1. https://developer.android.com/

B.Tech III-I Sem L T P C 3 0 0 3

(20A27505) COMPUTER APPLICATIONS IN FOOD TECHNOLOGY (Open Elective-1)

Course Objectives:

- To know different software and applications in food technology.
- To understand the Chemical kinetics in food processing, Microbial distraction in thermal processing of food.
- To acquire knowledge on computer aided manufacturing and control of food machinery, inventory control, process control.

Course Outcomes:

- Students will gain knowledge on software in food technology, data analysis, Chemical kinetics, microbial distortion in thermal process
- Use of linear regression in analyzing sensory data, application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants.

UNIT I

Introduction to various software and their applications in food technology. Application of MS Excel to solve the problems of Food Technology, SPSS and JMP for data analysis, Pro-Engineering for design, Lab VIEW and SCADA for process control .

UNIT II

Chemical kinetics in food processing: Determining rate constant of zero order reaction First order rate constant and half-life of reactions. Determining energy of activation of vitamin degradation during food storage Rates of Enzymes catalyzed reaction. Microbial distraction in thermal processing of food. Determining decimal reduction time from microbial survival data, Thermal resistance factor, Z-values in thermal processing of food. Sampling to ensure that a lot is not contaminated with more than a given percentage Statistical quality control. Probability of occurrence in normal distribution. Using binomial distribution to determine probability of occurrence. Probability of defective items in a sample obtained from large lot

UNIT III

Sensory evaluation of food Statistical descriptors of a population estimated from sensory data obtained from a sample Analysis of variance. One factor, completely randomized design For two factor design without replication. Use of linear regression in analyzing sensory data. Mechanical transport of liquid food. Measuring viscosity of liquid food using a capillary tube viscometer. Solving simultaneous equations in designing multiple effect evaporator while using matrix algebra available in excel.

IINIT IV

Familiarization with the application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants, stating from the receiving of raw material up to the storage & dispatch of finished product.

UNIT V

Basic Introduction to computer aided manufacturing. Application of computers, instrumentation and control of food machinery, inventory control, process control etc.

Recommended books:

- 1. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis by R. Paul Singh, AP.
- 2. Manuals of MS Office.

B.Tech III-I Sem L T P C 3 0 0 3

(20A54501) OPTIMIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

This course enables the students to classify and formulate real-life problem for modeling as optimization problem, solving and applying for decision making.

Course Outcomes: Student will be able to

- formulate a linear programming problem and solve it by various methods.
- give an optimal solution in assignment jobs, give transportation of items from sources to destinations.
- identify strategies in a game for optimal profit.
- implement project planning.

UNIT I

Introduction to operational research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method.

UNIT II

Transportation problems- assignment problems-Game theory.

UNIT III

CPM and PERT –Network diagram-Events and activities-Project Planning-Reducing critical events and activities-Critical path calculations.

UNIT IV

Sequencing Problems-Replacement problems-Capital equipment- Discounting costs- Group replacement.

UNIT V

Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic inventory models- Single period inventory models with shortage cost.

Textbooks:

- 1. Operations Research, S.D. Sharma.
- 2. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 3. Operations Research, Nita H Shah, Ravi M Gor, Hardik Soni, PHI publishers

Reference Books:

- 1. Problems on Operations Research, Er. Prem kumargupta, Dr.D.S. Hira, Chand publishers
- 2. Operations Research, CB Gupta, PK Dwivedi, Sunil kumaryadav

Online Learning Resources:

https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L2slides.pdf https://slideplayer.com/slide/7790901/ https://www.ime.unicamp.br/~andreani/MS515/capitulo12.pdf

B.Tech III-I Sem L T P C 3 0 0 3

(20A56501) MATERIALS CHARACTERIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

- To provide an exposure to different characterization techniques.
- To enlighten the basic principles and analysis of different spectroscopic techniques.
- To explain the basic principle of Scanning electron microscope along with its limitations and applications.
- To identify the Resolving power and Magnification of Transmission electron microscope and its applications.
- To educate the uses of advanced electric and magnetic instruments for characterization.

Course Outcomes: At the end of the course the student will be able

- To explain the structural analysis by X-ray diffraction.
- To understand the morphology of different materials using SEM and TEM.
- To recognize basic principles of various spectroscopic techniques.
- To study the electric and magnetic properties of the materials.
- To make out which technique can be used to analyse a material

UNIT I

Structure analysis by Powder X-Ray Diffraction: Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherrer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II

Microscopy technique -1 –Scanning Electron Microscopy (SEM)

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III

Microscopy Technique -2 - Transmission Electron Microscopy (TEM): Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy.

UNIT IV

Spectroscopy techniques – Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V

Electrical & Magnetic Characterization techniques: Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

- 1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods Yang Leng John Wiley & Sons (Asia) Pvt. Ltd. 2008
- 2. Handbook of Materials Characterization -by Sharma S. K. Springer

- 1. Fundamentals of Molecular Spectroscopy IV Ed. Colin Neville Banwell and Elaine M. McCash, Tata McGraw-Hill, 2008.
- 2. Elements of X-ray diffraction Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall, 2001
- 3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods-<u>Yang Leng</u>- John Wiley & Sons
- 4. Characterization of Materials 2nd Edition, 3 Volumes-Kaufmann E N -John Wiley (Bp)

B.Tech III-I Sem L T P C 3 0 0 3

(20A51501) CHEMISTRY OF ENERGY MATERIALS (Open Elective- I)

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

Course Outcomes:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

UNIT I: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

UNIT II: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

UNIT III: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

UNIT IV:Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

UNIT V: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A01605) ENVIRONMENTAL ECONOMICS (Open Elective Course - II)

Course Objectives:

- To impart knowledge on sustainable development and economics of energy
- To teach regarding environmental degradation and economic analysis of degradation
- To inculcate the knowledge of economics of pollution and their management
- To demonstrate the understanding of cost benefit analysis of environmental resources
- To make the students to understand principles of economics of biodiversity

Course Outcomes:

After the completion of the course, the students will be able to know

- The information on sustainable development and economics of energy
- The information regarding environmental degradation and economic analysis of degradation
- The identification of economics of pollution and their management
- The cost benefit analysis of environmental resources
- The principles of economics of biodiversity

UNIT I

Sustainable Development: Introduction to sustainable development - Economy-Environment interlinkages - Meaning of sustainable development - Limits to growth and the environmental Kuznets curve - The sustainability debate - Issues of energy and the economics of energy - Nonrenewable energy, scarcity, optimal resources, backstop technology, property research, externalities, and the conversion of uncertainty.

UNIT II

Environmental Degradation: Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation - Equi -marginal principle.

UNIT - III

Economics of Pollution: Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions - Managing pollution through market intervention: Taxes, subsidies and permits.

UNIT IV

Cost – Benefit Analysis: Economic value of environmental resources and environmental damage - Concept of Total Economic Value - Alternative approaches to valuation – Cost-benefit analysis and discounting.

UNIT V

Economics of biodiversity: Economics of biodiversity conservation - Valuing individual species and diversity of species -Policy responses at national and international levels. Economics of Climate Change – stern Report

Textbooks:

- 1. An Introduction to Environmental Economics by N. Hanley, J. Shogren and B. White Oxford University Press.(2001)
- 2. Blueprint for a Green Economy by D.W. Pearce, A. Markandya and E.B. Barbier Earthscan, London.(1989)

Reference Books:

- 1. Environmental Economics: An Elementary Introduction by R.K. Turner, D.W. Pearce and I. Bateman Harvester Wheatsheaft, London. (1994),
- 2. Economics of Natural Resources and the Environment by D.W. Pearce and R.K. Turner Harvester Wheat sheaf, London. (1990),
- 3. Environmental and Resource Economics: An Introduction by Michael S. Common and Michael Stuart 2ndEdition, Harlow: Longman.(1996),

4. Natural Resource and Environmental Economics by Roger Perman, Michael Common, Yue Ma and James Mc Gilvray 3rdEdition, Pearson Education.(2003),

Online Learning Resources:

https://nptel.ac.in/courses/109107171

B.Tech III-II Sem

L T P C

3 0 0 3

(20A02605) SMART ELECTRIC GRID (Open Elective Course-II)

Course Objectives:

- Understand recent trends in grids, smart grid architecture and technologies
- Analyze smart substations
- Apply the concepts to design smart transmission systems
- Apply the concepts to design smart distribution systems

Course Outcomes:

- Understand trends in Smart grids, needs and roles of Smart substations
- Design and Analyze Smart Transmission systems
- Design and Analyze Smart Distribution systems
- Analyze SCADA and DSCADA systems in practical working environment

UNIT I INTRODUCTION TO SMART GRID

Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions – Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid

UNIT II SMART GRID TECHNOLOGIES

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

UNIT III SMART SUBSTATIONS

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

UNIT IV SMART TRANSMISSION SYSTEMS

Energy Management systems, History, current technology, EMS for the smart grid, Synchro Phasor Measurement Units (PMUs), Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid

UNIT V SMART DISTRIBUTION SYSTEMS

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Textbooks:

- 1. Stuart Borlase, Smart Grids Infrastructure, Technology and Solutions, CRC Press, 1e, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley-IEEE Press, 2e, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2e, 2017.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2e, 2012.

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc22_ee82/preview

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A03605c) INTRODCUTION TO ROBOTICS (Open Elective-II)

Course Objectives:

- Learn the fundamental concepts of industrial robotic technology.
- Apply the basic mathematics to calculate kinematic and dynamic forces in robot manipulator.
- Understand the robot controlling and programming methods.
- Describe concept of robot vision system

Course Outcomes:

After completing the course, the student will be able to,

- Explain fundamentals of Robots
- Apply kinematics and differential motions and velocities
- Demonstrate control of manipulators
- Understand robot vision
- Develop robot cell design and programming

UNIT I Fundamentals of Robots

Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots. Introduction to matrix representation of a point in a space a vector in space, a frame in space, Homogeneous transformation matrices, representation of a pure translation, pure rotation about an axis.

UNIT II Kinematics. Differential motions and velocities of robot

Kinematics of robot: Forward and inverse kinematics of robots- forward and inverse kinematic equations for position and orientation, Denavit-Hartenberg(D-H) representation of forward kinematic equations of robots, the inverse kinematic of robots, degeneracy and dexterity, simple problems with D-H representation.

Differential motions and Velocities: Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame. Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

UNIT III Control of Manipulators

Open- and close-loop control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

UNIT IV Robot Vision

Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

UNIT V Robot Cell Design and Programming

Robot cell layouts-Robot centred cell, In-line robot cell, considerations in work cell design, work cell control, interlocks, error detection, work cell controller. methods of robot programming, WAIT, SIGNAL, and DELAY commands, Robotic languages, VAL system.

Textbooks:

- 1. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

References:

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- **3.** Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.

Online Learning Resources:

https://nptel.ac.in/courses/108105088 https://nptel.ac.in/courses/108105063 https://nptel.ac.in/courses/108105062 https://nptel.ac.in/courses/112104288

B.Tech III-II Sem

L T P C
3 0 0 3

(20A05605a) PRINCIPLES OF OPERATING SYSTEMS (Open Elective Course – II)

Course Objectives:

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Expose the students with different techniques of handling deadlocks
- Provide good insight on various memory management techniques
- Explore the concept of file-system and its implementation issues

Course Outcomes:

- Demonstrate and understand of computer systems and operating systems functions
- Distinguish between process and thread and classify scheduling algorithms
- Solve synchronization and deadlock problems
- Compare various memory management schemes
- Explain file systems concepts and i/o management

UNIT I Introduction to Computer and Operating system

Computer Types, Functional Units, Basic Operational Concepts, Number Representation and Arithmetic Operations, Character Representation, Performance, Historical Perspective, Memory Locations and Addresses, Memory operations, Instructions and Instruction Sequencing, Addressing modes

Architecture Operating System Structure, Operations Process, Memory, Storage Management, Protection and Security Computing Environments Operating System Services User Operating System Interface System Calls Types System Programs OS Structure OS Generation System Boot.

UNIT II Process, Threads and Scheduling

Process Concept Scheduling Operations on Processes Cooperating Processes Inter-Process Communication Threads - Multithreading Models -Thread Libraries- Threading Issues - Scheduling Criteria Scheduling Algorithms Algorithm Evaluation.

UNIT III Process Synchronization and Deadlocks

The Critical-Section Problem Synchronization Hardware Mutex Locks -Semaphores Classic Problems of Synchronization Critical Regions Monitors Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock.

UNIT IV Memory Management

Introduction - Swapping Contiguous Memory Allocation Paging Segmentation- Structure of the Page Table - Virtual Memory- Background Demand Paging Copy on Write Page Replacement Allocation of Frames Thrashing.

UNIT V Input/ Output and Files

Overview of Mass Storage Structure - Disk Structure - Disk Scheduling and Management-File System Interface File Concept - Access Methods -Directory and Disk Structure- Directory Implementation - Allocation Methods- I/O Systems I/O Hardware- Application I/O Interface - Kernel I/O Subsystem.

Textbooks:

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill, 2012.
- 2. Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operating Systems Concepts, Ninth Edition, Wiley, 2012.

Reference Books:

- 1. William Stallings, Operating Systems: Internals and Design Principles, Ninth Edition, Prentice-Hall, 2018.
- 2. Andrew Tanenbaum, Modern Operating Systems, Third Edition, Prentice Hall, 2009.

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/http://peterindia.net/OperatingSystems.html

B.Tech III-II Sem L T P C

3 0 0 3

(20A05605b) FOUNDATIONS OF MACHINE LEARNING Open Elective Course— II

Course Objectives:

- Acquire theoretical knowledge on setting hypothesis for pattern recognition.
- Apply suitable machine learning techniques for data handling and to gain knowledge from it.
- Evaluate the performance of algorithms and to provide solution for various real-world applications.

Course Outcomes (CO):

After completion of the course, students will be able to

- 1. Understand the characteristics of machine learning strategies.
- 2. Apply various supervised learning methods to appropriate problems.
- 3. Identify and integrate more than one technique to enhance the performance of learning.
- 4. Create probabilistic and unsupervised learning models for handling unknown pattern.
- 5. Analyse the co-occurrence of data to find interesting frequent patterns.
- 6. Pre-process the data before applying to any real-world problem and can evaluate its performance

UNIT - I Introduction to Machine Learning

Lecture 8Hrs

What is machine learning, learning associations, classification, regression, unsupervised learning, reinforcement learning

Supervised Learning: learning a class from examples, learning multiple classes, model selection and generalization

UNIT - II **Parametric, Non-Parametric methods**

Lecture 9Hrs

Parametric Methods: Introduction, maximum likelihood estimation, evaluating an estimator, parametric classification, regression, model selection procedures

Nonparametric Methods: Introduction, nonparametric density estimation: histogram estimator, kernel estimator, k-nearest neighbour estimator

UNIT - III Multivariate Methods

Lecture 9Hrs

Multivariate Methods: Multivariate data, parameter estimation, estimation of missing values, multivariate normal distribution, multi variate classification

UNIT - IV **Dimensionality Reduction, Clustering**

Lecture 8Hrs

Dimensionality Reduction: Introduction, subset selection, principal component analysis, singular value decomposition and matrix factorization

Clustering: Mixture densities, k-means clustering, expectation-maximization algorithm, mixtures of latent variables

UNIT - V **Deep Learning**

Lecture 8Hrs

Deep Learning: Introduction, train multiple hidden layers, improving training convergence, regularization, convolution layers, tuning the network structure, learning sequences.

Textbooks:

- 1. <u>EthemAlpaydin</u>, Introduction to Machine Learning, Fourth Edition, MIT Press, Fourth Edition, 2020
- 2. MehryarMohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012

Reference Books:

- 1. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2019.
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", 2nd Edition, CRC Press, 2015.
- 3. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.

Online Learning Resources:

- 1. https://bloomberg.github.io/foml/
- 2. https://d1rkab7tlqy5f1.cloudfront.net/EWI/Over%20de%20faculteit/Afdelingen/Intelligent%20Sy

 $stems/Pattern \% 20 Recognition \% 20 Laboratory/PR/Reading \% 20 Group/Foundations_of_Machine_Learning.pdf$

B.Tech (IT)- III-II Sem

L T P C 3 0 0 3

(20A05605c) DATA ANALYTICS USING R (Open Elective-II)

Course Objectives:

- Facilitate students to understand R programming
- Help students to gain a basic understanding of Data Analytics
- Inculcate working knowledge of plotting

Course Outcomes:

- Identify and execute basic syntax and programs in R
- Perform the Matrix operations using R built in functions
- Apply nonnumeric values in vectors
- Create the list and data frames
- Exploit the graph using ggplot2.

UNIT I Introduction to R Programming

History and Overview of R- Basic Features of R-Design of the R System- Installation of R- Console and Editor Panes- Comments- Installing and Loading R Packages- Help Files and Function Documentation-Saving Work and Exiting R- Conventions- R for Basic Math- Arithmetic- Logarithms and Exponentials - E-Notation - Assigning Objects - Vectors - Creating a Vector-Sequences, Repetition, Sorting and Lengths - Subsetting and Element Extraction - Vector - Oriented Behavior.

UNIT II Matrices and Arrays

Defining a Matrix – Defining a Matrix- Filling Direction- Row and Column Bindings- Matrix Dimensions-Subsetting- Row, Column, and Diagonal Extractions- Omitting and Overwriting- Matrix Operations and Algebra- Matrix Transpose- Identity Matrix- Matrix Addition and Subtraction- Matrix Multiplication-Matrix Inversion-Multidimensional Arrays-Subsets, Extractions and Replacements.

UNIT III Non-Numeric values

Logical Values- Relational Operators- Characters- Creating a String- Concatenation- Escape Sequences-Substrings and Matching- Factors- Identifying Categories- Defining and Ordering Levels-Combining and Cutting.

UNIT IV Lists and Data frames

List of Objects - Component Access - Naming - Nesting - Data Frames - Adding Data Columns and Combining Data Frames - Logical Record Subsets - Some Special Values - Infinity - NaN - NA - NULL - Attributes - Object - Class-Is-Dot Object-Checking Functions-As-Dot Coercion Functions

UNIT V Basic Plotting

Using plot with Coordinate Vectors-Graphical Parameters-Automatic Plot Types-Title and Axis Labels-Color-Line and Point Appearances-Plotting Region Limits-Adding Points, Lines, and Text to an ExistingPlot-ggplot2 Package-Quick Plot with qplot-Setting Appearance Constants with Geoms—Reading and Writing Files- R-Ready Data Sets- Contributed Data Sets- Reading in External Data Files- Writing Out Data Files and Plots-AdHoc Object Read/Write Operations

Textbooks:

1. Tilman M. Davies, "The Book of R-A First Programming, Statistics" Library of Congress Cataloging-in-Publication Data, 2016.

Reference Books:

- 1. Hadley Wickham, Garrett Grolemund,"R for Data Science", Oreilly Publication, 2017.
- 2. Roger D. Peng, "R Programming for Data Science" Lean Publishing, 2016.
- 3. Steven Keller, "R ProgrammingforBeginners", CreateSpaceIndependentPublishingPlatform2016.

Online Learning Resources:

- 1. https://www.coursera.org/learn/data-analysis-r
- 2. https://www.careers360.com/courses-certifications/data-analysis-with-r-courses-brpg

B.Tech III-II Sem L T P C 3 0 0 3

(20A27605) FOOD REFRIGERATION AND COLD CHAIN MANAGEMENT OPEN ELECTIVE II

Course Objectives:

- To know the equipment available to store perishable items for a long time
- To understand to increase the storage life of food items

Course Outcomes

By the end of the course, the students will

- Understand various principles and theories involved in refrigeration systems
- Understand the different equipment useful to store the food items for a long period.
- Understand how to increase the storage life of food items

UNIT I

Principles of refrigeration: Definition, background with second law of thermodynamics, unit of refrigerating capacity, coefficient of performance; Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization; Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures;

UNIT II

Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression; Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry vs wet compression, throttling vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling;

UNIT III

Liquid-vapour regenerative heat exchanger for vapour compression system, effect of suction vapour super heat and liquid sub cooling, actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine, Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; Azeotropes; Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;

UNIT IV

Ice manufacture, principles and systems of ice production, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice; Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations; Refrigerated transport: Handling and distribution, cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display;

UNIT V

Air-conditioning: Meaning, factors affecting comfort air-conditioning, classification, sensible heat factor, industrial air-conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air-conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air-conditioning systems; humidifiers and dehumidifiers; Cooling load calculations: Load sources, product cooling, conducted heat, convicted heat, internal heat sources, heat of respiration, peak load; etc.

Textbooks:

1. Arora, C. P. "Refrigeration and Air Conditioning". Tata MC Graw Hill Publishing Co.Ltd., New Delhi. 1993.

1.	Adithan, M. and Laroiya, S. C. "Practical Refrigeration and Air Conditioning". Wiley Estern Ltd., New
	Delhi 1991

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-II Sem L T P C 3 0 0 3

(20A54701) WAVELET TRANSFORMS AND ITS APPLICATIONS (Open Elective-II)

Course Objectives:

This course provides the students to understand Wavelet transforms and its applications.

Course Outcomes:

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

UNIT I Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems - Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis - The Discrete Wavelet Transform the Discrete-Time and Continuous Wavelet Transforms.

UNIT II A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT III Filter Banks and the Discrete Wavelet Transform

Analysis - From Fine Scale to Coarse Scale- Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - Different Points of View.

UNIT IV Time-Frequency and Complexity

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Textbooks:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

Reference Books:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

Online Learning Resources:

https://www.slideshare.net/RajEndiran1/introduction-to-wavelet-transform-51504915

B.Tech III-II Sem L T P C 3 0 0 3

(20A56701) PHYSICS OF ELECTRONIC MATERIALS AND DEVICES (Open Elective-II)

Course Objectives:

- To impart the fundamental knowledge on various materials, their properties and applications.
- To provide insight into various semiconducting materials, and their properties.
- To enlighten the characteristic behavior of various semiconductor devices.
- To provide the basics of dielectric and piezoelectric materials and their properties.
- To explain different categories of magnetic materials, mechanism and their advanced applications.

Course Outcome: At the end of the course the student will be able

- To understand the fundamentals of various materials.
- To exploit the physics of semiconducting materials
- To familiarize with the working principles of semiconductor-based devices.
- To understand the behaviour of dielectric and piezoelectric materials.
- To identify the magnetic materials and their advanced applications.

UNIT I Fundamentals of Materials Science

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. Basic idea of point, line and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RT and glow discharge).

UNIT II Semiconductors

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor devices

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Construction and working principles of: Light emitting diodes, Heterojunctions, Transistors, FET and MOSFETs.

UNIT IV Dielectric Materials and their applications:

Introduction, Dielectric properties, Electronic polarizability and susceptibility, Dielectric constant and frequency dependence of polarization, Dielectric strength and dielectric loss, Piezoelectric properties.

UNIT V Magnetic Materials and their applications

Introduction, Magnetism & various contributions to para and dia magnetism, Ferro and Ferri magnetism and ferrites, Concepts of Spin waves and Magnons, Anti-ferromagnetism, Domains and domain walls, Coercive force, Hysteresis, Nano-magnetism, Super-paramagnetism – Properties and applications.

Textbooks

- 1. Principles of Electronic Materials and Devices- S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd., 3rd edition, 2007.
- 2. Electronic Components and Materials- Grover and Jamwal, Dhanpat Rai and Co.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning, 6th edition
- 2. Electronic Materials Science-Eugene A. Irene, , Wiley, 2005
- 3. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd., , 2nd Edition, 2011
- 4. A First Course In Material Science- by Raghvan, McGraw Hill Pub.
- 5. The Science and Engineering of materials- Donald R.Askeland, Chapman& Hall Pub.

NPTEL courses linkshttps://nptel.ac.in/courses/113/106/113106062/

https://onlinecourses.nptel.ac.in/noc20_mm02/preview, https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-mm07

B.Tech III-II Sem

L T P C
3 0 0 3

(20A51701) CHEMISTRY OF POLYMERS AND ITS APPLICATIONS

Course Objectives:

- To understand the basic principles of polymers
- To synthesize the different polymeric materials and their characterization by various instrumental methods.
- To impart knowledge to the students about fundamental concepts of Hydro gels of polymer networks, surface phenomenon by micelles
- To enumerate the applications of polymers in engineering

Course Outcome

- At the end of the course, the student will be able to:
- Understand the state of art synthesis of Polymeric materials
- Understand the hydro gels preparation, properties and applications in drug delivery system.
- Characterize polymers materials using IR, NMR, XRD.
- Analyze surface phenomenon fo micelles and characterise using photoelectron spectroscopy, ESCA and Auger spectroscopy

UNIT I: Polymers-Basics and Characterization

Basic concepts: monomers, repeat units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: condensation, addition, radical chain, ionic and coordination and copolymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution Measurement of molecular weight: end group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Unit II: Synthetic Polymers

Addition and

condensation polymerization processes – Bulk, Solution, Suspension and Emulsion polymerization.

Preparation and significance, classification of polymers based on physical properties, Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications.

Preparation of Polymers based on different types of monomers, Olefin polymers, Diene polymers, nylons, Urea - formaldehyde, phenol - formaldehyde and melamine Epoxy and Ion exchange resins. Characterization of polymers by IR, NMR, XRD.

UNIT III: Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEAK.

Learning Outcomes:

UNIT IV: Hydrogels of Polymer networks and Drug delivery

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Introduction to drug systems including, drug development, regulation, absorption and disposition, routes of administration and dosage forms. Advanced drug delivery systems and controlled release.

UNIT V: Surface phenomena

Surface tension, adsorption on solids, electrical phenomena at interfaces including electrokinetics, micelles, reverse micelles, solubilization. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

- A Text book of Polymer science, Billmayer
 Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
- 3. Advanced Organic Chemistry, B.Miller, Prentice Hall
- Polymer Chemistry G.S.Mishra
 Polymer Chemistry Gowarikar
 Physical Chemistry Galston

- 7. Drug Delivery- Ashim K. Misra

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A01704) COST EFFECTIVE HOUSING TECHNIQUES (Open Elective Course - III)

Course Objectives:

- To understand the requirements of structural safety for future construction.
- To know about the housing scenario, housing financial systems land use and physical
- planning for housing and housing the urban poor
- To know the traditional practices of rural housing
- To know the different innovative cost effective construction techniques
- To know the alternative building materials for low cost housing.

Course Outcomes:

- To know the repair and restore action of earthquake damaged non engineered buildings and ability to understand the requirements of structural safety for future construction
- To know about the housing scenario, housing financial systems land use and physical planning for housing and housing the urban poor
- Apply the traditional practices of rural housing
- Understand the different innovative cost effective construction techniques
- Suggest the alternative building materials for low cost housing

UNIT I

- a) Housing Scenario: Introducing Status of urban housing Status of Rural Housing
- b) **Housing Finance**: Introducing Existing finance system in India Government role as facilitator Status at Rural Housing Finance Impedimently in housing finance and related issues
- c) Land use and physical planning for housing: Introduction Planning of urban land Urban land ceiling and regulation act Efficiency of building bye lass Residential Densities
- d) **Housing the urban poor :**Introduction Living conditions in slums Approaches and strategies for housing urban poor

UNIT II

Development and adoption of low cost housing technology

Introduction - Adoption of innovative cost effective construction techniques - Adoption of precast elements in partial prefatroices - Adopting of total prefactcation of mass housing in India- General remarks on pre cast rooting/flooring systems -Economical wall system - Single Brick thick loading bearing wall - 19cm thick load bearing masonry walls - Half brick thick load bearing wall - Fly-ash gypsum thick for masonry - Stone Block masonry - Adoption of precast R.C. plank and join system for roof/floor in the building

UNIT III

Alternative building materials for low cost housing

Introduction - Substitute for scarce materials - Ferro-cement - Gypsum boards - Timber substitutions - Industrial wastes - Agricultural wastes - alternative building maintenance

Low cost Infrastructure services:

Introduce - Present status - Technological options - Low cost sanitation - Domestic wall - Water supply, energy

UNIT IV

Rural Housing: Introduction traditional practice of rural housing continuous - Mud Housing technology Mud roofs - Characteristics of mud - Fire treatment for thatch roof - Soil stabilization - Rural Housing programs

UNIT V

Housing in Disaster prone areas:

Introduction – Earthquake - Damages to houses - Traditional prone areas - Type of Damages and Railways of non-engineered buildings - Repair and restore action of earthquake Damaged non-engineered buildings recommendations for future constructions. Requirement's of structural safety of thin precast roofing units against Earthquake forces Status of R& D in earthquake strengthening measures - Floods, cyclone, future safety

Textbooks:

- 1. Building materials for low income houses International council for building research studies and documentation.
- 2. Hand book of low cost housing by A.K.Lal Newage international publishers.
- 3. Low cost Housing G.C. Mathur by South Asia Books

Reference Books:

- 1. Properties of concrete Neville A.m. Pitman Publishing Limited, London.
- 2. Light weight concrete, Academic Kiado, Rudhai.G Publishing home of Hungarian Academy of Sciences 1963.
- 3. Modern trends in housing in developing countries A.G. Madhava Rao, D.S. Rama chandra Murthy &G.Annamalai. E. & F. N. Spon Publishers

Online Learning Resources:

https://nptel.ac.in/courses/124107001

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A02704) IoT APPLICATIONS IN ELECTRICAL ENGINEERING (Open Elective Course – III)

Course Objectives:

- Understand basics of Internet of Things and Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- Analyze motion less and motion detectors in IoT applications
- Understand about Analyze applications of IoT in smart grid
- Apply the concept of Internet of Energy for various applications

Course Outcomes:

- Understand the concept of IoT in Electrical Engineering
- Analyze various types of motionless sensors and various types of motion detectors
- Apply various applications of IoT in smart grid
- Design future working environment with Energy internet

UNIT I SENSORS

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

UNIT II OCCUPANCY AND MOTION DETECTORS

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

UNIT III MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

UNIT IV IoT FOR SMART GRID

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

UNIT V INTERNET of ENERGY (IoE)

Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid

Textbooks:

- 1. Jon S. Wilson, Sensor Technology Hand book, Newnes Publisher, 2004
- 2. Tai Ran Hsu, MEMS and Microsystems: Design and manufacture, 1st Edition, Mc Grawhill Education, 2017
- 3. Ersan Kabalci and Yasin Kabalci, From Smart grid to Internet of Energy, 1st Edition, Academic Press, 2019

Reference Books:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, Energy Harvesting Systems for IoT Applications: Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, Internet of Things, Wiley, 2019

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc22_cs96/preview
- 2. https://nptel.ac.in/courses/108108123
- 3. https://nptel.ac.in/courses/108108179

B.Tech IV-I Sem

 \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{C}

3 0 0 3 (20A03704) PRODUCT DESIGN AND DEVELOPMENT (Open Elective-III)

Course Objectives:

- To Design products creatively while applying engineering design principles.
- To Apply principles of human factors, ethics and environmental factorsin product design.
- To Work in groups or individually in their pursuit of innovative product design.
- To implement value design for optimum product cost.

Course Outcomes: After successful completion of the course, the student will be able to

- Apply knowledge of basic science and engineering fundamentals
- Undertake problem identification, formulation and solution
- Understanding of the principles of sustainable design and development
- Understanding of professional and ethical responsibilities and commitment to them

UNIT I Product Development Process

General problem-solving process - Flow of Work during the process of designing - Activity Planning Timing and scheduling, Planning Project and Product Costs - Effective Organization Structures - Interdisciplinary Cooperation, Leadership and Team behaviour.

UNIT II Task Clarification

Importance of Task Clarification - Setting up a requirements list - Contents, Format, Identifying the requirements, refining and extending the requirements, Compiling the requirements list, Examples. Using requirements lists - Updating, Partial requirements lists, Further uses - Practical applications of requirements lists.

UNIT III Conceptual Design

Steps in Conceptual Design. Abstracting to identify the essential problems - Aim of Abstraction, Broadening the problem. Formulation, Identifying the essential problems from the requirements list, establishing functions structures, Overall function, Breaking a function down into sub-functions. Developing working structures - Searching for working principles, Combining Working Principles, Selecting Working Structures, Practical Application of working structures. Developing Concepts - Firming up into principle solution variants, Evaluating principle solution variants, Practical Applications of working structures. Examples of Conceptual Design - One Handed Household Water Mixing Tap, Impulse - Loading Test Rig.

UNIT IV Embodiment Design

Steps of Embodiment Design, Checklist for Embodiment Design Basic rules of Embodiment Design Principles of Embodiment Design - Principles of Force Transformations, Principles of Division of Tasks, Principles of Self-Help, Principles of Stability and Bi-Stability, Principles of Fault-Free Design Guide for Embodiment Design - General Considerations, Design to allow for expansion, Design to allow for creep and relaxation, Design against Corrosion, Design to minimize wear, Design to Ergonomics, Design for Aesthetics, Design for Production, Design for Assembly, Design for Maintenance, Design for Recycling, Design for Minimum risk, Design to standards. Evaluation of Embodiment Designs.

UNIT V Mechanical Connections, Mechatronics And Adaptronics:

Mechanical Connections - General functions and General Behaviour, Material connections, From Connections, Force connections, Applications. Mechatronics - General Architecture and Terminology, Goals and Limitations, Development of Mechatronic Solution, Examples. Adaptronics - Fundamentals and Terminology, Goals and Limitations, Development of Adaptronics Solutions, Examples.

Textbooks:

1. G.Paul; W. Beitzetal, Engineering Design, Springer International Education, 2010.

2. Kevin Otto: K. Wood, Product Design And Development, Pearson Education, 2013.

References:

- 1. Kenith B. Kahu, Product Planning Essentials, Yes dee Publishing, 2011.
- 2. K.T. Ulrich, Product Design and Development, TMH Publishers, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112107217
- https://nptel.ac.in/courses/112104230
- https://www.youtube.com/watch?v=mvaqZAFdL6U
- https://nptel.ac.in/courses/107103082
- https://quizxp.com/nptel-product-design-and-manufacturing-assignment-5/

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A05704) WEB TECHNOLOGIES (Open Elective-III)

Course Objectives:

The course is designed to Introduce the key technologies that have been developed as part of the birth and maturation of the World Wide Web.

Course Outcomes:

- Understand the Web essentials.
- Develop web pages using XHTML
- Apply style to web pages using CSS
- Write scripts for client side
- Develop and transform XML documents.

UNIT I Web Essentials: Clients, Servers, and Communication

The Internet, Basic Internet protocols, WWW, HTTP request message, HTTP response message, Web clients, Web Servers, Case study.

UNIT II Markup Languages: XHTML 1.0

An introduction to HTML, Basic XHTML syntax and semantics, fundamental HTML elements, Relative URLs, Lists, Tables, Frames, Forms, Defining XHTML's abstract syntax, Creating HTML documents.

UNIT III Cascading Style Sheets

Introduction, features, core syntax, style sheets and HTML, style rule cascading and inheritance, text properties, Box model, normal flow box layout, beyond the normal flow, lists, tables, cursor styles.

UNIT IV Client-side programming: JavaScript

Basic syntax, variables and data types, statements, operators, literals, functions, objects, Arrays, built-in objects, JavaScript debuggers.

UNIT V Representing Web Data: XML

Documents and vocabularies, Versions and declaration, Namespaces, Ajax, DOM and SAX parsers, transforming XML documents, XPath, XSLT, Displaying XML documents in Web browsers.

Textbooks:

1. J.C. Jackson, Web technologies: A computer science perspective, Pearson.

Reference Books:

- 1. Sebesta, Programming world wide web, Pearson.
- 2. Dietel and Nieto, Internet and World Wide Web How to program, Pearson Education
- 3. Chris Bates, Web Programming, building internet applications, 2nd edition, WILEY, Dreamtech

Online Learning Resources:

http://getbootstrap.com/

https://www.w3schools.com/whatis/

https://nptel.ac.in/courses/106105084

B.Tech IV-I Sem

L T P C

3 0 0 3

(20A05704b) VR & AR FOR ENGINEERS (Open Elective Course – III)

Course Objectives:

- Introduce to the design of visualization tools
- Demonstrate Virtual reality
- Learn Virtual reality animation and 3D Art optimization
- Understand the foundational principles describing how hardware, computer vision algorithms function
- Explore the history of spatial computing and design interactions

Course Outcomes:

- Apply VR/MR/AR in various fields in industry
- Design Data visualization tools
- Design audio and video interaction paradigms
- Apply technical and creative approaches to make successful applications and experiences.
- Explain how the humans interact with computers

UNIT I

Computer generated worlds: what is augmented reality? what is virtual reality?

Understanding virtual space: defining visual space and content, defining position and orientation in three dimensions, navigation

The Mechanics of Sight: the visual path way, spatial vision, and Depth Cues.

Component Technologies of Head mounted Displays: Display fundamentals, related terminology and concepts, optical Architectures.

UNIT II

Augmented Displays: Binocular augmenting displays, Monocular augmenting displays.

Fully immersive Displays: PC-Console driven displays, smartphone based displays, CAVES and Walls, Hemispheres and Domes.

The Mechanics of hearing: Defining sound, the auditory pathway, sound cues and localization, the vestibular system.

Audio displays: Conventional audio

UNIT III

The Mechanics of Feeling: The Science of feeling, Anatomy and Composition of the skin.

Tactile and force feedback Devices: Haptic illusions, tactile feedback devices, Force feedback devices.

Sensors for tracking Position, and orientation and motion: introduction to sensor technologies, optical trackers, beacon trackers, electromagnetic trackers, inertial sensors, acoustic sensors.

Devices to enable navigation and interaction: 2D vs 3D interaction and navigation, the importance of a manual interface, hand and gesture tracking, whole body tracking, gaming and entertainment interfaces, navigating with your mind.

UNIT IV

Gaming and Entertainment: Virtual reality and the arts, gaming, immersive video/ cinematic virtual reality.

Architecture and Construction: Artificial spaces, architectural design: Manage group architectures, Construction management, real estate sales applications, architectural acoustics.

Science and engineering: Simulate and innovate, naval architecture and marine engineering,

automotive engineering, aerospace engineering, nuclear engineering and manufacturing. **Health and medicine**: advancing the field of medicine, training applications, treatment applications.

UNIT V

Aerospace and Defence: Flight simulation and training, mission planning and rehearsal, dismounted soldier situational awareness, advanced cockpit avionics, space operations.

Education: Tangible skills education, theory, knowledge acquisition and concept formation.

Information control and big data visualization: What is big data?, big data analytics and human vision.

Telerobotics and Telepresence: Defining Telerobotics and Telepresence, space applications and robonaut, undersea applications, Terrestrial and airborne applications.

Textbooks:

1. Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

Reference Books:

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented& Virtual Realities", O'REILLY

Online Learning Resources:

- https://www.coursera.org/learn/intro-augmented-virtual-mixed-extended-reality-technologiesapplications-issues
- 2. https://www.coursera.org/learn/ar

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A05704c) SOFTWARE ENGINEERING (Open Elective Course – III)

Course Objectives:

- To learn the basic concepts of software engineering and life cycle models
- To explore the issues in software requirements specification and enable to write SRS documents for software development problems
- To elucidate the basic concepts of software design and enable to carry out procedural and object oriented design of software development problems
- To understand the basic concepts of black box and white box software testing and enable to design test cases for unit, integration, and system testing
- To reveal the basic concepts in software project management

Course Outcomes (CO):

After completion of the course, students will be able to

- Obtain basic software life cycle activity skills.
- Design software requirements specifications for given problems.
- Implement structure, object oriented analysis and design for given problems.
- Design test cases for given problems.
- Apply quality management concepts at the application level.

UNIT - I Basic concepts in software engineering and software Lecture 8Hrs project management

Basic concepts: abstraction versus decomposition, evolution of software engineering techniques, Software development life cycle (SDLC) models: Iterative waterfall model, Prototype model, Evolutionary model, Spiral model, RAD model, Agile models, software project management: project planning, project estimation, COCOMO, Halstead's Software Science, project scheduling, staffing, Organization and team structure, risk management, configuration management.

UNIT - II Requirements analysis and specification Lectu

The nature of software, The Unique nature of Webapps, Software Myths, Requirements gathering and analysis, software requirements specification, Traceability, Characteristics of a Good SRS Document, IEEE 830 guidelines, representing complex requirements using decision tables and decision trees, overview of formal system development techniques, axiomatic specification, algebraic specification.

UNIT - III Software Design

Lecture 9Hrs

Good Software Design, Cohesion and coupling, Control Hierarchy: Layering, Control Abstraction, Depth and width, Fan-out, Fan-in, Software design approaches, object oriented vs. function oriented design. Overview of SA/SD methodology, structured analysis, Data flow diagram, Extending DFD technique to real life systems, Basic Object oriented concepts, UML Diagrams, Structured design, Detailed design, Design review, Characteristics of a good user interface, User Guidance and Online Help, Mode-based vs Mode-less Interface, Types of user interfaces, Component-based GUI development, User interface design methodology: GUI design methodology.

UNIT - IV Coding and Testing

Lecture 9Hrs

Coding standards and guidelines, code review, software documentation, Testing, Black Box Testing, White Box Testing, debugging, integration testing, Program Analysis Tools, system testing, performance testing, regression testing, Testing Object Oriented Programs.

UNIT - V Software quality, reliability, and other issues

Lecture 9Hrs

Software reliability, Statistical testing, Software quality and management, ISO 9000, SEI capability maturity model (CMM), Personal software process (PSP), Six sigma, Software quality metrics, CASE and its scope, CASE environment, CASE support in software life cycle, Characteristics of software maintenance, Software reverse engineering, Software maintenance processes model, Estimation maintenance cost. Basic issues in any reuse program, Reuse approach, Reuse at organization level.

Textbooks:

- 1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.
- 2. Pressman R, "Software Engineering- Practioner Approach", McGraw Hill.

Reference Books:

- 4. Somerville, "Software Engineering", Pearson 2.
- 5. Richard Fairley, "Software Engineering Concepts", Tata McGraw Hill.
- 6. JalotePankaj, "An integrated approach to Software Engineering", Narosa

Online Learning Resources: https://nptel.ac.in/courses/106/105/106105182/

http://peterindia.net/SoftwareDevelopment.html

B.Tech IV-I Sem L T P C 3 0 0 3

(20A27704) HUMAN NUTRITION (OPEN ELECTIVE-III)

Course Objectives:

- To get knowledge on Concepts and content of nutrition source and metabolic functions.
- To know about Balanced diets for various groups; Diets and disorders, recommended dietary allowances
- To learn about Epidemiology of under nutrition and over nutrition.
- To understand Nutrition and immunity.

Course Outcomes:

- To study the Salient features of Concepts and content of nutrition, Malnutrition, Nutrition education
- Assessment of nutritional status, disorders Food fad and faddism.

UNIT I

Concepts and content of nutrition: Nutrition agencies; Nutrition of community; Nutritional policies and their implementation; Metabolic function of nutrients. Nutrients: Sources, functions, digestion, absorption, assimilation and transport of carbohydrates, proteins and fats in human beings;

UNIT II

Water and energy balance: Water intake and losses; Basal metabolism- BMR; Body surface area and factors affecting BMR Formulation of diets: Classification of balanced diet; Balanced diets for various groups; Diets and disorders. Recommended dietary allowances (RDA); For various age group; According physiological status; Athletic and sports man; Geriatric persons

UNIT III

Malnutrition: Type of Malnutrition; Multi-factorial causes; Epidemiology of under nutrition and over nutrition; Nutrition and immunity.

UNIT IV

Nutrition education Assessment of nutritional status: Diet surveys; Anthropometry; Clinical examination; Biochemical assessment; Additional medical information

UNIT V

Blood constituents; Hormone types; Miscellaneous disorders Food fad and faddism. Potentially toxic substances in human food.

Textbooks:

- 1. Swaminathan M, Advanced Text Book on Food & Nutrition (Volume I and II), The Bangalore Printing and Publishing Co.Ltd, Bangalore. 2006
- 2. Stewart Truswell, ABC of Nutrition (4th edition), BMJ Publishing Group 2003, ISBN 0727916645.
- 3. Martin Eastwood, Principles of Human Nutrition, Blackwell Publishing, Boca Rotan

- 1. Mike Lean and E. Combet ,Barasi's Human Nutrition A Health Perspective , Second Edition CRC Press, London
- 2. Introduction to Human Nutrition, Micheal J. G., Susan A.L. Aedin C. and Hester H.V, Wiley-Blackwell Publication, UK 2009, ISBN 9781405168076
- 3. Bogert L.J., Goerge M.B, Doris H.C., Nutrition and Physical Fitness, W.B. Saunders Company, Toronto, Canada

B.Tech IV-I Sem

L T P C 3 0 0 3

(20A54702) NUMERICAL METHODS FOR ENGINEERS (OPEN ELECTIVE-III)

Course Objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

Course Outcomes:

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

UNIT I Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

UNIT II Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

UNIT III Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae Gauss forward and backward formula, Stirling's formula, Bessel's formula

UNIT IV Numerical Integration

Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule

UNIT V Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Textbooks:

- 3. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 4. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.
- 5. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

https://slideplayer.com/slide/8588078/

B.Tech IV-I Sem

L T P C 3 0 0 3

(20A56702) SENSORS AND ACTUATORS FOR ENGINEERING APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To provide exposure to various kinds of sensors and actuators and their engineering applications.
- To impart knowledge on the basic laws and phenomenon behind the working of sensors and actuators
- To enlighten the operating principles of various sensors and actuators
- To educate the fabrication of sensors
- To identify the required sensor and actuator for interdisciplinary application

Course Outcomes:

- To recognize the need of sensors and actuators
- To understand working principles of various sensors and actuators
- To identify different type of sensors and actuators used in real life applications
- To exploit basics in common methods for converting a physical parameter into an electrical quantity
- To make use of sensors and actuators for different applications

UNIT I Introduction to Sensors and Actuators

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Materials used and their fabrication process: Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Hydraulic, Pneumatic, Mechanical, Electrical, Magnetic, Electromagnetic, piezo-electric and piezo-resistive actuators, Simple applications of Actuators.

UNIT II Temperature and Mechanical Sensors

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermo-resistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermo-electric sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: strain gauges, tactile sensors, Pressure sensors: semiconductor, piezoresistive, capacitive, VRP.

UNIT III Optical and Acoustic Sensors

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo-resistors based sensors, Photomultipliers, Infrared sensors: thermal, PIR, thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones.

UNIT IV Magnetic, Electromagnetic Sensors and Actuators

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magneto-strictive sensors and actuators, Voice coil actuators (speakers and speaker-like actuators).

UNIT V Chemical and Radiation Sensors

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Geiger-Mueller counters, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.
- 5. Principles of Industrial Instrumentation By D. Patranabhis

NPTEL courses links

https://onlinecourses.nptel.ac.in/noc21_ee32/preview

B.Tech IV-I Sem L T P C 3 0 0 3

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, coprecipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

- 1. Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 3. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

B.Tech IV-I Sem

L T P C

(20A01705) HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT PRACTICES (Open Elective Course-IV)

Course Objectives:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard . control, environmental issues and management
- To get exposed to accidents modeling, accident investigation and reporting, concepts of. HAZOP and PHA
- To be familiar with safety measures in design and process operations.
- To get exposed to risk assessment and management, principles and methods

Course Outcomes:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard.
- To get exposed to accidents modelling, accident investigation and reporting control, environmental issues and management
- To get concepts of HAZOP and PHA.
- To be familiar with safety measures in design and process operations.

UNIT I

Introduction to safety, health and environmental management - Basic terms and their definitions - Importance of safety - Safety assurance and assessment - Safety in design and operation - Organizing for safety.

UNIT II

Hazard classification and assessment - Hazard evaluation and hazard control.

Environmental issues and Management - Atmospheric pollution - Flaring and fugitive release - Water pollution - Environmental monitoring - Environmental management.

UNIT III

Accidents modelling - Release modelling - Fire and explosion modelling - Toxic release and dispersion Modelling

UNIT IV

Accident investigation and reporting - concepts of HAZOP and PHA.

Safety measures in design and process operations - Inserting, explosion, fire prevention, sprinkler systems.

UNIT V

Risk assessment and management - Risk picture - Definition and characteristics - Risk acceptance criteria - Quantified risk assessment - Hazard assessment - Fatality risk assessment - Risk management principles and methods.

Textbooks:

- 1. Process Safety Analysis, by Skelton. B, Gulf Publishing Company, Houston, 210pp., 1997.
- 2. Risk Management with Applications from Offshore Petroleum Industry, by TerjeAven and Jan Erik Vinnem, Springer, 200pp., 2007.

Reference Books:

- 1. Introduction to Safety and Reliability of Structures, by Jorg Schneider
- 2. Structural Engineering Documents Vol. 5, International Association for Bridge and Structural Engineering (IABSE), 138pp., 1997.
- 3. Safety and Health for Engineers, by Roger L. Brauer, John Wiley and Sons Inc. pp. 645-663, 2006.
- 4. Health, Safety and Environmental Management in Offshore and Petroleum

Engineering, Srinivasan Chandrasekaran, John Wiley and Sons, 2016.

Online Learning Resources: https://nptel.ac.in/courses/114106017

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A02705) RENEWABLE ENERGY SYSTEMS (Open Elective Course – IV)

Course Objectives:

- Understand various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Analyze solar thermal and solar PV systems
- Understand the concept of geothermal energy and its applications, biomass energy, the concept of Ocean energy and fuel cells.

Course Outcomes:

- Understand various alternate sources of energy for different suitable application requirements
- Understand the concepts of solar energy generation strategies and wind energy system
- Analyze Solar and Wind energy systems
- Understand the basics of Geothermal Energy Systems, various diversified energy scenarios of ocean, biomass and fuel cells

UNIT I SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV ENERGY SYSTEMS

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

UNIT III WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; windmill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

UNIT IV GEOTHERMAL ENERGY

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT V MISCELLANEOUS ENERGY TECHNOLOGIES

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration **Fuel cell**: Principle of working of various types of fuel cells and their working, performance and

limitations.

Textbooks:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

Reference Books:

- 1. S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 2. B H Khan, "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

B.Tech IV-I Sem L T P C 3 0 0 3

(20A03705) INTRODUCTION TO COMPOSITE MATERIALS (Open Elective-IV)

Course Objectives:

- Introduce composite materials and their applications.
- Build proper background for stress analysis in the design of composite structures.
- Familiarize various properties of composite materials.
- Focus on biodegradable composites.

Course Outcomes:

- Identify the practical applications of composites. (L3)
- Identify the polymer matrix composites. (L3)
- Classify of bio- degradable composites. (L2)
- Outline the various types of ceramic matrix materials. (L2)

UNIT I Introduction to composites

Fundamentals of composites – Definition – classification– based on Matrix – based on structure – Advantages and applications of composites - Reinforcement – whiskers – glass fiber – carbon fiber - Aramid fiber – ceramic fiber – Properties and applications.

UNIT II Polymer matrix composites

Polymers - Polymer matrix materials - PMC processes - hand layup processes - spray up processes - resin transfer moulding - Pultrusion - Filament winding - Auto clave based methods - Injection moulding - sheet moulding compound - properties and applications of PMCs.

UNIT III Metal matrix composites

Metals - types of metal matrix composites - Metallic Matrices. Processing of MMC - Liquid state processes - solid state processes - In-situ processes. Properties and applications of MMCs.

UNIT IV Ceramic matrix composites

Ceramic matrix materials – properties – processing of CMCs –Sintering - Hot pressing – Infiltration – Lanxide process – Insitu chemical reaction techniques – solgel polymer pyrolsis –SHS - Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Properties and Applications of CCMs.

UNIT V Advances & Applications of composites

Advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Properties and applications of Carbon-carbon composites. Composites for aerospace applications.Bio degradability, introduction of bio composites, classification, processing of bio composites, applications of bio composites - Mechanical, Biomedical, automobile Engineering.

Textbooks:

- 1. Chawla K.K, Composite materials, 2/e, Springer Verlag, 1998.
- 2. Mathews F.L. and Rawlings R.D., Chapman and Hall, Composite Materials: Engineering and Science, 1/e, England, 1994.

Reference Books:

- 1. H K Shivanand, B V Babu Kiran, Composite Materials, ASIAN BOOKS, 2011.
- 2. A.B. Strong, Fundamentals of Composite Manufacturing, SME Publications, 1989.
- 3. S.C. Sharma, Composite materials, Narosa Publications, 2000.
- 4. Maureen Mitton, Hand Book of Bio plastics & Bio composites for Engineering applications, John Wiley publications, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112104229
- https://nptel.ac.in/courses/112104168
- https://nptel.ac.in/courses/101104010
- https://nptel.ac.in/courses/105108124
- https://nptel.ac.in/courses/112104221

B.Tech IV-I Sem L T P C 3 0 0 3

(20A05705a) CYBER SECURITY (Open Elective-IV)

Course Objectives:

The course is designed to provide awareness on different cyber crimes, cyber offenses, tools and methods used in cybercrime.

Course Outcomes:

- Classify the cybercrimes and understand the Indian ITA 2000
- Analyse the vulnerabilities in any computing system and find the solutions
- Predict the security threats of the future
- Investigate the protection mechanisms
- Design security solutions for organizations

UNIT I Introduction to Cybercrime

Introduction, Cybercrime, and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, And Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

UNIT II Cyber Offenses: How Criminals Plan Them

Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber Cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing

UNIT III Cybercrime: Mobile and Wireless Devices

Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies an Measures in Mobile Computing Era, Laptops.

UNIT IV Tools and Methods Used in Cybercrime

Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horse and Backdoors, Steganography, DoS and DDoS attacks, SQL Injection, Buffer Overflow.

UNIT V Cyber Security: Organizational Implications

Introduction, Cost of Cybercrimes and IPR issues, Web threats for Organizations, Security and Privacy Implications, Social media marketing: Security Risks and Perils for Organizations, Social Computing and the associated challenges for Organizations.

Textbooks:

1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA.

Reference Books:

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J.David Irwin. CRC Press T&F Group

Online Learning Resources:

http://nptel.ac.in/courses/106105031/40 http://nptel.ac.in/courses/106105031/39 http://nptel.ac.in/courses/106105031/38

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A05705b)INTRODUCTION TO FULL STACK DEVELOPMENT (Open Elective Course – IV)

Course Objectives:

- To build foundation on HTML this will help developer to use HTML concepts for building responsive web application.
- To Develop HTML based Single application for Browsers.
- To Understand OOPs concepts and its applications by building competency in object —oriented Programming.
- To implement frontend and backend scenarios using Web Sockets.
- To become proficient in Bootstrap concepts.

Course Outcomes:

- Able to how to program a browser like using JavaScript, jQuery, Angular, or Vue.
- Distinguishing trends in multi-device implementation.
- Create webpages that function using external data.
- Disambiguate the different structures that a no SQL database may represent.
- Derive information from data and implement data into applications.

UNIT I

e The Modern Web: Rise of the Web, Mobile Web, The State of HTML, Applications vs Web Sites, Keeping Up.

Planning Your Work: Identifying Requirements, Defining the Work, Tracking the Work Continuous Improvement, Prioritization &Estimation, Managing Bugs, Continuous Delivery

User Experience: Information Architecture, Getting the User Experience Right, Polishing the User Experience, Implementing the User Experience.

UNIT II

Designing Systems: System Architectures, Identifying Concepts, Identifying User Interactions, Handling Commonalities, Working with Legacy and External Dependencies, Component Interactions, Applications vs. Modules, Cross-Functional Requirements, Caching, Designing for Failure, Designing Modules, Refactoring, Tools, Changing Your Architecture.

Ethics: Privacy, Cognitive Load, Energy Usage, Trust.

Front End: HTML, From Server to Browser, Styling, Components, Responsive Design, Progressive Enhancement to Progressively Enhance, or Not? Mobile First, Feature Detection, Progressive Enhancement of Style, When Not Using Progressive Enhancement, Search Engine Optimization, Build Tools.

UNIT III

Testing: Test-Driven Development, Test Pyramid, Behaviour-Driven Development, Three Amigos, Manual Testing, Visual Testing, Cross-Functional Testing,

JavaScript: Asynchronicity, JavaScript in the Browser, Offline-First Development, Document Object Model, Server-Side JavaScript, Table of Contents viii JavaScript Modules, Structuring Your JavaScript, JavaScript Types, Object-Oriented Programming, Functional Programming, Communicating Between Components, Connecting Components Together, Testing, Build Tools.

Accessibility: Accessible from the Start, Working with Assistive Technologies, Dealing with Interactive UI, Testing for Accessibility, Avoiding Common Mistakes.

UNIT IV

APIs: API Responsibilities, designing a REST API, Securing Your API, Event-Based APIs, Discovering APIs, Using APIs

Storing Data: Types of Databases, To SQL, or NoSQL?, Where to Store Your Data, Accessing Data from Your App, Managing Your Data, Protecting Your Data.

Security: Trust, Responding to Incidents, The Golden Rule, Threats, Security Checklists, Passwords,

Indirect Attacks.

UNIT V

Deployment: Twelve Factor Apps, Developer Machines, Production Environments, Moving Code into Production, Configuring Your Box, Infrastructure, Immutable Infrastructure, Continuous Delivery & Continuous Deployment.

In Production: Fire Drills, Run Books, Monitoring, Responding to Incidents

Constant Learning: Collecting, Experiments, Analysing Results, Hypothesis-Driven.

Textbook:

1. Chris Northwood, The full Stack Developer, Apress, 2018.

Reference Books:

- 1. Modern Full-Stack Development: Using TypeScript, React, Node.js, Webpack, and Docker, Frank Zammetti.
- 2. Full Stack Web Development for Beginners, Riaz Ahmed.

Online Learning Resources:

1. Learn Full Stack Web Development with 40+ Projects and Exercises | Udemy

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A27705) WASTE AND EFFLUENT MANAGEMENT (OPEN ELECTIVE-IV)

Course Objectives:

- To understand the wastewater treatment process.
- To gain knowledge on waste disposal in various ways.
- To know about advances in wastewater treatment.

Course Outcomes:

 Acquires knowledge on technologies used for chemical and biological methods of waste water and effluent treatment

UNIT I

Wastewater Treatment an Overview: Terminology – Regulations – Health and Environment Concerns in waste water management – Constituents in waste water inorganic – Organic and metallic constituents. Process Analysis and Selection: Components of waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Balance Analysis – Modeling of ideal and non ideal flow in Reactors – Process Selection

UNIT II

Waste disposal methods – Physical, Chemical & Biological; Economical aspects of waste treatment and disposal. Treatment methods of solid wastes: Biological composting, drying and incineration; Design of Solid Waste Management System: Landfill Digester, Vermicomposting Pit.

UNIT III

Introduction: Classification and characterization of food industrial wastes from Fruit and Vegetable processing industry, Beverage industry; Fish, Meat & Poultry industry, Sugar industry and Dairy industry.

Chemical Unit Processes: Role of unit processes in waste water treatment chemical coagulation – Chemical precipitation for improved plant performance chemical oxidation – Neutralization – Chemical Storage

UNIT IV

 $Biological\ Treatment:\ Overview\ of\ biological\ Treatment\ -\ Microbial\ metabolism\ -\ Bacterial\ growth\ and\ energetics\ -\ Aerobic\ biological\ oxidation\ -\ Anaerobic\ fermentation\ and\ oxidation\ -\ Trickling\ filters\ -\ Rotating\ biological\ contractors\ -\ Combined\ aerobic\ processes\ -\ Activated\ sludge\ film\ packing.$

UNIT V

Advanced Wastewater Treatment: Technologies used in advanced treatment – Classification of technologies. Removal of Colloids and suspended particles – Depth Filtration – Surface Filtration – Membrane Filtration-Absorption – Ion Exchange – Advanced oxidation process.

Textbooks:

- 1. Herzka A & Booth RG; "Food Industry Wastes: Disposal and Recovery"; Applied Science Pub Ltd. 1981
- 2. Fair GM, Geyer JC & Okun DA; "Water & Wastewater Engineering"; John Wiley & Sons, Inc. 1986,

- 1. GE; "Symposium: Processing Agricultural & Municipal Wastes"; AVI. 1973,
- 2. Inglett Green JH & Kramer A; "Food Processing Waste Management"; AVI. 1979,
- 3. Rittmann BE & McCarty PL; "Environmental Biotechnology: Principles and Applications"; McGrow-Hill International editions 2001...
- 4. Bhattacharyya B C & Banerjee R; "Environmental Biotechnology"; Oxford University Press.
- 5. Bartlett RE; "Wastewater Treatment; Applied Science" Pub Ltd.
- 6. G. Tchobanoglous, FI Biston, "Waste water Engineering Treatment and Reuse": Mc Graw Hill, 2002
- 7. "Industrial Waste Water Management Treatment and Disposal by Waste Water" 3rd Edition Mc Graw Hill 2008

B.Tech IV-I Sem L T P C 3 0 0 3

(20A54703) NUMBER THEORY AND ITS APPLICATIONS (OPEN ELECTIVE-IV)

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

- Understand number theory and its properties.
- Understand principles on congruences
- Develop the knowledge to apply various applications
- Develop various encryption methods and its applications.

UNIT I Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT II Congruences

Introduction to congruences -Linear congruences-The Chinese remainder theorem-Systems of linear congruences

UNIT III Applications of Congruences

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem- Euler's p hi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT IV Finite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-fermat factorization and factor bases.

UNIT V Cryptology

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers-Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm-Some applications to computer science.

Textbooks:

- 1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
- 2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

- **1.** An Introduction To The Theory Of Numbers, Herbert S. Zuckerman, Hugh L. Montgomery, Ivan Niven, wiley publishers
- 2. Introduction to Analytic number theory-Tom M Apostol, springer
- 3. Elementary number theory, VK Krishnan, Universities press

Online Learning Resources:

 $\underline{https://www.slideshare.net/ItishreeDash3/a-study-on-number-theory-and-its-applications}$

B.Tech IV-I Sem

L T P C
3 0 0 3

(20A56703) SMART MATERIALS AND DEVICES (OPEN ELECTIVE-IV)

Course Objectives:

- To provide exposure to smart materials and their engineering applications.
- To impart knowledge on the basics and phenomenon behind the working of smart materials
- To enlighten the properties exhibited by smart materials
- To educate various techniques used to synthesize and characterize smart materials
- To identify the required smart material for distinct applications/devices

Course Outcomes:

- to recognize the need of smart materials
- to understand the working principles of smart materials
- to know different techniques used to synthesize and characterize smart materials
- to exploit the properties of smart materials
- to make use of smart materials for different applications

UNIT I

Introduction: Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect.

UNIT II: Properties of Smart Materials: Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials

UNIT III: Synthesis of smart materials: Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloying and Thin film deposition techniques: Chemical etching, Sol-gel, spray pyrolysis.

UNIT IV: Characterization techniques: X-ray diffraction, Raman spectroscopy (RS), Fourier-transform infrared reflection (FTIR), UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy, Atomic force microscopy (AFM) and Differential Scanning Calorimetry (DSC).

UNIT V: Materials and Devices: Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials, Electro-rheological and Magneto-rheological materials and Composite materials. Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of the smart materials.

Textbooks:

- 1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc. 2002
- 2. Smart Materials and Structures M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

References:

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2ndEdn., John Wiley & Sons, 2003.
- 4. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic 1. Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, 2002.
- 5. Optical Metamaterials: Fundamentals and Applications -W. Cai and V. Shalaev, springer, 2010.
- 6. Smart Materials and Structures P. L Reece, New Research, Nova Science, 2007

NPTEL courses links

https://nptel.ac.in/courses/112/104/112104173/https://nptel.ac.in/courses/112/104/112104251/

 $https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec$

L T P C **B.Tech IV-I Sem**

3 0 0 3

(20A51703) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT (OPEN **ELECTIVE-IV**)

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

Course Outcomes:

Recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

UNIT I: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

UNIT II: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogenous catalysts, Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

UNIT III: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water-based coatings, Ionic liquids as catalyst and solvent

UNIT IV: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feedstocks: Chemicals from Renewable Feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry: Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

UNIT V: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Textbooks:

- 1. M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition, Oxford University Press, **USA**

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC
- 2. Edited by AlvisePerosa and Maurizio Selva, Hand Book of Green chemistry Volume 8:Green Nanoscience, wiley-VCH, 2013.

HONOURS

B.Tech (ECE)

L T P C
3 1 0 4

(20A04H01) ADAPTIVE SIGNAL PROCESSING

Course Objectives:

This course focuses on adaptive algorithms and solutions for processing signals in amanner that is responsive to a changing environment.

Course Outcomes:

- Design and apply optimal minimum mean square estimators and in particular line are estimators.
- Design, implement and apply Wiener Filters (FIR, non-casual, causal) and evaluate their performance.
- Develop systems on recursive, model-based estimation methods taking the advantage of the statistical properties of the received signals.
- Analyze the performance of adaptive filters and application to practical problems such as beam forming and echo cancellation signal.

UNIT 1

Introduction to Adaptive Systems Adaptive Systems: Definitions, Characteristics, Applications, Example of an Adaptive System. The Adaptive Linear Combiner - Description,

Weight Vectors, Desired Response Performance function - Gradient & Mean Square Error.

UNIT 2

Development of Adaptive Filter Theory & Searching the Performance surface: Introduction to Filtering - Smoothing and Prediction – Linear Optimum Filtering, Problem statement, Principle of Orthogonally - Minimum Mean Square Error, Wiener- Hopf equations, Error Performance - Minimum Mean Square Error, Estimation of phase shift between two narrow band signals using Orthogonal Decomposer.

UNIT 3

Steepest Descent Algorithms: Searching the performance surface – Methods & Ideas of Gradient Search methods - Gradient Searching Algorithm & its Solution - Stability & Rate of

convergence - Learning Curves Gradient Search by Newton's Method, Method of Steepest Descent, Comparison of Learning Curves.

UNIT 4

LMS Algorithm & Applications: Overview - LMS Adaptation algorithms, Stability & Performance analysis of LMS Algorithms - LMS Gradient & Stochastic algorithms - Convergence of LMS algorithm. Applications: Adaptive BFSK, BPSK, ASK demodulators and delay estimation. Adaptive Beam forming, concept of IQ channels, Adaptive filter implementation of Hilbert Transform.

UNIT 5

State Estimators: Introduction to RLS Algorithm, Statement of Kalman filtering problem, The Innovation Process, Estimation of State using the Innovation Process- Expression of Kalman Gain, Filtering Example estimation of state from observations of noisy observed narrow band signals. Target tracking using only DOA.

Textbooks:

- 1. Adaptive Signal Processing Bernard Widrow, Samuel D.Strearns, 2005, PE.
- 2. Adaptive Filter Theory Simon Haykin-, 4 ed., 2002, PE Asia.

- 1. Digital Signal Processing: A Practitioner's Approach, Kaluri V. Rangarao, Ranjan K.Mallik ISBN: 978-0-470-01769-2, 210 pages, November 2006, John Weley (UK)
- 2. Optimum signal processing: An introduction Sophocles.J.Orfamadis, 2 ed., 1988,McGraw-Hill, Newyork
- 3. Adaptive signal processing-Theory and Applications, S.Thomas Alexander, 1986, Springer Verlag.

B.Tech. (ECE)

L T P C

(20A04H02) SOFTWARE DEFINED RADIO

Course Objectives:

- Learn the design of the wireless networks based on the cognitive radio
- Understand the concepts of wireless networks and next generation networks

Course Outcomes:

- Describe basics of the software defined radios
- Understand the architectures of SDR
- Design the wireless networks based on the cognitive radios.
- Explain the concepts behind the wireless networks and next generation networks

UNIT I Introduction to Software Defined Radio

Introduction to Software Defined Radio: Definitions and potential benefits, software radio architecture evolution, technology tradeoffs and architecture implications.

UNIT II SDR Architecture

SDR Architecture: Essential functions of the software radio, basic SDR, hardware architecture, Computational processing resources, software architecture, top level component interfaces, interface topologies among plug and play modules.

UNIT III Introduction to Cognitive Radios

Introduction to Cognitive Radios: Marking radio self-aware, cognitive techniques – position awareness, environment awareness in cognitive radios, optimization of radio resources, Artificial Intelligence Techniques.

UNIT IV Cognitive Radio Architecture

Cognitive Radio Architecture: Cognitive Radio - functions, components and design rules, Cognition cycle - orient, plan, decide and act phases, Inference Hierarchy, Architecture maps, Building the Cognitive Radio Architecture on Software defined Radio Architecture.

UNIT V Next Generation Wireless Networks

Next Generation Wireless Networks: The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.

Textbooks:

- 1. Joseph MitolaIII, Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering, John Wiley & Sons Ltd., 2000.
- 2. Thomas W. Rondeau, Charles W. Bostain, Artificial Intelligence in Wireless communication, ARTECH house, 2009.

- 1. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.
- 2. Ian F. Akyildiz, Won Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next generation / dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.
- 3. Hasari Celebi, Huseyin Arslan, Enabling Location and Environment Awareness in Cognitive Radios, Elsevier Computer Communications, Jan 2008.
- 4. Huseyin Arslan, Cognitive Radio, SDR and Adaptive System, Springer, 2009

B.Tech. (ECE)

L T P C
3 1 0 4

(20A04H03) MICRO ELECTROMECHANICAL SYSTEMS

Course Objectives:

- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of micro fabrication techniques.
- To introduce various sensors and actuators
- To introduce different materials used for MEMS.
- To educate on the applications of MEMS to disciplines beyond electrical and mechanical engineering.

Course Outcomes:

- Explain electrical and mechanical principles of MEMS
- Describe working of electrostatic, thermal and magnetic sensors and actuators
- Demonstrate piezoelectric effect and its applications
- Categorize micromachining processes
- Describe operation of polymer and optical MEMS

UNIT I INTRODUCTION

Intrinsic characteristics of MEMS – Energy domains and Transducers- Sensors and Actuators – Introduction to Micro Fabrication – Silicon based MEMS processes – new materials – Review of Electrical and Mechanical concepts in MEMS – Semiconductor Devices – Stress and Strain Analysis – Flexural Beam Bending- Torsional Deflection.

UNIT II SENSORS AND ACTUATORS-I

Electrostatic Sensors – Parallel Plate Capacitors – Applications – Interdigitated Finger Capacitor – Comb Drive Devices – Micro Grippers – Micro Motors – Thermal Sensing and Actuation – Thermal Expansion – Thermal Couples – Thermal Resistors – Thermal Bimorph – Applications – Magnetic Actuators – Micro magnetic Components – Case Studies of MEMS in Magnetic Actuators- Actuation using Shape Memory Alloys.

UNIT III SENSORS AND ACTUATORS-II

Piezoresistive Sensors – Piezoresistive Sensor Materials – Stress Analysis of Mechanical Elements – Applications to Inertia, Pressure, Tactile and Flow Sensors – Piezoelectric Sensors and Actuators – Piezoelectric Effects – Piezoelectric Materials – Applications to Inertia, Acoustic, Tactile and Flow Sensors.

UNIT IV MICROMACHINING

Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching –Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case Studies –Basic Surface Micro Machining Processes – Structural and Sacrificial Materials – Acceleration of Sacrificial Etch – Striction and Antistriction Methods – LIGA Process – Assembly of 3D MEMS –Foundry Process.

UNIT VPOLYMER AND OPTICAL MEMS

Polymers in MEMS- Polimide - SU-8 - Liquid Crystal Polymer (LCP) - PDMS - PMMA - Parylene - Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile Sensors- Optical MEMS - Lenses and Mirrors - Actuators for Active Optical MEMS.

Textbooks:

- 1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro Systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-El-Hak, Editor, "The MEMS Handbook", CRC Press Baco Raton, 2001.

B.Tech. (ECE)

L T P C
3 1 0 4

(20A04H04) LOW POWER VLSI DESIGN

Course Objectives:

This course addresses a profound analysis on the development of the CMOS & Bi-CMOS digital circuits for a low voltage low power environment

Course Outcomes:

- Understand the concepts of velocity saturation, Impact Ionization and Hot Electron Effect
- Implement Low power design approaches for system level and circuit level measures.
- Design low power adders, multipliers and memories for efficient design of systems.

UNIT I

Fundamentals: Need for Low Power Circuit Design, Sources of Power Dissipation – Static and Dynamic Power Dissipation, Short Circuit Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.

UNIT II

Low-Power Design Approaches: Low-Power Design through Voltage Scaling – VTCMOS circuits, MTCMOS circuits, Architectural Level Approach –Pipelining and Parallel Processing Approaches. Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, Mask level Measures.

UNIT III

Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder's Architectures – Ripple Carry Adders, Carry Look Ahead Adders, Carry Select Adders, Carry Save Adders, Low-Voltage Low-Power Design Techniques – Trends of Technology and Power Supply Voltage, Low-Voltage Low-Power Logic Styles.

UNIT IV

Low-Voltage Low-Power Multipliers: Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh Wooley Multiplier, Booth Multiplier, Introduction to Wallace Tree Multiplier.

UNIT V

Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trendand Development of ROMs, Basics of SRAM, Memory Cell, Precharge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

Textbooks:

- 1. CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 2011.
- 2. Low-Voltage, Low-Power VLSI Subsystems Kiat-Seng Yeo, Kaushik Roy, TMH ProfessionalEngineering.

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011.
- 2. Low Power CMOS Design AnanthaChandrakasan, IEEE Press/Wiley International, 1998.
- **3.** Low Power CMOS VLSI Circuit Design Kaushik Roy, Sharat C. Prasad, John Wiley & Sons, 2000.

B.Tech. (ECE)

L T P C
3 1 0 4

(20A04H05) WIRELESS COMMUNICATIONS

Course Objectives:

- To impart knowledge on different wireless standards and their technical specifications.
- To teach different propagation models.
- To present concepts of 3G/4G Wireless Communication systems to solve the relevant problems.
- To dissimilate different Wireless Technologies such as CDMA, MIMO, and OFDM through performance metrics to find the merits and demerits.

Course Outcomes:

- List Wireless standards and their technical specifications
- Compare different propagation models
- Apply concepts of 3G/4G wireless communication systems to solve problems
- Analyze performance of various 3G/4G wireless communication systems under AWGN and small-scale Fading channel conditions
- Compare different wireless technologies through performance metrics

UNIT I Wireless Standards & Basics of Digital Communication Systems

Introduction to 3G/4G Wireless Communications - Introduction, 2G, 3G, and 4G Wireless standards, Overview of Cellular Service Progression, Problem Solving.

Basics of Digital Communication Systems - Gaussian RV, BER performance of Communication Systems in an AWGN channel - BER for BPSK, SER and BER for QPSK, BER for M-ary PAM, BER for M-ary QAM, BER for M-ary PSK, Binary Signal Detection Problem, Problem Solving.

UNIT II Principles of Wireless Communications

Wireless Communication Environment, Modeling of Wireless Systems, System model for Narrow band Signals, Rayleigh Fading Channel - Baseband model of a Wireless System, BER Performance of Wireless Systems - SNR, and derivation of BER expression under Rayleigh Channel Conditions, Channel Estimation in Wireless Systems, Diversity in Wireless Systems, Multiple Receive Antenna System Model, Symbol Detection in Multiple Antenna Systems, BER for Multi-Antenna Wireless Systems - BER derivation, Channel Estimation for Multi-Antenna Systems.

UNIT III Basics of Channel Modeling

Maximum Delay Spread, RMS delay Spread, Power delay profile, Coherence Bandwidth, Doppler Spread, Impact of Doppler spread on Wireless Channel, Coherence Time, Clarke's Model, Simulation Procedure for flat fading and Frequency Selective Fading Channels, Jakes Model for Wireless Channel Correlation, Implications of Coherence Time, Problem Solving.

UNIT IV

Code Division Multiple Access (CDMA) - Introduction to CDMA, Basic Mechanism, Fundamentals of CDMA Codes, PN sequences and their properties, Multi-User CDMA, Advantages, Near - Far Problem and Power Control, Performance of CDMA Uplink and Downlink Scenarios with Multi users, Asynchronous CDMA, Problem Solving.

Multiple Input Multiple Output (MIMO) Technology: Introduction to MIMO, System Model, MIMO zero-forcing (ZF) Receiver - Properties, Principle of orthogonality, Interpretation of ZF Receiver, MIMO MMSE Receiver - Robustness of MMSE to noise amplification, SNR calculations, Properties of MMSE Receiver, Singular Value Decomposition (SVD) of the MIMO channel, MIMO Capacity, Alamouti and Space Time Codes, Nonlinear MIMO Receiver, MIMO Beam Forming, Problem Solving.

UNIT V

Orthogonal Frequency -Division Multiplexing (OFDM): Motivation and Multicarrier Basics - Multicarrier Transmission, Cyclic Prefix in OFDM, Impact of Cyclic Prefix on Data Rate, Example, BER for OFDM system, MIMO-OFDM, Drawbacks in OFDM - Peak to Average Power Ratio (PAPR), Effect of Frequency offset in OFDM, SC-FDMA - Receiver, and Subcarrier Mapping in SC-FDMA.

Wireless System Planning: Free Space Propagation Model, Ground - Reflection Scenario, Okumura Model, Hata Model, Log normal Shadowing, Receiver Noise Computation, Link Budget Analysis.

Textbooks:

- 1. Aditya K Jagannatham, "Principles of Modern Communication Systems Theory and Practice," McGraw Hill Education, 2016.
- 2. T. S. Rappaport, "Wireless Communications Principles and Practice," Second Edition, Pearson, 2010.

- 1. John Proakis, "Digital Communications," McGraw Hill, 2003
- 2. Modern Digital and Analog Communication Systems, B. P. Lathi. Zhi Ding, International Fourth Edition, 2010.

B.Tech. (ECE)

L T P C
3 1 0 4

(20A04H06) SPEECH PROCESSING

Course Objectives:

- To impart knowledge on anatomy and physiology of Speech Production system and perception model.
- To describe speech parameters in frequency domain for various applications
- To introduce concept of homomorphic system and its use in extracting the vocal tract information from speech

Course Outcomes:

- Formulate vocal tract model based on the speech production mechanism
- Solve features of speech in Time Domain
- Describe feature extraction techniques in frequency domain
- Use LPC coefficients for Pitch and Formant detection
- Analyze the given speech using homomorphic system

UNIT I

Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs, The process of Speech Production, The Acoustic Theory of Speech Production – Uniform lossless tube model, effect of losses in vocal tract and radiation at lips, Digital models for speech signals.

UNIT II

Time Domain Methods for Speech Processing: Time domain parameters of speech, methods for extracting the parameters: Zero crossings, Auto-correlation function, pitch estimation.

UNIT III

Frequency Domain Methods for Speech Processing: Short time Fourier analysis, Filter bank analysis, Spectrographic analysis, Formant extraction, Pitch extraction.

UNIT IV

Linear predictive Coding (LPC) for Speech: Formulation of linear prediction problem in time domain, solution of normal equations, Interpretation of linear prediction in auto correlation and spectral domains, Method of Solution of the LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT V

Homomorphic Speech Processing: Introduction Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, pitch Detection and Formant Estimation; Applications of speech processing – Speech Enhancement, Speech recognition, Speech synthesis and Speaker Verification.

Textbooks:

- 1. L.R. Rabiner and S. W. Schafer, Digital Processing of Speech Signals, Pearson Education.
- 2. Douglas O' Shaughnessy, Speech Communications: Human & Machine, 2nd Ed., Wiley-IEEE Press.

- 1. Thomas F. Quatieri, Discrete Time Speech Signal Processing: Principles and Practice, 1st Ed., Pearson Education.
- 2. Ben Gold & Nelson Morgan, Speech and Audio Signal Processing: Processing and Perception of Speech and Music ,1st Ed., Wiley.